Skip to main content
Top
Published in: Magnetic Resonance Materials in Physics, Biology and Medicine 1/2018

Open Access 01-02-2018 | Review Article

Towards accurate and precise T 1 and extracellular volume mapping in the myocardium: a guide to current pitfalls and their solutions

Authors: Donnie Cameron, Vassilios S. Vassiliou, David M. Higgins, Peter D. Gatehouse

Published in: Magnetic Resonance Materials in Physics, Biology and Medicine | Issue 1/2018

Login to get access

Abstract

Mapping of the longitudinal relaxation time (T 1) and extracellular volume (ECV) offers a means of identifying pathological changes in myocardial tissue, including diffuse changes that may be invisible to existing T 1-weighted methods. This technique has recently shown strong clinical utility for pathologies such as Anderson-Fabry disease and amyloidosis and has generated clinical interest as a possible means of detecting small changes in diffuse fibrosis; however, scatter in T 1 and ECV estimates offers challenges for detecting these changes, and bias limits comparisons between sites and vendors. There are several technical and physiological pitfalls that influence the accuracy (bias) and precision (repeatability) of T 1 and ECV mapping methods. The goal of this review is to describe the most significant of these, and detail current solutions, in order to aid scientists and clinicians to maximise the utility of T 1 mapping in their clinical or research setting. A detailed summary of technical and physiological factors, issues relating to contrast agents, and specific disease-related issues is provided, along with some considerations on the future directions of the field.
Literature
1.
go back to reference Messroghli DR, Radjenovic A, Kozerke S, Higgins DM, Sivananthan MU, Ridgway JP (2004) Modified Look–Locker inversion recovery (MOLLI) for high-resolution T1 mapping of the heart. Magn Reson Med 52(1):141–146PubMedCrossRef Messroghli DR, Radjenovic A, Kozerke S, Higgins DM, Sivananthan MU, Ridgway JP (2004) Modified Look–Locker inversion recovery (MOLLI) for high-resolution T1 mapping of the heart. Magn Reson Med 52(1):141–146PubMedCrossRef
2.
go back to reference Kellman P, Wilson JR, Xue H, Bandettini WP, Shanbhag SM, Druey KM, Ugander M, Arai AE (2012) Extracellular volume fraction mapping in the myocardium, part 2: initial clinical experience. J Cardiovasc Magn Reson 14:64PubMedPubMedCentralCrossRef Kellman P, Wilson JR, Xue H, Bandettini WP, Shanbhag SM, Druey KM, Ugander M, Arai AE (2012) Extracellular volume fraction mapping in the myocardium, part 2: initial clinical experience. J Cardiovasc Magn Reson 14:64PubMedPubMedCentralCrossRef
3.
go back to reference Ugander M, Oki AJ, L-y Hsu, Kellman P, Greiser A, Aletras AH, Sibley CT, Chen MY, Bandettini WP, Arai AE (2012) Extracellular volume imaging by magnetic resonance imaging provides insights into overt and sub-clinical myocardial pathology. Eur Heart J 33:1268–1278PubMedPubMedCentralCrossRef Ugander M, Oki AJ, L-y Hsu, Kellman P, Greiser A, Aletras AH, Sibley CT, Chen MY, Bandettini WP, Arai AE (2012) Extracellular volume imaging by magnetic resonance imaging provides insights into overt and sub-clinical myocardial pathology. Eur Heart J 33:1268–1278PubMedPubMedCentralCrossRef
4.
go back to reference Kellman P, Arai AE, Xue H (2013) T1 and extracellular volume mapping in the heart: estimation of error maps and the influence of noise on precision. J Cardiovasc Magn Reson 15:56PubMedPubMedCentralCrossRef Kellman P, Arai AE, Xue H (2013) T1 and extracellular volume mapping in the heart: estimation of error maps and the influence of noise on precision. J Cardiovasc Magn Reson 15:56PubMedPubMedCentralCrossRef
6.
go back to reference Roujol S, Weingärtner S, Foppa M, Chow K, Kawaji K, Ngo LH, Kellman P, Manning WJ, Thompson RB, Nezafat R (2014) Accuracy, precision, and reproducibility of four T1 mapping sequences: a head-to-head comparison of MOLLI, ShMOLLI, SASHA, and SAPPHIRE. Radiology 272(3):683–689PubMedPubMedCentralCrossRef Roujol S, Weingärtner S, Foppa M, Chow K, Kawaji K, Ngo LH, Kellman P, Manning WJ, Thompson RB, Nezafat R (2014) Accuracy, precision, and reproducibility of four T1 mapping sequences: a head-to-head comparison of MOLLI, ShMOLLI, SASHA, and SAPPHIRE. Radiology 272(3):683–689PubMedPubMedCentralCrossRef
7.
go back to reference Weingärtner S, Meßner NM, Budjan J, Loßnitzer D, Mattler U, Papavassiliu T, Zöllner FG, Schad LR (2016) Myocardial T1-mapping at 3T using saturation-recovery: reference values, precision and comparison with MOLLI. J Cardiovasc Magn Reson 18(1):84PubMedPubMedCentralCrossRef Weingärtner S, Meßner NM, Budjan J, Loßnitzer D, Mattler U, Papavassiliu T, Zöllner FG, Schad LR (2016) Myocardial T1-mapping at 3T using saturation-recovery: reference values, precision and comparison with MOLLI. J Cardiovasc Magn Reson 18(1):84PubMedPubMedCentralCrossRef
8.
go back to reference Haaf P, Garg P, Messroghli DR, Broadbent DA, Greenwood JP, Plein S (2016) Cardiac T1 mapping and extracellular volume (ECV) in clinical practice: a comprehensive review. J Cardiovasc Magn Reson 18:89PubMedPubMedCentralCrossRef Haaf P, Garg P, Messroghli DR, Broadbent DA, Greenwood JP, Plein S (2016) Cardiac T1 mapping and extracellular volume (ECV) in clinical practice: a comprehensive review. J Cardiovasc Magn Reson 18:89PubMedPubMedCentralCrossRef
9.
go back to reference Taylor AJ, Salerno M, Dharmakumar R, Jerosch-Herold M (2016) T1 mapping basic techniques and clinical applications. JACC Cardiovasc Imaging 9(1):67–81PubMedCrossRef Taylor AJ, Salerno M, Dharmakumar R, Jerosch-Herold M (2016) T1 mapping basic techniques and clinical applications. JACC Cardiovasc Imaging 9(1):67–81PubMedCrossRef
10.
go back to reference Kammerlander AA, Marzluf BA, Zotter-Tufaro C, Aschauer S, Duca F, Bachmann A, Knechtelsdorfer K, Wiesinger M, Pfaffenberger S, Greiser A, Lang IM, Bonderman D, Mascherbauer J (2016) T1 mapping by CMR imaging from histological validation to clinical implication. JACC Cardiovasc Imaging 9(1):14–23PubMedCrossRef Kammerlander AA, Marzluf BA, Zotter-Tufaro C, Aschauer S, Duca F, Bachmann A, Knechtelsdorfer K, Wiesinger M, Pfaffenberger S, Greiser A, Lang IM, Bonderman D, Mascherbauer J (2016) T1 mapping by CMR imaging from histological validation to clinical implication. JACC Cardiovasc Imaging 9(1):14–23PubMedCrossRef
11.
go back to reference Schelbert EB, Messroghli DR (2016) State of the art: clinical applications of cardiac T1 mapping. Radiology 278(3):658–676PubMedCrossRef Schelbert EB, Messroghli DR (2016) State of the art: clinical applications of cardiac T1 mapping. Radiology 278(3):658–676PubMedCrossRef
12.
go back to reference Higgins DM, Moon JC (2014) Review of T1 mapping methods: comparative effectiveness including reproducibility issues. Curr Cardiovasc Imaging Rep 7(3):1–10CrossRef Higgins DM, Moon JC (2014) Review of T1 mapping methods: comparative effectiveness including reproducibility issues. Curr Cardiovasc Imaging Rep 7(3):1–10CrossRef
13.
go back to reference Moon JC, Messroghli DR, Kellman P, Piechnik SK, Robson MD, Ugander M, Gatehouse PD, Arai AE, Friedrich MG, Neubauer S, Schulz-Menger J, Schelbert EB (2013) Myocardial T1 mapping and extracellular volume quantification: a Society for Cardiovascular Magnetic Resonance (SCMR) and CMR Working Group of the European Society of Cardiology consensus statement. J Cardiovasc Magn Reson 15:92PubMedPubMedCentralCrossRef Moon JC, Messroghli DR, Kellman P, Piechnik SK, Robson MD, Ugander M, Gatehouse PD, Arai AE, Friedrich MG, Neubauer S, Schulz-Menger J, Schelbert EB (2013) Myocardial T1 mapping and extracellular volume quantification: a Society for Cardiovascular Magnetic Resonance (SCMR) and CMR Working Group of the European Society of Cardiology consensus statement. J Cardiovasc Magn Reson 15:92PubMedPubMedCentralCrossRef
14.
go back to reference Messroghli DR, Greiser A, Fröhlich M, Dietz R, Schulz-Menger J (2007) Optimization and validation of a fully-integrated pulse sequence for modified Look–Locker inversion-recovery (MOLLI) T1 mapping of the heart. J Magn Reson Imaging 26(4):1081–1086PubMedCrossRef Messroghli DR, Greiser A, Fröhlich M, Dietz R, Schulz-Menger J (2007) Optimization and validation of a fully-integrated pulse sequence for modified Look–Locker inversion-recovery (MOLLI) T1 mapping of the heart. J Magn Reson Imaging 26(4):1081–1086PubMedCrossRef
15.
go back to reference Piechnik SK, Ferreira VM, Dall’Armellina E, Cochlin LE, Greiser A, Neubauer S, Robson MD (2010) Shortened modified Look–Locker inversion recovery (ShMOLLI) for clinical myocardial T1-mapping at 1.5 and 3T within a 9 heartbeat breathhold. J Cardiovasc Magn Reson 12:69PubMedPubMedCentralCrossRef Piechnik SK, Ferreira VM, Dall’Armellina E, Cochlin LE, Greiser A, Neubauer S, Robson MD (2010) Shortened modified Look–Locker inversion recovery (ShMOLLI) for clinical myocardial T1-mapping at 1.5 and 3T within a 9 heartbeat breathhold. J Cardiovasc Magn Reson 12:69PubMedPubMedCentralCrossRef
16.
go back to reference Chow K, Flewitt JA, Green JD, Pagano JJ, Friedrich MG, Thompson RB (2014) Saturation recovery single-shot acquisition (SASHA) for myocardial T1 mapping. Magn Reson Med 71(6):2082–2095PubMedCrossRef Chow K, Flewitt JA, Green JD, Pagano JJ, Friedrich MG, Thompson RB (2014) Saturation recovery single-shot acquisition (SASHA) for myocardial T1 mapping. Magn Reson Med 71(6):2082–2095PubMedCrossRef
17.
