Skip to main content
Top
Published in: Journal of Cardiovascular Magnetic Resonance 1/2010

Open Access 01-12-2010 | Research

Shortened Modified Look-Locker Inversion recovery (ShMOLLI) for clinical myocardial T1-mapping at 1.5 and 3 T within a 9 heartbeat breathhold

Authors: Stefan K Piechnik, Vanessa M Ferreira, Erica Dall'Armellina, Lowri E Cochlin, Andreas Greiser, Stefan Neubauer, Matthew D Robson

Published in: Journal of Cardiovascular Magnetic Resonance | Issue 1/2010

Login to get access

Abstract

Background

T1 mapping allows direct in-vivo quantitation of microscopic changes in the myocardium, providing new diagnostic insights into cardiac disease. Existing methods require long breath holds that are demanding for many cardiac patients. In this work we propose and validate a novel, clinically applicable, pulse sequence for myocardial T1-mapping that is compatible with typical limits for end-expiration breath-holding in patients.

Materials and methods

The Shortened MOdified Look-Locker Inversion recovery (ShMOLLI) method uses sequential inversion recovery measurements within a single short breath-hold. Full recovery of the longitudinal magnetisation between sequential inversion pulses is not achieved, but conditional interpretation of samples for reconstruction of T1-maps is used to yield accurate measurements, and this algorithm is implemented directly on the scanner. We performed computer simulations for 100 ms<T1 < 2.7 s and heart rates 40-100 bpm followed by phantom validation at 1.5T and 3T. In-vivo myocardial T1-mapping using this method and the previous gold-standard (MOLLI) was performed in 10 healthy volunteers at 1.5T and 3T, 4 volunteers with contrast injection at 1.5T, and 4 patients with recent myocardial infarction (MI) at 3T.

Results

We found good agreement between the average ShMOLLI and MOLLI estimates for T1 < 1200 ms. In contrast to the original method, ShMOLLI showed no dependence on heart rates for long T1 values, with estimates characterized by a constant 4% underestimation for T1 = 800-2700 ms. In-vivo, ShMOLLI measurements required 9.0 ± 1.1 s (MOLLI = 17.6 ± 2.9 s). Average healthy myocardial T1 s by ShMOLLI at 1.5T were 966 ± 48 ms (mean ± SD) and 1166 ± 60 ms at 3T. In MI patients, the T1 in unaffected myocardium (1216 ± 42 ms) was similar to controls at 3T. Ischemically injured myocardium showed increased T1 = 1432 ± 33 ms (p < 0.001). The difference between MI and remote myocardium was estimated 15% larger by ShMOLLI than MOLLI (p < 0.04) which suffers from heart rate dependencies for long T1. The in-vivo variability within ShMOLLI T1-maps was only 14% (1.5T) or 18% (3T) higher than the MOLLI maps, but the MOLLI acquisitions were twice longer than ShMOLLI acquisitions.