go back to reference Slavin GS, Hood MN, Ho VB, Stainsby JA (2012) Breath-held myocardial T1 mapping using multiple single-point saturation recovery In: Proceedings of the 20th Annual Meeting of ISMRM, Melbourne, Australia, 1244 Slavin GS, Hood MN, Ho VB, Stainsby JA (2012) Breath-held myocardial T1 mapping using multiple single-point saturation recovery In: Proceedings of the 20th Annual Meeting of ISMRM, Melbourne, Australia, 1244
18.
go back to reference Higgins DM, Ridgway JP, Radjenovic A, Sivananthan UM, Smith MA (2005) T1 measurement using a short acquisition period for quantitative cardiac applications. Med Phys 32(6):1738–1746PubMedCrossRef Higgins DM, Ridgway JP, Radjenovic A, Sivananthan UM, Smith MA (2005) T1 measurement using a short acquisition period for quantitative cardiac applications. Med Phys 32(6):1738–1746PubMedCrossRef
19.
go back to reference Weingärtner S, Akcakaya M, Basha T, Kissinger KV, Goddu B, Berg S, Manning WJ, Nezafat R (2014) Combined saturation/inversion recovery sequences for improved evaluation of scar and diffuse fibrosis in patients with arrhythmia or heart rate variability. Magn Reson Med 71(3):1024–1034PubMedCrossRef Weingärtner S, Akcakaya M, Basha T, Kissinger KV, Goddu B, Berg S, Manning WJ, Nezafat R (2014) Combined saturation/inversion recovery sequences for improved evaluation of scar and diffuse fibrosis in patients with arrhythmia or heart rate variability. Magn Reson Med 71(3):1024–1034PubMedCrossRef
20.
go back to reference Kellman P, Wilson JR, Xue H, Ugander M, Arai AE (2012) Extracellular volume fraction mapping in the myocardium, part 1: evaluation of an automated method. J Cardiovasc Magn Reson 14:63PubMedPubMedCentralCrossRef Kellman P, Wilson JR, Xue H, Ugander M, Arai AE (2012) Extracellular volume fraction mapping in the myocardium, part 1: evaluation of an automated method. J Cardiovasc Magn Reson 14:63PubMedPubMedCentralCrossRef
21.
go back to reference Messroghli DR, Rudolph A, Abdel-Aty H, Wassmuth R, Kühne T, Dietz R, Schulz-Menger J (2010) An open-source software tool for the generation of relaxation time maps in magnetic resonance imaging. BMC Med Imaging 10(1):16PubMedPubMedCentralCrossRef Messroghli DR, Rudolph A, Abdel-Aty H, Wassmuth R, Kühne T, Dietz R, Schulz-Menger J (2010) An open-source software tool for the generation of relaxation time maps in magnetic resonance imaging. BMC Med Imaging 10(1):16PubMedPubMedCentralCrossRef
22.
go back to reference Altabella L, Borrazzo C, Carnì M, Galea N, Francone M, Fiorelli A, Di Castro E, Catalano C, Carbone I (2017) A feasible and automatic free tool for T1 and ECV mapping. Phys Med 33:47–55PubMedCrossRef Altabella L, Borrazzo C, Carnì M, Galea N, Francone M, Fiorelli A, Di Castro E, Catalano C, Carbone I (2017) A feasible and automatic free tool for T1 and ECV mapping. Phys Med 33:47–55PubMedCrossRef
23.
go back to reference Amano Y, Takayama M, Kumita S (2009) Contrast-enhanced myocardial T1-weighted scout (Look–Locker) imaging for the detection of myocardial damages in hypertrophic cardiomyopathy. J Magn Reson Imaging 30(4):778–784PubMedCrossRef Amano Y, Takayama M, Kumita S (2009) Contrast-enhanced myocardial T1-weighted scout (Look–Locker) imaging for the detection of myocardial damages in hypertrophic cardiomyopathy. J Magn Reson Imaging 30(4):778–784PubMedCrossRef
24.
go back to reference Nacif MS, Turkbey EB, Gai N, Nazarian S, van der Geest RJ, Noureldin RA, Sibley CT, Ugander M, Liu S, Arai AE, Lima JAC, Bluemke DA (2011) Myocardial T1 mapping with MRI: comparison of Look–Locker and MOLLI sequences. J Magn Reson Imaging 34(6):1367–1373PubMedPubMedCentralCrossRef Nacif MS, Turkbey EB, Gai N, Nazarian S, van der Geest RJ, Noureldin RA, Sibley CT, Ugander M, Liu S, Arai AE, Lima JAC, Bluemke DA (2011) Myocardial T1 mapping with MRI: comparison of Look–Locker and MOLLI sequences. J Magn Reson Imaging 34(6):1367–1373PubMedPubMedCentralCrossRef
25.
go back to reference Look DC, Locker DR (1969) Pulsed NMR by tone-burst generation. J Chem Phys 50(5):2269–2270CrossRef Look DC, Locker DR (1969) Pulsed NMR by tone-burst generation. J Chem Phys 50(5):2269–2270CrossRef
26.
go back to reference Look DC, Locker DR (1970) Time saving in measurement of NMR and EPR relaxation times. Rev Sci Instrum 41(2):250–251CrossRef Look DC, Locker DR (1970) Time saving in measurement of NMR and EPR relaxation times. Rev Sci Instrum 41(2):250–251CrossRef
27.
go back to reference Kellman P, Xue H, Chow K, Spottiswoode BS, Arai AE, Thompson RB (2014) Optimized saturation recovery protocols for T1-mapping in the heart: influence of sampling strategies on precision. J Cardiovasc Magn Reson 16:55PubMedPubMedCentralCrossRef Kellman P, Xue H, Chow K, Spottiswoode BS, Arai AE, Thompson RB (2014) Optimized saturation recovery protocols for T1-mapping in the heart: influence of sampling strategies on precision. J Cardiovasc Magn Reson 16:55PubMedPubMedCentralCrossRef
28.
go back to reference Piechnik SK, Ferreira VM, Lewandowski AJ, Ntusi NAB, Banerjee R, Holloway C, Hofman MBM, Sado DM, Maestrini V, White SK, Lazdam M, Karamitsos T, Moon JC, Neubauer S, Leeson P, Robson MD (2013) Normal variation of magnetic resonance T1 relaxation times in the human population at 1.5T using ShMOLLI. J Cardiovasc Magn Reson 15:1CrossRef Piechnik SK, Ferreira VM, Lewandowski AJ, Ntusi NAB, Banerjee R, Holloway C, Hofman MBM, Sado DM, Maestrini V, White SK, Lazdam M, Karamitsos T, Moon JC, Neubauer S, Leeson P, Robson MD (2013) Normal variation of magnetic resonance T1 relaxation times in the human population at 1.5T using ShMOLLI. J Cardiovasc Magn Reson 15:1CrossRef
29.
go back to reference Kellman P, Bandettini WP, Mancini C, Hammer-hansen S, Hansen MS, Arai AE (2015) Characterization of myocardial T1-mapping bias caused by intramyocardial fat in inversion recovery and saturation recovery techniques. J Cardiovasc Magn Reson 17:33PubMedPubMedCentralCrossRef Kellman P, Bandettini WP, Mancini C, Hammer-hansen S, Hansen MS, Arai AE (2015) Characterization of myocardial T1-mapping bias caused by intramyocardial fat in inversion recovery and saturation recovery techniques. J Cardiovasc Magn Reson 17:33PubMedPubMedCentralCrossRef
30.
go back to reference Rogers T, Dabir D, Mahmoud I, Voigt T, Schaeffter T, Nagel E, Puntmann VO (2013) Standardization of T1 measurements with MOLLI in differentiation between health and disease–the ConSept study. J Cardiovasc Magn Reson 15:78PubMedPubMedCentralCrossRef Rogers T, Dabir D, Mahmoud I, Voigt T, Schaeffter T, Nagel E, Puntmann VO (2013) Standardization of T1 measurements with MOLLI in differentiation between health and disease–the ConSept study. J Cardiovasc Magn Reson 15:78PubMedPubMedCentralCrossRef
31.
go back to reference Weingärtner S, Meßner NM, Zöllner FG, Akçakaya M, Schad LR (2016) Black-blood native T1 mapping: blood signal suppression for reduced partial voluming in the myocardium. Magn Reson Med. doi:10.1002/mrm.26378 Weingärtner S, Meßner NM, Zöllner FG, Akçakaya M, Schad LR (2016) Black-blood native T1 mapping: blood signal suppression for reduced partial voluming in the myocardium. Magn Reson Med. doi:10.​1002/​mrm.​26378
32.
go back to reference Pagano JJ, Chow K, Yang R, Thompson RB (2014) Fat-water separated myocardial T1 mapping with IDEAL-T1 saturation recovery gradient echo imaging. J Cardiovasc Magn Reson 16(Suppl 1):P65PubMedCentralCrossRef Pagano JJ, Chow K, Yang R, Thompson RB (2014) Fat-water separated myocardial T1 mapping with IDEAL-T1 saturation recovery gradient echo imaging. J Cardiovasc Magn Reson 16(Suppl 1):P65PubMedCentralCrossRef
33.
go back to reference Heng EL, Kellman P, Gatzoulis MA, Moon J, Gatehouse P, Babu-Narayan SV (2016) Quantifying right ventricular diffuse fibrosis in tetralogy of Fallot-a novel customised approach for the challenges of the right ventricle. J Cardiovasc Magn Reson 18(Suppl 1):O26PubMedCentralCrossRef Heng EL, Kellman P, Gatzoulis MA, Moon J, Gatehouse P, Babu-Narayan SV (2016) Quantifying right ventricular diffuse fibrosis in tetralogy of Fallot-a novel customised approach for the challenges of the right ventricle. J Cardiovasc Magn Reson 18(Suppl 1):O26PubMedCentralCrossRef
34.
go back to reference Mehta BB, Chen X, Bilchick KC, Salerno M, Epstein FH (2015) Accelerated and navigator-gated Look–Locker imaging for cardiac T1 estimation (ANGIE): development and application to T1 mapping of the right ventricle. Magn Reson Med 73(1):150–160PubMedCrossRef Mehta BB, Chen X, Bilchick KC, Salerno M, Epstein FH (2015) Accelerated and navigator-gated Look–Locker imaging for cardiac T1 estimation (ANGIE): development and application to T1 mapping of the right ventricle. Magn Reson Med 73(1):150–160PubMedCrossRef
35.
go back to reference Wang X, Joseph AA, Kalentev O, Merboldt K-D, Voit D, Roeloffs VB, van Zalk M, Frahm J (2016) High-resolution myocardial T1 mapping using single-shot inversion recovery fast low-angle shot MRI with radial undersampling and iterative reconstruction. Br J Radiol 89(1068):20160255PubMedPubMedCentralCrossRef Wang X, Joseph AA, Kalentev O, Merboldt K-D, Voit D, Roeloffs VB, van Zalk M, Frahm J (2016) High-resolution myocardial T1 mapping using single-shot inversion recovery fast low-angle shot MRI with radial undersampling and iterative reconstruction. Br J Radiol 89(1068):20160255PubMedPubMedCentralCrossRef
36.