Conclusion

ShMOLLI is an efficient method that generates immediate, high-resolution myocardial T1-maps in a short breath-hold with high precision. This technique provides a valuable clinically applicable tool for myocardial tissue characterisation.
Appendix
Available only for authorised users
Literature
1.
go back to reference Bottomley PA, Foster TH, Argersinger RE, Pfeifer LM: A review of normal tissue hydrogen NMR relaxation times and relaxation mechanisms from 1-100 MHz: dependence on tissue type, NMR frequency, temperature, species, excision, and age. Med Phys. 1984, 11 (4): 425-448. 10.1118/1.595535.CrossRefPubMed Bottomley PA, Foster TH, Argersinger RE, Pfeifer LM: A review of normal tissue hydrogen NMR relaxation times and relaxation mechanisms from 1-100 MHz: dependence on tissue type, NMR frequency, temperature, species, excision, and age. Med Phys. 1984, 11 (4): 425-448. 10.1118/1.595535.CrossRefPubMed
2.
go back to reference Messroghli DR, Niendorf T, Schulz-Menger J, Dietz R, Friedrich MG: T1 mapping in patients with acute myocardial infarction. J Cardiovasc Magn Reson. 2003, 5 (2): 353-359. 10.1081/JCMR-120019418.CrossRefPubMed Messroghli DR, Niendorf T, Schulz-Menger J, Dietz R, Friedrich MG: T1 mapping in patients with acute myocardial infarction. J Cardiovasc Magn Reson. 2003, 5 (2): 353-359. 10.1081/JCMR-120019418.CrossRefPubMed
3.
go back to reference Messroghli DR, Walters K, Plein S, Sparrow P, Friedrich MG, Ridgway JP, Sivananthan MU: Myocardial T1 mapping: application to patients with acute and chronic myocardial infarction. Magn Reson Med. 2007, 58 (1): 34-40. 10.1002/mrm.21272.CrossRefPubMed Messroghli DR, Walters K, Plein S, Sparrow P, Friedrich MG, Ridgway JP, Sivananthan MU: Myocardial T1 mapping: application to patients with acute and chronic myocardial infarction. Magn Reson Med. 2007, 58 (1): 34-40. 10.1002/mrm.21272.CrossRefPubMed
4.
go back to reference Iles L, Pfluger H, Phrommintikul A, Cherayath J, Aksit P, Gupta SN, Kaye DM, Taylor AJ: Evaluation of diffuse myocardial fibrosis in heart failure with cardiac magnetic resonance contrast-enhanced T1 mapping. J Am Coll Cardiol. 2008, 52 (19): 1574-1580. 10.1016/j.jacc.2008.06.049.CrossRefPubMed Iles L, Pfluger H, Phrommintikul A, Cherayath J, Aksit P, Gupta SN, Kaye DM, Taylor AJ: Evaluation of diffuse myocardial fibrosis in heart failure with cardiac magnetic resonance contrast-enhanced T1 mapping. J Am Coll Cardiol. 2008, 52 (19): 1574-1580. 10.1016/j.jacc.2008.06.049.CrossRefPubMed
5.
go back to reference Sparrow P, Messroghli DR, Reid S, Ridgway JP, Bainbridge G, Sivananthan MU: Myocardial T1 mapping for detection of left ventricular myocardial fibrosis in chronic aortic regurgitation: pilot study. AJR Am J Roentgenol. 2006, 187 (6): W630-635. 10.2214/AJR.05.1264.CrossRefPubMed Sparrow P, Messroghli DR, Reid S, Ridgway JP, Bainbridge G, Sivananthan MU: Myocardial T1 mapping for detection of left ventricular myocardial fibrosis in chronic aortic regurgitation: pilot study. AJR Am J Roentgenol. 2006, 187 (6): W630-635. 10.2214/AJR.05.1264.CrossRefPubMed
6.
go back to reference Maceira AM, Joshi J, Prasad SK, Moon JC, Perugini E, Harding I, Sheppard MN, Poole-Wilson PA, Hawkins PN, Pennell DJ: Cardiovascular magnetic resonance in cardiac amyloidosis. Circulation. 2005, 111 (2): 186-193. 10.1161/01.CIR.0000152819.97857.9D.CrossRefPubMed Maceira AM, Joshi J, Prasad SK, Moon JC, Perugini E, Harding I, Sheppard MN, Poole-Wilson PA, Hawkins PN, Pennell DJ: Cardiovascular magnetic resonance in cardiac amyloidosis. Circulation. 2005, 111 (2): 186-193. 10.1161/01.CIR.0000152819.97857.9D.CrossRefPubMed
7.
go back to reference Maceira AM, Prasad SK, Hawkins PN, Roughton M, Pennell DJ: Cardiovascular magnetic resonance and prognosis in cardiac amyloidosis. Journal of Cardiovascular Magnetic Resonance. 2008, 10 (1): 10.1186/1532-429X-10-54. Maceira AM, Prasad SK, Hawkins PN, Roughton M, Pennell DJ: Cardiovascular magnetic resonance and prognosis in cardiac amyloidosis. Journal of Cardiovascular Magnetic Resonance. 2008, 10 (1): 10.1186/1532-429X-10-54.
8.
go back to reference Been M, Thomson BJ, Smith MA, Ridgway JP, Douglas RHB, Been M, Best JJK, Muir AL: Myocardial involvement in systemic lupus erythematosus detected by magnetic resonance imaging. European Heart Journal. 1988, 9 (11): 1250-1256.PubMed Been M, Thomson BJ, Smith MA, Ridgway JP, Douglas RHB, Been M, Best JJK, Muir AL: Myocardial involvement in systemic lupus erythematosus detected by magnetic resonance imaging. European Heart Journal. 1988, 9 (11): 1250-1256.PubMed