go back to reference Tsai J-M, Huang T-Y, Tseng Y-S, Lin Y-R (2012) Free-breathing MOLLI: application to myocardial T1 mapping. Med Phys 39(101):7291–7302PubMedCrossRef Tsai J-M, Huang T-Y, Tseng Y-S, Lin Y-R (2012) Free-breathing MOLLI: application to myocardial T1 mapping. Med Phys 39(101):7291–7302PubMedCrossRef
37.
go back to reference Weingärtner S, Akcakaya M, Roujol S, Basha T, Stehning C, Kissinger KV, Goddu B, Berg S, Manning WJ, Nezafat R (2015) Free-breathing post-contrast three-dimensional T1 mapping: volumetric assessment of myocardial T1 values. Magn Reson Med 73(1):214–222PubMedCrossRef Weingärtner S, Akcakaya M, Roujol S, Basha T, Stehning C, Kissinger KV, Goddu B, Berg S, Manning WJ, Nezafat R (2015) Free-breathing post-contrast three-dimensional T1 mapping: volumetric assessment of myocardial T1 values. Magn Reson Med 73(1):214–222PubMedCrossRef
38.
go back to reference Weingärtner S, Roujol S, Akcakaya M, Basha TA, Nezafat R (2015) Free-breathing multislice native myocardial T1 mapping using the slice-interleaved T1 (STONE) sequence. Magn Reson Med 74(1):115–124CrossRef Weingärtner S, Roujol S, Akcakaya M, Basha TA, Nezafat R (2015) Free-breathing multislice native myocardial T1 mapping using the slice-interleaved T1 (STONE) sequence. Magn Reson Med 74(1):115–124CrossRef
39.
go back to reference Chow K, Yang Y, Shaw P, Kramer CM, Salerno M (2016) Robust free-breathing SASHA T1 mapping with high-contrast image registration. J Cardiovasc Magn Reson 18:47PubMedPubMedCentralCrossRef Chow K, Yang Y, Shaw P, Kramer CM, Salerno M (2016) Robust free-breathing SASHA T1 mapping with high-contrast image registration. J Cardiovasc Magn Reson 18:47PubMedPubMedCentralCrossRef
40.
go back to reference Kellman P, Herzka DA, Hansen MS (2014) Adiabatic inversion pulses for myocardial T1 mapping. Magn Reson Med 71(4):1428–1434PubMedCrossRef Kellman P, Herzka DA, Hansen MS (2014) Adiabatic inversion pulses for myocardial T1 mapping. Magn Reson Med 71(4):1428–1434PubMedCrossRef
41.
go back to reference Shao J, Nguyen KL, Natsuaki Y, Spottiswoode B, Hu P (2015) Instantaneous signal loss simulation (InSiL): an improved algorithm for myocardial T1 mapping using the MOLLI sequence. J Magn Reson Imaging 41(3):721–729PubMedCrossRef Shao J, Nguyen KL, Natsuaki Y, Spottiswoode B, Hu P (2015) Instantaneous signal loss simulation (InSiL): an improved algorithm for myocardial T1 mapping using the MOLLI sequence. J Magn Reson Imaging 41(3):721–729PubMedCrossRef
42.
go back to reference Rodgers CT, Piechnik SK, DelaBarre LJ, Moortele PF, Snyder CJ, Neubauer S, Robson MD, Vaughan JT (2013) Inversion recovery at 7T in the human myocardium: measurement of T1, inversion efficiency and B1+. Magn Reson Med 70(4):1038–1046PubMedCrossRef Rodgers CT, Piechnik SK, DelaBarre LJ, Moortele PF, Snyder CJ, Neubauer S, Robson MD, Vaughan JT (2013) Inversion recovery at 7T in the human myocardium: measurement of T1, inversion efficiency and B1+. Magn Reson Med 70(4):1038–1046PubMedCrossRef
43.
go back to reference Gai ND, Stehning C, Nacif M, Bluemke DA (2013) Modified Look–Locker T1 evaluation using Bloch simulations: human and phantom validation. Magn Reson Med 69(2):329–336PubMedCrossRef Gai ND, Stehning C, Nacif M, Bluemke DA (2013) Modified Look–Locker T1 evaluation using Bloch simulations: human and phantom validation. Magn Reson Med 69(2):329–336PubMedCrossRef
44.
go back to reference Chow K, Kellman P, Spottiswoode BS, Nielles-Vallespin S, Arai AE, Salerno M, Thompson RB (2015) Saturation pulse design for quantitative myocardial T1 mapping. J Cardiovasc Magn Reson 17:84PubMedPubMedCentralCrossRef Chow K, Kellman P, Spottiswoode BS, Nielles-Vallespin S, Arai AE, Salerno M, Thompson RB (2015) Saturation pulse design for quantitative myocardial T1 mapping. J Cardiovasc Magn Reson 17:84PubMedPubMedCentralCrossRef
45.
go back to reference Mueller A, Kouwenhoven M, Naehle CP, Gieseke J, Strach K, Willinek WA, Schild HH, Thomas D (2012) Dual-source radiofrequency transmission with patient-adaptive local radiofrequency shimming for 3.0-T cardiac MR imaging: initial experience. Radiology 263(1):77–85PubMedCrossRef Mueller A, Kouwenhoven M, Naehle CP, Gieseke J, Strach K, Willinek WA, Schild HH, Thomas D (2012) Dual-source radiofrequency transmission with patient-adaptive local radiofrequency shimming for 3.0-T cardiac MR imaging: initial experience. Radiology 263(1):77–85PubMedCrossRef
46.
go back to reference Malik SJ, Larkman DJ, Hajnal JV (2009) Optimal linear combinations of array elements for B1 mapping. Magn Reson Med 62(4):902–909PubMedCrossRef Malik SJ, Larkman DJ, Hajnal JV (2009) Optimal linear combinations of array elements for B1 mapping. Magn Reson Med 62(4):902–909PubMedCrossRef
47.
go back to reference Robson MD, Piechnik SK, Tunnicliffe EM, Neubauer S (2013) T1 measurements in the human myocardium: the effects of magnetization transfer on the SASHA and MOLLI sequences. Magn Reson Med 70(3):664–670PubMedCrossRef Robson MD, Piechnik SK, Tunnicliffe EM, Neubauer S (2013) T1 measurements in the human myocardium: the effects of magnetization transfer on the SASHA and MOLLI sequences. Magn Reson Med 70(3):664–670PubMedCrossRef
48.
go back to reference Kellman P, Da Herzka, Arai AE, Hansen M (2013) Influence of off-resonance in myocardial T1-mapping using SSFP based MOLLI method. J Cardiovasc Magn Reson 15:63PubMedPubMedCentralCrossRef Kellman P, Da Herzka, Arai AE, Hansen M (2013) Influence of off-resonance in myocardial T1-mapping using SSFP based MOLLI method. J Cardiovasc Magn Reson 15:63PubMedPubMedCentralCrossRef
49.
go back to reference Bieri O (2013) Ultra-fast steady state free precession and its application to in vivo 1H morphological and functional lung imaging at 1.5 tesla. Magn Reson Med 70(3):657–663PubMedCrossRef Bieri O (2013) Ultra-fast steady state free precession and its application to in vivo 1H morphological and functional lung imaging at 1.5 tesla. Magn Reson Med 70(3):657–663PubMedCrossRef
50.
go back to reference Jung BA, Hennig J, Scheffler K (2002) Single-breathhold 3D-trueFISP cine cardiac imaging. Magn Reson Med 48(5):921–925PubMedCrossRef Jung BA, Hennig J, Scheffler K (2002) Single-breathhold 3D-trueFISP cine cardiac imaging. Magn Reson Med 48(5):921–925PubMedCrossRef
51.
go back to reference Deimling M, Heid O (1994) Magnetization prepared true FISP imaging. In: Proceedings of the 2nd Annual Meeting of ISMRM, San Francisco, USA, 495 Deimling M, Heid O (1994) Magnetization prepared true FISP imaging. In: Proceedings of the 2nd Annual Meeting of ISMRM, San Francisco, USA, 495
52.
go back to reference Deshpande VS, Chung YC, Zhang Q, Shea SM, Li D (2003) Reduction of transient signal oscillations in true-FISP using a linear flip angle series magnetization preparation. Magn Reson Med 49(1):151–157PubMedCrossRef Deshpande VS, Chung YC, Zhang Q, Shea SM, Li D (2003) Reduction of transient signal oscillations in true-FISP using a linear flip angle series magnetization preparation. Magn Reson Med 49(1):151–157PubMedCrossRef
53.
go back to reference Cameron D, Higgins DM, Stehning C, Kouwenhoven M, Bouhrara M, Frenneaux MP, Dawson DK, Redpath TW (2015) Selection of magnetization catalyzation and readout methods for modified Look–Locker inversion recovery: a T1 mapping primer. Magn Reson Imaging 33(4):363–373PubMedCrossRef Cameron D, Higgins DM, Stehning C, Kouwenhoven M, Bouhrara M, Frenneaux MP, Dawson DK, Redpath TW (2015) Selection of magnetization catalyzation and readout methods for modified Look–Locker inversion recovery: a T1 mapping primer. Magn Reson Imaging 33(4):363–373PubMedCrossRef
54.
go back to reference Chow K, Flewitt JA, Pagano JJ, Green JD, Friedrich MG, Thompson RB (2012) MOLLI T1 values have systematic T2 and inversion efficiency dependent errors. In: Proceedings of the 20th Annual Meeting of ISMRM, Melbourne, Australia, 395 Chow K, Flewitt JA, Pagano JJ, Green JD, Friedrich MG, Thompson RB (2012) MOLLI T1 values have systematic T2 and inversion efficiency dependent errors. In: Proceedings of the 20th Annual Meeting of ISMRM, Melbourne, Australia, 395
55.
go back to reference Bieri O, Scheffler K (2013) Fundamentals of balanced steady state free precession MRI. J Magn Reson Imaging 38(1):2–11PubMedCrossRef Bieri O, Scheffler K (2013) Fundamentals of balanced steady state free precession MRI. J Magn Reson Imaging 38(1):2–11PubMedCrossRef
56.
go back to reference Gruetter R, Tkáč I (2000) Field mapping without reference scan using asymmetric echo-planar techniques. Magn Reson Med 43(2):319–323PubMedCrossRef Gruetter R, Tkáč I (2000) Field mapping without reference scan using asymmetric echo-planar techniques. Magn Reson Med 43(2):319–323PubMedCrossRef
57.
go back to reference Schär M, Kozerke S, Fischer SE, Boesiger P (2004) Cardiac SSFP imaging at 3 tesla. Magn Reson Med 51(4):799–806PubMedCrossRef Schär M, Kozerke S, Fischer SE, Boesiger P (2004) Cardiac SSFP imaging at 3 tesla. Magn Reson Med 51(4):799–806PubMedCrossRef
58.
go back to reference Fillmer A, Kirchner T, Cameron D, Henning A (2015) Constrained image-based B0 shimming accounting for “local minimum traps” in the optimization and field inhomogeneities outside the region of interest. Magn Reson Med 73(4):1370–1380PubMedCrossRef Fillmer A, Kirchner T, Cameron D, Henning A (2015) Constrained image-based B0 shimming accounting for “local minimum traps” in the optimization and field inhomogeneities outside the region of interest. Magn Reson Med 73(4):1370–1380PubMedCrossRef
59.
go back to reference Shao J, Rapacchi S, Nguyen KL, Hu P (2016) Myocardial T1 mapping at 3.0 tesla using an inversion recovery spoiled gradient echo readout and bloch equation simulation with slice profile correction (BLESSPC) T1 estimation algorithm. J Magn Reson Imaging 43(2):414–425PubMedCrossRef Shao J, Rapacchi S, Nguyen KL, Hu P (2016) Myocardial T1 mapping at 3.0 tesla using an inversion recovery spoiled gradient echo readout and bloch equation simulation with slice profile correction (BLESSPC) T1 estimation algorithm. J Magn Reson Imaging 43(2):414–425PubMedCrossRef
60.
go back to reference Shao J, Rashid S, Renella P, Nguyen K-L, Hu P (2016) Myocardial T1 mapping for patients with implanted cardiac devices using wideband inversion recovery spoiled gradient echo readout. Magn Reson Med 77(4):1495–1504PubMedCrossRef Shao J, Rashid S, Renella P, Nguyen K-L, Hu P (2016) Myocardial T1 mapping for patients with implanted cardiac devices using wideband inversion recovery spoiled gradient echo readout. Magn Reson Med 77(4):1495–1504PubMedCrossRef
61.
go back to reference Preibisch C, Deichmann R (2009) Influence of RF spoiling on the stability and accuracy of T1 mapping based on spoiled FLASH with varying flip angles. Magn Reson Med 61(1):125–135PubMedCrossRef Preibisch C, Deichmann R (2009) Influence of RF spoiling on the stability and accuracy of T1 mapping based on spoiled FLASH with varying flip angles. Magn Reson Med 61(1):125–135PubMedCrossRef
62.
go back to reference Hong KP, Collins J, Lee DC, Wilcox JE, Markl M, Carr J, Kim D (2016) Optimized AIR and investigational MOLLI cardiac T1 mapping pulse sequences produce similar intra-scan repeatability in patients at 3T. NMR Biomed 29(10):1454–1463PubMedPubMedCentralCrossRef Hong KP, Collins J, Lee DC, Wilcox JE, Markl M, Carr J, Kim D (2016) Optimized AIR and investigational MOLLI cardiac T1 mapping pulse sequences produce similar intra-scan repeatability in patients at 3T. NMR Biomed 29(10):1454–1463PubMedPubMedCentralCrossRef
63.
go back to reference Bieri O, Markl M, Scheffler K (2005) Analysis and compensation of eddy currents in balanced SSFP. Magn Reson Med 54(1):129–137PubMedCrossRef Bieri O, Markl M, Scheffler K (2005) Analysis and compensation of eddy currents in balanced SSFP. Magn Reson Med 54(1):129–137PubMedCrossRef
64.
go back to reference Dabir D, Child N, Kalra A, Rogers T, Gebker R, Jabbour A, Plein S, C-y Yu, Otton J, Kidambi A, McDiarmid A, Broadbent D, Higgins DM, Schnackenburg B, Foote L, Cummins C, Nagel E, Puntmann VO (2014) Reference values for healthy human myocardium using a T1 mapping methodology: results from the International T1 multicenter cardiovascular magnetic resonance study. J Cardiovasc Magn Reson 16:69PubMedPubMedCentralCrossRef Dabir D, Child N, Kalra A, Rogers T, Gebker R, Jabbour A, Plein S, C-y Yu, Otton J, Kidambi A, McDiarmid A, Broadbent D, Higgins DM, Schnackenburg B, Foote L, Cummins C, Nagel E, Puntmann VO (2014) Reference values for healthy human myocardium using a T1 mapping methodology: results from the International T1 multicenter cardiovascular magnetic resonance study. J Cardiovasc Magn Reson 16:69PubMedPubMedCentralCrossRef
65.
go back to reference Xue H, Shah S, Greiser A, Guetter C, Littmann A, Jolly MP, Arai AE, Zuehlsdorff S, Guehring J, Kellman P (2012) Motion correction for myocardial T1 mapping using image registration with synthetic image estimation. Magn Reson Med 67(6):1644–1655PubMedCrossRef Xue H, Shah S, Greiser A, Guetter C, Littmann A, Jolly MP, Arai AE, Zuehlsdorff S, Guehring J, Kellman P (2012) Motion correction for myocardial T1 mapping using image registration with synthetic image estimation. Magn Reson Med 67(6):1644–1655PubMedCrossRef
66.
go back to reference Ferreira VM, Wijesurendra RS, Liu A, Greiser A, Casadei B, Robson MD, Neubauer S, Piechnik SK (2015) Systolic ShMOLLI myocardial T1-mapping for improved robustness to partial-volume effects and applications in tachyarrhythmias. J Cardiovasc Magn Reson 17:77PubMedPubMedCentralCrossRef Ferreira VM, Wijesurendra RS, Liu A, Greiser A, Casadei B, Robson MD, Neubauer S, Piechnik SK (2015) Systolic ShMOLLI myocardial T1-mapping for improved robustness to partial-volume effects and applications in tachyarrhythmias. J Cardiovasc Magn Reson 17:77PubMedPubMedCentralCrossRef
67.
go back to reference Zhao L, Li S, Ma X, Greiser A, Zhang T, An J, Bai R, Dong J, Fan Z (2016) Systolic MOLLI T1 mapping with heart-rate-dependent pulse sequence sampling scheme is feasible in patients with atrial fibrillation. J Cardiovasc Magn Reson 18:13PubMedPubMedCentralCrossRef Zhao L, Li S, Ma X, Greiser A, Zhang T, An J, Bai R, Dong J, Fan Z (2016) Systolic MOLLI T1 mapping with heart-rate-dependent pulse sequence sampling scheme is feasible in patients with atrial fibrillation. J Cardiovasc Magn Reson 18:13PubMedPubMedCentralCrossRef
68.
go back to reference Kawel N, Nacif M, Zavodni A, Jones J, Liu S, Sibley CT, Bluemke DA (2012) T1 mapping of the myocardium: intra-individual assessment of the effect of field strength, cardiac cycle and variation by myocardial region. J Cardiovasc Magn Reson 14:27PubMedPubMedCentralCrossRef Kawel N, Nacif M, Zavodni A, Jones J, Liu S, Sibley CT, Bluemke DA (2012) T1 mapping of the myocardium: intra-individual assessment of the effect of field strength, cardiac cycle and variation by myocardial region. J Cardiovasc Magn Reson 14:27PubMedPubMedCentralCrossRef
69.
go back to reference Fitts M, Breton E, Kholmovski EG, Dosdall DJ, Vijayakumar S, Hong KP, Ranjan R, Marrouche NF, Axel L, Kim D (2013) Arrhythmia insensitive rapid cardiac T1 mapping pulse sequence. Magn Reson Med 70(5):1274–1282PubMedCrossRef Fitts M, Breton E, Kholmovski EG, Dosdall DJ, Vijayakumar S, Hong KP, Ranjan R, Marrouche NF, Axel L, Kim D (2013) Arrhythmia insensitive rapid cardiac T1 mapping pulse sequence. Magn Reson Med 70(5):1274–1282PubMedCrossRef
70.
71.
go back to reference Huang TY, Tseng YS, Chuang TC (2014) Automatic calibration of trigger delay time for cardiac MRI. NMR Biomed 27(4):417–424PubMedCrossRef Huang TY, Tseng YS, Chuang TC (2014) Automatic calibration of trigger delay time for cardiac MRI. NMR Biomed 27(4):417–424PubMedCrossRef
72.
go back to reference Cain PA, Ahl R, Hedstrom E, Ugander M, Allansdotter-Johnsson A, Friberg P, Arheden H (2009) Age and gender specific normal values of left ventricular mass, volume and function for gradient echo magnetic resonance imaging: a cross sectional study. BMC Med Imaging 9(1):2PubMedPubMedCentralCrossRef Cain PA, Ahl R, Hedstrom E, Ugander M, Allansdotter-Johnsson A, Friberg P, Arheden H (2009) Age and gender specific normal values of left ventricular mass, volume and function for gradient echo magnetic resonance imaging: a cross sectional study. BMC Med Imaging 9(1):2PubMedPubMedCentralCrossRef
73.
go back to reference Bieri O, Scheffler K (2006) On the origin of apparent low tissue signals in balanced SSFP. Magn Reson Med 56(5):1067–1074PubMedCrossRef Bieri O, Scheffler K (2006) On the origin of apparent low tissue signals in balanced SSFP. Magn Reson Med 56(5):1067–1074PubMedCrossRef
74.
go back to reference Stanisz GJ, Odrobina EE, Pun J, Escaravage M, Graham SJ, Bronskill MJ, Henkelman RM (2005) T1, T2 relaxation and magnetization transfer in tissue at 3T. Magn Reson Med 54(3):507–512PubMedCrossRef Stanisz GJ, Odrobina EE, Pun J, Escaravage M, Graham SJ, Bronskill MJ, Henkelman RM (2005) T1, T2 relaxation and magnetization transfer in tissue at 3T. Magn Reson Med 54(3):507–512PubMedCrossRef
75.
go back to reference Donahue KM, Burstein D, Manning WJ, Gray ML (1994) Studies of Gd-DTPA relaxivity and proton exchange rates in tissue. Magn Reson Med 32(1):66–76PubMedCrossRef Donahue KM, Burstein D, Manning WJ, Gray ML (1994) Studies of Gd-DTPA relaxivity and proton exchange rates in tissue. Magn Reson Med 32(1):66–76PubMedCrossRef
76.
go back to reference Flacke SJ, Fischer SE, Lorenz CH (2001) Measurement of the gadopentetate dimeglumine partition coefficient in human myocardium in vivo: normal distribution and elevation in acute and chronic infarction. Radiology 218(3):703–710PubMedCrossRef Flacke SJ, Fischer SE, Lorenz CH (2001) Measurement of the gadopentetate dimeglumine partition coefficient in human myocardium in vivo: normal distribution and elevation in acute and chronic infarction. Radiology 218(3):703–710PubMedCrossRef
77.
go back to reference Arheden H, Saeed M, Higgins CB, Gao D-W, Bremerich J, Wyttenbach R, Dae MW, Wendland MF (1999) Measurement of the distribution volume of gadopentetate dimeglumine at echo-planar MR imaging to quantify myocardial infarction: comparison with 99mTc-DTPA autoradiography in rats. Radiology 211(3):698–708PubMedCrossRef Arheden H, Saeed M, Higgins CB, Gao D-W, Bremerich J, Wyttenbach R, Dae MW, Wendland MF (1999) Measurement of the distribution volume of gadopentetate dimeglumine at echo-planar MR imaging to quantify myocardial infarction: comparison with 99mTc-DTPA autoradiography in rats. Radiology 211(3):698–708PubMedCrossRef
78.
go back to reference Messroghli DR, Nordmeyer S, Dietrich T, Dirsch O, Kaschina E, Savvatis K, Klein C, Berger F, Kuehne T (2011) Assessment of diffuse myocardial fibrosis in rats using small-animal Look–Locker inversion recovery T1 mappingclinical perspective. Circ Cardiovasc Imaging 4(6):636–640PubMedCrossRef Messroghli DR, Nordmeyer S, Dietrich T, Dirsch O, Kaschina E, Savvatis K, Klein C, Berger F, Kuehne T (2011) Assessment of diffuse myocardial fibrosis in rats using small-animal Look–Locker inversion recovery T1 mappingclinical perspective. Circ Cardiovasc Imaging 4(6):636–640PubMedCrossRef
79.
go back to reference Balci NC, Inan N, Anik Y, Erturk MS, Ural D, Demirci A (2006) Low-dose gadobenate dimeglumine versus standard-dose gadopentate dimeglumine for delayed contrast-enhanced cardiac magnetic resonance imaging. Acad Radiol 13(7):833–839PubMedCrossRef Balci NC, Inan N, Anik Y, Erturk MS, Ural D, Demirci A (2006) Low-dose gadobenate dimeglumine versus standard-dose gadopentate dimeglumine for delayed contrast-enhanced cardiac magnetic resonance imaging. Acad Radiol 13(7):833–839PubMedCrossRef
80.
go back to reference Kawel N, Nacif M, Zavodni A, Jones J, Liu S, Sibley CT, Da Bluemke (2012) T1 mapping of the myocardium: intra-individual assessment of post-contrast T1 time evolution and extracellular volume fraction at 3T for Gd-DTPA and Gd-BOPTA. J Cardiovasc Magn Reson 14:26PubMedPubMedCentralCrossRef Kawel N, Nacif M, Zavodni A, Jones J, Liu S, Sibley CT, Da Bluemke (2012) T1 mapping of the myocardium: intra-individual assessment of post-contrast T1 time evolution and extracellular volume fraction at 3T for Gd-DTPA and Gd-BOPTA. J Cardiovasc Magn Reson 14:26PubMedPubMedCentralCrossRef
81.
go back to reference Rohrer M, Bauer H, Mintorovitch J, Requardt M, Weinmann H-J (2005) Comparison of magnetic properties of MRI contrast media solutions at different magnetic field strengths. Invest Radiol 40(11):715–724PubMedCrossRef Rohrer M, Bauer H, Mintorovitch J, Requardt M, Weinmann H-J (2005) Comparison of magnetic properties of MRI contrast media solutions at different magnetic field strengths. Invest Radiol 40(11):715–724PubMedCrossRef
82.
go back to reference Pintaske J, Martirosian P, Graf H, Erb G, Lodemann K-P, Claussen CD, Schick F (2006) Relaxivity of gadopentetate dimeglumine (Magnevist), gadobutrol (Gadovist), and gadobenate dimeglumine (MultiHance) in human blood plasma at 0.2, 1.5, and 3 tesla. Invest Radiol 41(3):213–221PubMedCrossRef Pintaske J, Martirosian P, Graf H, Erb G, Lodemann K-P, Claussen CD, Schick F (2006) Relaxivity of gadopentetate dimeglumine (Magnevist), gadobutrol (Gadovist), and gadobenate dimeglumine (MultiHance) in human blood plasma at 0.2, 1.5, and 3 tesla. Invest Radiol 41(3):213–221PubMedCrossRef
83.
go back to reference Schelbert EB, Testa SM, Meier CG, Ceyrolles WJ, Levenson JE, Blair AJ, Kellman P, Jones BL, Ludwig DR, Schwartzman D (2011) Myocardial extravascular extracellular volume fraction measurement by gadolinium cardiovascular magnetic resonance in humans: slow infusion versus bolus. J Cardiovasc Magn Reson 13:16PubMedPubMedCentralCrossRef Schelbert EB, Testa SM, Meier CG, Ceyrolles WJ, Levenson JE, Blair AJ, Kellman P, Jones BL, Ludwig DR, Schwartzman D (2011) Myocardial extravascular extracellular volume fraction measurement by gadolinium cardiovascular magnetic resonance in humans: slow infusion versus bolus. J Cardiovasc Magn Reson 13:16PubMedPubMedCentralCrossRef
84.
go back to reference White SK, Sado DM, Fontana M, Banypersad SM, Maestrini V, Flett AS, Piechnik SK, Robson MD, Hausenloy DJ, Sheikh AM (2013) T1 mapping for myocardial extracellular volume measurement by CMR: bolus only versus primed infusion technique. JACC Cardiovasc Imaging 6(9):955–962PubMedCrossRef White SK, Sado DM, Fontana M, Banypersad SM, Maestrini V, Flett AS, Piechnik SK, Robson MD, Hausenloy DJ, Sheikh AM (2013) T1 mapping for myocardial extracellular volume measurement by CMR: bolus only versus primed infusion technique. JACC Cardiovasc Imaging 6(9):955–962PubMedCrossRef
85.
go back to reference Salerno M, Janardhanan R, Jiji RS, Brooks J, Adenaw N, Mehta B, Yang Y, Antkowiak P, Kramer CM, Epstein FH (2013) Comparison of methods for determining the partition coefficient of gadolinium in the myocardium using T1 mapping. J Magn Reson Imaging 38(1):217–224PubMedCrossRef Salerno M, Janardhanan R, Jiji RS, Brooks J, Adenaw N, Mehta B, Yang Y, Antkowiak P, Kramer CM, Epstein FH (2013) Comparison of methods for determining the partition coefficient of gadolinium in the myocardium using T1 mapping. J Magn Reson Imaging 38(1):217–224PubMedCrossRef
86.
go back to reference Flett AS, Hayward MP, Ashworth MT, Hansen MS, Taylor AM, Elliott PM, McGregor C, Moon JC (2010) Equilibrium contrast cardiovascular magnetic resonance for the measurement of diffuse myocardial fibrosis: preliminary validation in humans. Circulation 122(2):138–144PubMedCrossRef Flett AS, Hayward MP, Ashworth MT, Hansen MS, Taylor AM, Elliott PM, McGregor C, Moon JC (2010) Equilibrium contrast cardiovascular magnetic resonance for the measurement of diffuse myocardial fibrosis: preliminary validation in humans. Circulation 122(2):138–144PubMedCrossRef
87.
go back to reference Sado DM, Flett AS, Banypersad SM, White SK, Maestrini V, Quarta G, Lachmann RH, Murphy E, Mehta A, Hughes DA (2012) Cardiovascular magnetic resonance measurement of myocardial extracellular volume in health and disease. Heart 98:1436–1441PubMedCrossRef Sado DM, Flett AS, Banypersad SM, White SK, Maestrini V, Quarta G, Lachmann RH, Murphy E, Mehta A, Hughes DA (2012) Cardiovascular magnetic resonance measurement of myocardial extracellular volume in health and disease. Heart 98:1436–1441PubMedCrossRef
88.
go back to reference Jerosch-Herold M, Sheridan DC, Kushner JD, Nauman D, Burgess D, Dutton D, Alharethi R, Li D, Hershberger RE (2008) Cardiac magnetic resonance imaging of myocardial contrast uptake and blood flow in patients affected with idiopathic or familial dilated cardiomyopathy. Am J Physiol Heart Circ Physiol 295(3):H1234–H1242PubMedPubMedCentralCrossRef Jerosch-Herold M, Sheridan DC, Kushner JD, Nauman D, Burgess D, Dutton D, Alharethi R, Li D, Hershberger RE (2008) Cardiac magnetic resonance imaging of myocardial contrast uptake and blood flow in patients affected with idiopathic or familial dilated cardiomyopathy. Am J Physiol Heart Circ Physiol 295(3):H1234–H1242PubMedPubMedCentralCrossRef
89.
go back to reference Broberg CS, Chugh SS, Conklin C, Sahn DJ, Jerosch-Herold M (2010) Quantification of diffuse myocardial fibrosis and its association with myocardial dysfunction in congenital heart disease. Circ Cardiovasc Imaging 3(6):727–734PubMedPubMedCentralCrossRef Broberg CS, Chugh SS, Conklin C, Sahn DJ, Jerosch-Herold M (2010) Quantification of diffuse myocardial fibrosis and its association with myocardial dysfunction in congenital heart disease. Circ Cardiovasc Imaging 3(6):727–734PubMedPubMedCentralCrossRef
90.
go back to reference Goldfarb JW, Zhao W (2014) Magnetic resonance imaging dynamic contrast enhancement (DCE) characteristics of healed myocardial infarction differ from viable myocardium. Magn Reson Imaging 32(10):1191–1197PubMedCrossRef Goldfarb JW, Zhao W (2014) Magnetic resonance imaging dynamic contrast enhancement (DCE) characteristics of healed myocardial infarction differ from viable myocardium. Magn Reson Imaging 32(10):1191–1197PubMedCrossRef
91.
go back to reference Goldfarb JW, Zhao W (2016) Effects of transcytolemmal water exchange on the assessment of myocardial extracellular volume with cardiovascular MRI. NMR Biomed 29(4):499–506PubMedCrossRef Goldfarb JW, Zhao W (2016) Effects of transcytolemmal water exchange on the assessment of myocardial extracellular volume with cardiovascular MRI. NMR Biomed 29(4):499–506PubMedCrossRef
92.
go back to reference Coelho-Filho OR, Mongeon F-P, Mitchell R, Moreno H, Nadruz W, Kwong R, Jerosch-Herold M (2013) Role of transcytolemmal water-exchange in magnetic resonance measurements of diffuse myocardial fibrosis in hypertensive heart disease. Circ Cardiovasc Imaging 6(1):134–141PubMedCrossRef Coelho-Filho OR, Mongeon F-P, Mitchell R, Moreno H, Nadruz W, Kwong R, Jerosch-Herold M (2013) Role of transcytolemmal water-exchange in magnetic resonance measurements of diffuse myocardial fibrosis in hypertensive heart disease. Circ Cardiovasc Imaging 6(1):134–141PubMedCrossRef
93.
go back to reference Treibel TA, Fontana M, Maestrini V, Castelletti S, Rosmini S, Simpson J, Nasis A, Bhuva AN, Bulluck H, Abdel-Gadir A (2016) Automatic measurement of the myocardial interstitium: synthetic extracellular volume quantification without hematocrit sampling. JACC Cardiovasc Imaging 9(1):54–63PubMedCrossRef Treibel TA, Fontana M, Maestrini V, Castelletti S, Rosmini S, Simpson J, Nasis A, Bhuva AN, Bulluck H, Abdel-Gadir A (2016) Automatic measurement of the myocardial interstitium: synthetic extracellular volume quantification without hematocrit sampling. JACC Cardiovasc Imaging 9(1):54–63PubMedCrossRef
94.
95.
go back to reference Bluemke DA, Kawel-Boehm N (2016) Can a MR imaging scanner accurately measure hematocrit to determine ECV fraction? JACC Cardiovasc Imaging 9(1):64–66PubMedCrossRef Bluemke DA, Kawel-Boehm N (2016) Can a MR imaging scanner accurately measure hematocrit to determine ECV fraction? JACC Cardiovasc Imaging 9(1):64–66PubMedCrossRef
96.
go back to reference Croisille P, De Bourguignon C, Chazot A, Viallon M (2017) Are synthetic haematocrit values derived from blood T1 a good substitute for blood samples to achieve accurate ECV calculation? J Cardiovasc Magn Reson 20(Suppl 1):O28 Croisille P, De Bourguignon C, Chazot A, Viallon M (2017) Are synthetic haematocrit values derived from blood T1 a good substitute for blood samples to achieve accurate ECV calculation? J Cardiovasc Magn Reson 20(Suppl 1):O28
97.
go back to reference Rauhalammi SM, Mangion K, Barrientos PH, Carrick DJ, Clerfond G, McClure J, McComb C, Radjenovic A, Berry C (2016) Native myocardial longitudinal (T1) relaxation time: regional, age, and sex associations in the healthy adult heart. J Magn Reson Imaging 44(3):541–548PubMedPubMedCentralCrossRef Rauhalammi SM, Mangion K, Barrientos PH, Carrick DJ, Clerfond G, McClure J, McComb C, Radjenovic A, Berry C (2016) Native myocardial longitudinal (T1) relaxation time: regional, age, and sex associations in the healthy adult heart. J Magn Reson Imaging 44(3):541–548PubMedPubMedCentralCrossRef
98.
go back to reference Liu C-Y, Liu Y-C, Wu C, Armstrong A, Volpe GJ, Van der Geest RJ, Liu Y, Hundley WG, Gomes AS, Liu S (2013) Evaluation of age-related interstitial myocardial fibrosis with cardiac magnetic resonance contrast-enhanced T1 mapping: MESA (multi-ethnic study of atherosclerosis). J Am Coll Cardiol 62(14):1280–1287PubMedCrossRef Liu C-Y, Liu Y-C, Wu C, Armstrong A, Volpe GJ, Van der Geest RJ, Liu Y, Hundley WG, Gomes AS, Liu S (2013) Evaluation of age-related interstitial myocardial fibrosis with cardiac magnetic resonance contrast-enhanced T1 mapping: MESA (multi-ethnic study of atherosclerosis). J Am Coll Cardiol 62(14):1280–1287PubMedCrossRef
99.
go back to reference Bönner F, Janzarik N, Jacoby C, Spieker M, Schnackenburg B, Range F, Butzbach B, Haberkorn S, Westenfeld R, Neizel-Wittke M (2015) Myocardial T2 mapping reveals age-and sex-related differences in volunteers. J Cardiovasc Magn Reson 17:9PubMedPubMedCentralCrossRef Bönner F, Janzarik N, Jacoby C, Spieker M, Schnackenburg B, Range F, Butzbach B, Haberkorn S, Westenfeld R, Neizel-Wittke M (2015) Myocardial T2 mapping reveals age-and sex-related differences in volunteers. J Cardiovasc Magn Reson 17:9PubMedPubMedCentralCrossRef
100.
go back to reference Messroghli DR, Plein S, Higgins DM, Walters K, Jones TR, Ridgway JP, Sivananthan MU (2006) Human myocardium: single-breath-hold MR T1 mapping with high spatial resolution—reproducibility study 1. Radiology 238(3):1004–1012PubMedCrossRef Messroghli DR, Plein S, Higgins DM, Walters K, Jones TR, Ridgway JP, Sivananthan MU (2006) Human myocardium: single-breath-hold MR T1 mapping with high spatial resolution—reproducibility study 1. Radiology 238(3):1004–1012PubMedCrossRef
101.
go back to reference Miller CA, Naish JH, Bishop P, Coutts G, Clark D, Zhao S, Ray SG, Yonan N, Williams SG, Flett AS, Moon JC, Greiser A, Parker GJM, Schmitt M (2013) Comprehensive validation of cardiovascular magnetic resonance techniques for the assessment of myocardial extracellular volume. Circ Cardiovasc Imaging 6(3):373–383PubMedCrossRef Miller CA, Naish JH, Bishop P, Coutts G, Clark D, Zhao S, Ray SG, Yonan N, Williams SG, Flett AS, Moon JC, Greiser A, Parker GJM, Schmitt M (2013) Comprehensive validation of cardiovascular magnetic resonance techniques for the assessment of myocardial extracellular volume. Circ Cardiovasc Imaging 6(3):373–383PubMedCrossRef
102.
go back to reference Atalay MK, Poncelet BP, Kantor HL, Brady TJ, Weisskoff RM (2001) Cardiac susceptibility artifacts arising from the heart-lung interface. Magn Reson Med 45(2):341–345PubMedCrossRef Atalay MK, Poncelet BP, Kantor HL, Brady TJ, Weisskoff RM (2001) Cardiac susceptibility artifacts arising from the heart-lung interface. Magn Reson Med 45(2):341–345PubMedCrossRef
103.
go back to reference Reeder SB, Faranesh AZ, Boxerman JL, McVeigh ER (1998) In vivo measurement of T* 2 and field inhomogeneity maps in the human heart at 1.5T. Magn Reson Med 39(6):988–998PubMedPubMedCentralCrossRef Reeder SB, Faranesh AZ, Boxerman JL, McVeigh ER (1998) In vivo measurement of T* 2 and field inhomogeneity maps in the human heart at 1.5T. Magn Reson Med 39(6):988–998PubMedPubMedCentralCrossRef
104.
105.
go back to reference Karamitsos TD, Piechnik SK, Banypersad SM, Fontana M, Ntusi NB, Ferreira VM, Whelan CJ, Myerson SG, Robson MD, Hawkins PN, Neubauer S, Moon JC (2013) Noncontrast T1 mapping for the diagnosis of cardiac amyloidosis. JACC Cardiovasc Imaging 6(4):488–497PubMedCrossRef Karamitsos TD, Piechnik SK, Banypersad SM, Fontana M, Ntusi NB, Ferreira VM, Whelan CJ, Myerson SG, Robson MD, Hawkins PN, Neubauer S, Moon JC (2013) Noncontrast T1 mapping for the diagnosis of cardiac amyloidosis. JACC Cardiovasc Imaging 6(4):488–497PubMedCrossRef
106.
go back to reference Maceira AM, Prasad SK, Hawkins PN, Roughton M, Pennell DJ (2008) Cardiovascular magnetic resonance and prognosis in cardiac amyloidosis. J Cardiovasc Magn Reson 10:54PubMedPubMedCentralCrossRef Maceira AM, Prasad SK, Hawkins PN, Roughton M, Pennell DJ (2008) Cardiovascular magnetic resonance and prognosis in cardiac amyloidosis. J Cardiovasc Magn Reson 10:54PubMedPubMedCentralCrossRef
107.
go back to reference Banypersad SM, Fontana M, Maestrini V, Sado DM, Captur G, Petrie A, Piechnik SK, Whelan CJ, Herrey AS, Gillmore JD (2015) T1 mapping and survival in systemic light-chain amyloidosis. Eur Heart J 36(4):244–251PubMedCrossRef Banypersad SM, Fontana M, Maestrini V, Sado DM, Captur G, Petrie A, Piechnik SK, Whelan CJ, Herrey AS, Gillmore JD (2015) T1 mapping and survival in systemic light-chain amyloidosis. Eur Heart J 36(4):244–251PubMedCrossRef
108.
go back to reference O’Mahony C, Elliott P (2010) Anderson-Fabry disease and the heart. Prog Cardiovasc Dis 52(4):326–335PubMedCrossRef O’Mahony C, Elliott P (2010) Anderson-Fabry disease and the heart. Prog Cardiovasc Dis 52(4):326–335PubMedCrossRef
109.
go back to reference Sado DM, White SK, Piechnik SK, Banypersad SM, Treibel T, Captur G, Fontana M, Maestrini V, Flett AS, Robson MD, Lachmann RH, Murphy E, Mehta A, Hughes D, Neubauer S, Elliott PM, Moon JC (2013) Identification and assessment of Anderson-Fabry disease by cardiovascular magnetic resonance noncontrast myocardial T1 mapping. Circ Cardiovasc Imaging 6(3):392–398PubMedCrossRef Sado DM, White SK, Piechnik SK, Banypersad SM, Treibel T, Captur G, Fontana M, Maestrini V, Flett AS, Robson MD, Lachmann RH, Murphy E, Mehta A, Hughes D, Neubauer S, Elliott PM, Moon JC (2013) Identification and assessment of Anderson-Fabry disease by cardiovascular magnetic resonance noncontrast myocardial T1 mapping. Circ Cardiovasc Imaging 6(3):392–398PubMedCrossRef
110.
go back to reference Thompson RB, Chow K, Khan A, Chan A, Shanks M, Paterson I, Oudit GY (2013) T1 mapping with cardiovascular MRI is highly sensitive for Fabry disease independent of hypertrophy and sex. Circ Cardiovasc Imaging 6(5):637–645PubMedCrossRef Thompson RB, Chow K, Khan A, Chan A, Shanks M, Paterson I, Oudit GY (2013) T1 mapping with cardiovascular MRI is highly sensitive for Fabry disease independent of hypertrophy and sex. Circ Cardiovasc Imaging 6(5):637–645PubMedCrossRef
111.
go back to reference Pica S, Sado DM, Maestrini V, Fontana M, White SK, Treibel T, Captur G, Anderson S, Piechnik SK, Robson MD (2014) Reproducibility of native myocardial T1 mapping in the assessment of Fabry disease and its role in early detection of cardiac involvement by cardiovascular magnetic resonance. J Cardiovasc Magn Reson 16:99PubMedPubMedCentralCrossRef Pica S, Sado DM, Maestrini V, Fontana M, White SK, Treibel T, Captur G, Anderson S, Piechnik SK, Robson MD (2014) Reproducibility of native myocardial T1 mapping in the assessment of Fabry disease and its role in early detection of cardiac involvement by cardiovascular magnetic resonance. J Cardiovasc Magn Reson 16:99PubMedPubMedCentralCrossRef
112.
go back to reference Hinojar R, Foote L, Ucar EA, Jackson T, Jabbour A, Yu C-Y, McCrohon J, Higgins DM, Carr-White G, Mayr M (2015) Native T1 in discrimination of acute and convalescent stages in patients with clinical diagnosis of myocarditis: a proposed diagnostic algorithm using CMR. JACC Cardiovasc Imaging 8(1):37–46PubMedCrossRef Hinojar R, Foote L, Ucar EA, Jackson T, Jabbour A, Yu C-Y, McCrohon J, Higgins DM, Carr-White G, Mayr M (2015) Native T1 in discrimination of acute and convalescent stages in patients with clinical diagnosis of myocarditis: a proposed diagnostic algorithm using CMR. JACC Cardiovasc Imaging 8(1):37–46PubMedCrossRef
113.
go back to reference Ferreira VM, Piechnik SK, Dall’Armellina E, Karamitsos TD, Francis JM, Choudhury RP, Friedrich MG, Robson MD, Neubauer S (2012) Non-contrast T1-mapping detects acute myocardial edema with high diagnostic accuracy: a comparison to T2-weighted cardiovascular magnetic resonance. J Cardiovasc Magn Reson 14:42PubMedPubMedCentralCrossRef Ferreira VM, Piechnik SK, Dall’Armellina E, Karamitsos TD, Francis JM, Choudhury RP, Friedrich MG, Robson MD, Neubauer S (2012) Non-contrast T1-mapping detects acute myocardial edema with high diagnostic accuracy: a comparison to T2-weighted cardiovascular magnetic resonance. J Cardiovasc Magn Reson 14:42PubMedPubMedCentralCrossRef
114.
go back to reference Dawson DK, Neil CJ, Henning A, Cameron D, Jagpal B, Bruce M, Horowitz J, Frenneaux MP (2015) Tako-tsubo cardiomyopathy: a heart stressed out of energy? JACC Cardiovasc Imaging 8(8):985–987PubMedCrossRef Dawson DK, Neil CJ, Henning A, Cameron D, Jagpal B, Bruce M, Horowitz J, Frenneaux MP (2015) Tako-tsubo cardiomyopathy: a heart stressed out of energy? JACC Cardiovasc Imaging 8(8):985–987PubMedCrossRef
115.
go back to reference Ferreira VM, Piechnik SK, Dall’Armellina E, Karamitsos TD, Francis JM, Ntusi N, Holloway C, Choudhury RP, Kardos A, Robson MD (2013) T1 mapping for the diagnosis of acute myocarditis using CMR: comparison to T2-weighted and late gadolinium enhanced imaging. JACC Cardiovasc Imaging 6(10):1048–1058PubMedCrossRef Ferreira VM, Piechnik SK, Dall’Armellina E, Karamitsos TD, Francis JM, Ntusi N, Holloway C, Choudhury RP, Kardos A, Robson MD (2013) T1 mapping for the diagnosis of acute myocarditis using CMR: comparison to T2-weighted and late gadolinium enhanced imaging. JACC Cardiovasc Imaging 6(10):1048–1058PubMedCrossRef
116.
go back to reference Dall’Armellina E, Piechnik SK, Ferreira VM, Le Si Q, Robson MD, Francis JM, Cuculi F, Kharbanda RK, Banning AP, Choudhury RP (2012) Cardiovascular magnetic resonance by non contrast T1-mapping allows assessment of severity of injury in acute myocardial infarction. J Cardiovasc Magn Reson 14:15PubMedPubMedCentralCrossRef Dall’Armellina E, Piechnik SK, Ferreira VM, Le Si Q, Robson MD, Francis JM, Cuculi F, Kharbanda RK, Banning AP, Choudhury RP (2012) Cardiovascular magnetic resonance by non contrast T1-mapping allows assessment of severity of injury in acute myocardial infarction. J Cardiovasc Magn Reson 14:15PubMedPubMedCentralCrossRef
117.
go back to reference Cameron D, Siddiqi N, Neil CJ, Jagpal B, Bruce M, Higgins DM, He J, Singh S, Redpath TW, Frenneaux MP (2016) T1 mapping for assessment of myocardial injury and microvascular obstruction at one week post myocardial infarction. Eur J Radiol 85(1):279–285PubMedCrossRef Cameron D, Siddiqi N, Neil CJ, Jagpal B, Bruce M, Higgins DM, He J, Singh S, Redpath TW, Frenneaux MP (2016) T1 mapping for assessment of myocardial injury and microvascular obstruction at one week post myocardial infarction. Eur J Radiol 85(1):279–285PubMedCrossRef
118.
go back to reference O h-Ici D, Jeuthe S, Al-Wakeel N, Berger F, Kuehne T, Kozerke S, Messroghli DR (2014) T1 mapping in ischaemic heart disease. Eur Heart J Cardiovasc Imaging 15(6):597–602CrossRef O h-Ici D, Jeuthe S, Al-Wakeel N, Berger F, Kuehne T, Kozerke S, Messroghli DR (2014) T1 mapping in ischaemic heart disease. Eur Heart J Cardiovasc Imaging 15(6):597–602CrossRef
119.
120.
go back to reference Asanuma T, Tanabe K, Ochiai K, Yoshitomi H, Nakamura K, Murakami Y, Sano K, Shimada T, Murakami R, Morioka S (1997) Relationship between progressive microvascular damage and intramyocardial hemorrhage in patients with reperfused anterior myocardial infarction. Circulation 96(2):448–453PubMedCrossRef Asanuma T, Tanabe K, Ochiai K, Yoshitomi H, Nakamura K, Murakami Y, Sano K, Shimada T, Murakami R, Morioka S (1997) Relationship between progressive microvascular damage and intramyocardial hemorrhage in patients with reperfused anterior myocardial infarction. Circulation 96(2):448–453PubMedCrossRef
121.
go back to reference Anzalone N, Scotti R, Riva R (2004) Neuroradiologic differential diagnosis of cerebral intraparenchymal hemorrhage. Neurol Sci 25:s3–s5PubMedCrossRef Anzalone N, Scotti R, Riva R (2004) Neuroradiologic differential diagnosis of cerebral intraparenchymal hemorrhage. Neurol Sci 25:s3–s5PubMedCrossRef
122.
go back to reference Bulluck H, Rosmini S, Abdel-Gadir A, Bhuva AN, Treibel TA, Fontana M, Gonzalez-Lopez E, Ramlall M, Hamarneh A, Sirker A, Herrey AS, Manisty C, Yellon DM, Moon JC, Hausenloy DJ (2017) Diagnostic performance of T1 and T2 mapping to detect intramyocardial hemorrhage in reperfused ST-segment elevation myocardial infarction (STEMI) patients. J Magn Reson Imaging. doi:10.1002/jmri.25638 PubMedPubMedCentral Bulluck H, Rosmini S, Abdel-Gadir A, Bhuva AN, Treibel TA, Fontana M, Gonzalez-Lopez E, Ramlall M, Hamarneh A, Sirker A, Herrey AS, Manisty C, Yellon DM, Moon JC, Hausenloy DJ (2017) Diagnostic performance of T1 and T2 mapping to detect intramyocardial hemorrhage in reperfused ST-segment elevation myocardial infarction (STEMI) patients. J Magn Reson Imaging. doi:10.​1002/​jmri.​25638 PubMedPubMedCentral
123.
go back to reference Mordi I, Radjenovic A, Stanton T, Gardner RS, McPhaden A, Carrick D, Berry C, Tzemos N (2015) Prevalence and prognostic significance of lipomatous metaplasia in patients with prior myocardial infarction. JACC Cardiovasc Imaging 8(9):1111–1112PubMedCrossRef Mordi I, Radjenovic A, Stanton T, Gardner RS, McPhaden A, Carrick D, Berry C, Tzemos N (2015) Prevalence and prognostic significance of lipomatous metaplasia in patients with prior myocardial infarction. JACC Cardiovasc Imaging 8(9):1111–1112PubMedCrossRef
124.
go back to reference Rakow-Penner R, Daniel B, Yu H, Sawyer-Glover A, Glover GH (2006) Relaxation times of breast tissue at 1.5 T and 3T measured using IDEAL. J Magn Reson Imaging 23(1):87–91PubMedCrossRef Rakow-Penner R, Daniel B, Yu H, Sawyer-Glover A, Glover GH (2006) Relaxation times of breast tissue at 1.5 T and 3T measured using IDEAL. J Magn Reson Imaging 23(1):87–91PubMedCrossRef
125.
go back to reference Aquaro GD, Todiere G, Strata E, Barison A, Bella G, Lombardi M (2014) Usefulness of india ink artifact in steady-state free precession pulse sequences for detection and quantification of intramyocardial fat. J Magn Reson Imaging 40(1):126–132PubMedCrossRef Aquaro GD, Todiere G, Strata E, Barison A, Bella G, Lombardi M (2014) Usefulness of india ink artifact in steady-state free precession pulse sequences for detection and quantification of intramyocardial fat. J Magn Reson Imaging 40(1):126–132PubMedCrossRef
126.
go back to reference Mozes FE, Tunnicliffe EM, Pavlides M, Robson MD (2016) Influence of fat on liver T1 measurements using modified Look–Locker inversion recovery (MOLLI) methods at 3T. J Magn Reson Imaging 44(1):105–111PubMedPubMedCentralCrossRef Mozes FE, Tunnicliffe EM, Pavlides M, Robson MD (2016) Influence of fat on liver T1 measurements using modified Look–Locker inversion recovery (MOLLI) methods at 3T. J Magn Reson Imaging 44(1):105–111PubMedPubMedCentralCrossRef
127.
go back to reference Kellman P, Hernando D, Shah S, Zuehlsdorff S, Jerecic R, Mancini C, Liang Z-P, Arai AE (2009) Multiecho dixon fat and water separation method for detecting fibrofatty infiltration in the myocardium. Magn Reson Med 61(1):215–221PubMedPubMedCentralCrossRef Kellman P, Hernando D, Shah S, Zuehlsdorff S, Jerecic R, Mancini C, Liang Z-P, Arai AE (2009) Multiecho dixon fat and water separation method for detecting fibrofatty infiltration in the myocardium. Magn Reson Med 61(1):215–221PubMedPubMedCentralCrossRef
128.
go back to reference Larmour S, Chow K, Kellman P, Thompson RB (2016) Characterization of T1 bias in skeletal muscle from fat in MOLLI and SASHA pulse sequences: quantitative fat-fraction imaging with T1 mapping. Magn Reson Med 77(1):237–249PubMedCrossRef Larmour S, Chow K, Kellman P, Thompson RB (2016) Characterization of T1 bias in skeletal muscle from fat in MOLLI and SASHA pulse sequences: quantitative fat-fraction imaging with T1 mapping. Magn Reson Med 77(1):237–249PubMedCrossRef
129.
go back to reference Treibel TA, Zemrak F, Sado DM, Banypersad SM, White SK, Maestrini V, Barison A, Patel V, Herrey AS, Davies C (2015) Extracellular volume quantification in isolated hypertension-changes at the detectable limits? J Cardiovasc Magn Reson 17:74PubMedPubMedCentralCrossRef Treibel TA, Zemrak F, Sado DM, Banypersad SM, White SK, Maestrini V, Barison A, Patel V, Herrey AS, Davies C (2015) Extracellular volume quantification in isolated hypertension-changes at the detectable limits? J Cardiovasc Magn Reson 17:74PubMedPubMedCentralCrossRef
130.
go back to reference Wong TC, Piehler KM, Kang IA, Kadakkal A, Kellman P, Schwartzman DS, Mulukutla SR, Simon MA, Shroff SG, Kuller LH (2013) Myocardial extracellular volume fraction quantified by cardiovascular magnetic resonance is increased in diabetes and associated with mortality and incident heart failure admission. Eur Heart J 35(10):657–664PubMedPubMedCentralCrossRef Wong TC, Piehler KM, Kang IA, Kadakkal A, Kellman P, Schwartzman DS, Mulukutla SR, Simon MA, Shroff SG, Kuller LH (2013) Myocardial extracellular volume fraction quantified by cardiovascular magnetic resonance is increased in diabetes and associated with mortality and incident heart failure admission. Eur Heart J 35(10):657–664PubMedPubMedCentralCrossRef
131.
go back to reference Bernaba BN, Chan JB, Lai CK, Fishbein MC (2010) Pathology of late-onset anthracycline cardiomyopathy. Cardiovasc Pathol 19(5):308–311PubMedCrossRef Bernaba BN, Chan JB, Lai CK, Fishbein MC (2010) Pathology of late-onset anthracycline cardiomyopathy. Cardiovasc Pathol 19(5):308–311PubMedCrossRef
132.
go back to reference Neilan TG, Coelho-Filho OR, Shah RV, Feng JH, Pena-Herrera D, Mandry D, Pierre-Mongeon F, Heydari B, Francis SA, Moslehi J, Kwong RY, Jerosch-Herold M (2013) Myocardial extracellular volume by cardiac magnetic resonance imaging in patients treated with anthracycline-based chemotherapy. Am J Cardiol 111(5):717–722PubMedCrossRef Neilan TG, Coelho-Filho OR, Shah RV, Feng JH, Pena-Herrera D, Mandry D, Pierre-Mongeon F, Heydari B, Francis SA, Moslehi J, Kwong RY, Jerosch-Herold M (2013) Myocardial extracellular volume by cardiac magnetic resonance imaging in patients treated with anthracycline-based chemotherapy. Am J Cardiol 111(5):717–722PubMedCrossRef
133.
go back to reference Schelbert EB, Piehler KM, Zareba KM, Moon JC, Ugander M, Messroghli DR, Valeti US, Chang CCH, Shroff SG, Diez J, Miller CA, Schmitt M, Kellman P, Butler J, Gheorghiade M, Wong TC (2015) Myocardial fibrosis quantified by extracellular volume is associated with subsequent hospitalization for heart failure, death, or both across the spectrum of ejection fraction and heart failure stage. J Am Heart Assoc 4(12):e002613PubMedPubMedCentralCrossRef Schelbert EB, Piehler KM, Zareba KM, Moon JC, Ugander M, Messroghli DR, Valeti US, Chang CCH, Shroff SG, Diez J, Miller CA, Schmitt M, Kellman P, Butler J, Gheorghiade M, Wong TC (2015) Myocardial fibrosis quantified by extracellular volume is associated with subsequent hospitalization for heart failure, death, or both across the spectrum of ejection fraction and heart failure stage. J Am Heart Assoc 4(12):e002613PubMedPubMedCentralCrossRef
134.
go back to reference Puntmann V (2016) T1-mapping and outcome in nonischemic cardiomyopathy: all-cause mortality and heart failure. JACC Cardiovasc Imaging 9(1):40–50PubMedCrossRef Puntmann V (2016) T1-mapping and outcome in nonischemic cardiomyopathy: all-cause mortality and heart failure. JACC Cardiovasc Imaging 9(1):40–50PubMedCrossRef
135.
136.
go back to reference Weber KT, Sun Y, Bhattacharya SK, Ahokas RA, Gerling IC (2013) Myofibroblast-mediated mechanisms of pathological remodelling of the heart. Nat Rev Cardiol 10(1):15–26PubMedCrossRef Weber KT, Sun Y, Bhattacharya SK, Ahokas RA, Gerling IC (2013) Myofibroblast-mediated mechanisms of pathological remodelling of the heart. Nat Rev Cardiol 10(1):15–26PubMedCrossRef
137.
go back to reference Wong TC, Piehler K, Meier CG, Testa SM, Klock AM, Aneizi AA, Shakesprere J, Kellman P, Shroff SG, Schwartzman DS (2012) Association between extracellular matrix expansion quantified by cardiovascular magnetic resonance and short term mortality. Circulation 126(10):1206–1216PubMedPubMedCentralCrossRef Wong TC, Piehler K, Meier CG, Testa SM, Klock AM, Aneizi AA, Shakesprere J, Kellman P, Shroff SG, Schwartzman DS (2012) Association between extracellular matrix expansion quantified by cardiovascular magnetic resonance and short term mortality. Circulation 126(10):1206–1216PubMedPubMedCentralCrossRef
138.
go back to reference Shao J, Liu D, Sung K, Nguyen K-L, Hu P (2016) Accuracy, precision, and reproducibility of myocardial T1 mapping: a comparison of four T1 estimation algorithms for modified Look–Locker inversion recovery (MOLLI). Magn Reson Med. doi:10.1002/mrm.26565 PubMedCentral Shao J, Liu D, Sung K, Nguyen K-L, Hu P (2016) Accuracy, precision, and reproducibility of myocardial T1 mapping: a comparison of four T1 estimation algorithms for modified Look–Locker inversion recovery (MOLLI). Magn Reson Med. doi:10.​1002/​mrm.​26565 PubMedCentral
139.
go back to reference Xanthis CG, Bidhult S, Kantasis G, Heiberg E, Arheden H, Aletras AH (2015) Parallel simulations for QUAntifying RElaxation magnetic resonance constants (SQUAREMR): an example towards accurate MOLLI T1 measurements. J Cardiovasc Magn Reson 17:104PubMedPubMedCentralCrossRef Xanthis CG, Bidhult S, Kantasis G, Heiberg E, Arheden H, Aletras AH (2015) Parallel simulations for QUAntifying RElaxation magnetic resonance constants (SQUAREMR): an example towards accurate MOLLI T1 measurements. J Cardiovasc Magn Reson 17:104PubMedPubMedCentralCrossRef
140.
go back to reference Sussman MS, Yang IY, Fok KH, Wintersperger BJ (2016) Inversion group (IG) fitting: a new T1 mapping method for modified Look–Locker inversion recovery (MOLLI) that allows arbitrary inversion groupings and rest periods (including no rest period). Magn Reson Med 75(6):2332–2340PubMedCrossRef Sussman MS, Yang IY, Fok KH, Wintersperger BJ (2016) Inversion group (IG) fitting: a new T1 mapping method for modified Look–Locker inversion recovery (MOLLI) that allows arbitrary inversion groupings and rest periods (including no rest period). Magn Reson Med 75(6):2332–2340PubMedCrossRef
141.
go back to reference Blume U, Lockie T, Stehning C, Sinclair S, Uribe S, Razavi R, Schaeffter T (2009) Interleaved T1 and T2 relaxation time mapping for cardiac applications. J Magn Reson Imaging 29(2):480–487PubMedCrossRef Blume U, Lockie T, Stehning C, Sinclair S, Uribe S, Razavi R, Schaeffter T (2009) Interleaved T1 and T2 relaxation time mapping for cardiac applications. J Magn Reson Imaging 29(2):480–487PubMedCrossRef
142.
go back to reference Kvernby S, Warntjes MJB, Haraldsson H, Carlhäll C-J, Engvall J, Ebbers T (2014) Simultaneous three-dimensional myocardial T1 and T2 mapping in one breath hold with 3D-QALAS. J Cardiovasc Magn Reson 16(1):102PubMedPubMedCentralCrossRef Kvernby S, Warntjes MJB, Haraldsson H, Carlhäll C-J, Engvall J, Ebbers T (2014) Simultaneous three-dimensional myocardial T1 and T2 mapping in one breath hold with 3D-QALAS. J Cardiovasc Magn Reson 16(1):102PubMedPubMedCentralCrossRef
143.
go back to reference Santini F, Kawel-Boehm N, Greiser A, Bremerich J, Bieri O (2015) Simultaneous T1 and T2 quantification of the myocardium using cardiac balanced-SSFP inversion recovery with interleaved sampling acquisition (CABIRIA). Magn Reson Med 74(2):365–371PubMedCrossRef Santini F, Kawel-Boehm N, Greiser A, Bremerich J, Bieri O (2015) Simultaneous T1 and T2 quantification of the myocardium using cardiac balanced-SSFP inversion recovery with interleaved sampling acquisition (CABIRIA). Magn Reson Med 74(2):365–371PubMedCrossRef
144.
go back to reference Akçakaya M, Weingärtner S, Basha TA, Roujol S, Bellm S, Nezafat R (2016) Joint myocardial T1 and T2 mapping using a combination of saturation recovery and T2-preparation. Magn Reson Med 76(3):888–896PubMedCrossRef Akçakaya M, Weingärtner S, Basha TA, Roujol S, Bellm S, Nezafat R (2016) Joint myocardial T1 and T2 mapping using a combination of saturation recovery and T2-preparation. Magn Reson Med 76(3):888–896PubMedCrossRef
145.
146.
go back to reference Hamilton JI, Jiang Y, Chen Y, Ma D, Lo WC, Griswold M, Seiberlich N (2017) MR fingerprinting for rapid quantification of myocardial T1, T2, and proton spin density. Magn Reson Med 77(4):1446–1458PubMedCrossRef Hamilton JI, Jiang Y, Chen Y, Ma D, Lo WC, Griswold M, Seiberlich N (2017) MR fingerprinting for rapid quantification of myocardial T1, T2, and proton spin density. Magn Reson Med 77(4):1446–1458PubMedCrossRef
147.
go back to reference Puntmann VO, Peker E, Chandrashekhar Y, Nagel E (2016) T1 mapping in characterizing myocardial disease. Circ Res 119(2):277–299PubMedCrossRef Puntmann VO, Peker E, Chandrashekhar Y, Nagel E (2016) T1 mapping in characterizing myocardial disease. Circ Res 119(2):277–299PubMedCrossRef
148.
go back to reference Captur G, Gatehouse P, Keenan KE, Heslinga FG, Bruehl R, Prothmann M, Graves MJ, Eames RJ, Torlasco C, Benedetti G (2016) A medical device-grade T1 and ECV phantom for global T1 mapping quality assurance—the T1 mapping and ECV standardization in cardiovascular magnetic resonance (T1MES) program. J Cardiovasc Magn Reson 18:58PubMedPubMedCentralCrossRef Captur G, Gatehouse P, Keenan KE, Heslinga FG, Bruehl R, Prothmann M, Graves MJ, Eames RJ, Torlasco C, Benedetti G (2016) A medical device-grade T1 and ECV phantom for global T1 mapping quality assurance—the T1 mapping and ECV standardization in cardiovascular magnetic resonance (T1MES) program. J Cardiovasc Magn Reson 18:58PubMedPubMedCentralCrossRef
Metadata
Title
Towards accurate and precise T 1 and extracellular volume mapping in the myocardium: a guide to current pitfalls and their solutions
Authors
Donnie Cameron
Vassilios S. Vassiliou
David M. Higgins
Peter D. Gatehouse
Publication date
01-02-2018
Publisher
Springer Berlin Heidelberg
Published in
Magnetic Resonance Materials in Physics, Biology and Medicine / Issue 1/2018
Print ISSN: 0968-5243
Electronic ISSN: 1352-8661
DOI
https://doi.org/10.1007/s10334-017-0631-2

Other articles of this Issue 1/2018

Magnetic Resonance Materials in Physics, Biology and Medicine 1/2018 Go to the issue