9.
go back to reference Messroghli DR, Radjenovic A, Kozerke S, Higgins DM, Sivananthan MU, Ridgway JP: Modified Look-Locker inversion recovery (MOLLI) for high-resolution T1 mapping of the heart. Magn Reson Med. 2004, 52 (1): 141-146. 10.1002/mrm.20110.CrossRefPubMed Messroghli DR, Radjenovic A, Kozerke S, Higgins DM, Sivananthan MU, Ridgway JP: Modified Look-Locker inversion recovery (MOLLI) for high-resolution T1 mapping of the heart. Magn Reson Med. 2004, 52 (1): 141-146. 10.1002/mrm.20110.CrossRefPubMed
10.
go back to reference Messroghli DR, Plein S, Higgins DM, Walters K, Jones TR, Ridgway JP, Sivananthan MU: Human myocardium: single-breath-hold MR T1 mapping with high spatial resolution--reproducibility study. Radiology. 2006, 238 (3): 1004-1012. 10.1148/radiol.2382041903.CrossRefPubMed Messroghli DR, Plein S, Higgins DM, Walters K, Jones TR, Ridgway JP, Sivananthan MU: Human myocardium: single-breath-hold MR T1 mapping with high spatial resolution--reproducibility study. Radiology. 2006, 238 (3): 1004-1012. 10.1148/radiol.2382041903.CrossRefPubMed
11.
go back to reference Marks B, Mitchell DG, Simelaro JP: Breath-holding in healthy and pulmonary-compromised populations: effects of hyperventilation and oxygen inspiration. J Magn Reson Imaging. 1997, 7 (3): 595-597. 10.1002/jmri.1880070323.CrossRefPubMed Marks B, Mitchell DG, Simelaro JP: Breath-holding in healthy and pulmonary-compromised populations: effects of hyperventilation and oxygen inspiration. J Magn Reson Imaging. 1997, 7 (3): 595-597. 10.1002/jmri.1880070323.CrossRefPubMed
12.
go back to reference Solano JP, Gomes B, Higginson IJ: A comparison of symptom prevalence in far advanced cancer, AIDS, heart disease, chronic obstructive pulmonary disease and renal disease. J Pain Symptom Manage. 2006, 31 (1): 58-69. 10.1016/j.jpainsymman.2005.06.007.CrossRefPubMed Solano JP, Gomes B, Higginson IJ: A comparison of symptom prevalence in far advanced cancer, AIDS, heart disease, chronic obstructive pulmonary disease and renal disease. J Pain Symptom Manage. 2006, 31 (1): 58-69. 10.1016/j.jpainsymman.2005.06.007.CrossRefPubMed
13.
go back to reference Messroghli DR, Greiser A, Frohlich M, Dietz R, Schulz-Menger J: Optimization and validation of a fully-integrated pulse sequence for modified look-locker inversion-recovery (MOLLI) T1 mapping of the heart. J Magn Reson Imaging. 2007, 26 (4): 1081-1086. 10.1002/jmri.21119.CrossRefPubMed Messroghli DR, Greiser A, Frohlich M, Dietz R, Schulz-Menger J: Optimization and validation of a fully-integrated pulse sequence for modified look-locker inversion-recovery (MOLLI) T1 mapping of the heart. J Magn Reson Imaging. 2007, 26 (4): 1081-1086. 10.1002/jmri.21119.CrossRefPubMed
14.
go back to reference Nelder JA, Mead R: A Simplex-Method for Function Minimization. Comput J. 1965, 7 (4): 308-313.CrossRef Nelder JA, Mead R: A Simplex-Method for Function Minimization. Comput J. 1965, 7 (4): 308-313.CrossRef
15.
go back to reference Cochlin L, Blamire A, Styles P: Dependence of T1 and T2 on high field strengths in doped agarose gels; facilitating selection of composition for specific T1/T2 at relevant field. Proceedings of 11th Annual ISMRM Meeting: 2003; Toronto, Canada. 2003, 885- Cochlin L, Blamire A, Styles P: Dependence of T1 and T2 on high field strengths in doped agarose gels; facilitating selection of composition for specific T1/T2 at relevant field. Proceedings of 11th Annual ISMRM Meeting: 2003; Toronto, Canada. 2003, 885-
16.
go back to reference Cerqueira MD, Weissman NJ, Dilsizian V, Jacobs AK, Kaul S, Laskey WK, Pennell DJ, Rumberger JA, Ryan T, Verani MS: Standardized myocardial sementation and nomenclature for tomographic imaging of the heart: A Statement for Healthcare Professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. Circulation. 2002, 105 (4): 539-542. 10.1161/hc0402.102975.CrossRefPubMed Cerqueira MD, Weissman NJ, Dilsizian V, Jacobs AK, Kaul S, Laskey WK, Pennell DJ, Rumberger JA, Ryan T, Verani MS: Standardized myocardial sementation and nomenclature for tomographic imaging of the heart: A Statement for Healthcare Professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. Circulation. 2002, 105 (4): 539-542. 10.1161/hc0402.102975.CrossRefPubMed
17.
go back to reference Kim RJ, Wu E, Rafael A, Chen EL, Parker MA, Simonetti O, Klocke FJ, Bonow RO, Judd RM: The use of contrast-enhanced magnetic resonance imaging to identify reversible myocardial dysfunction. N Engl J Med. 2000, 343 (20): 1445-1453. 10.1056/NEJM200011163432003.CrossRefPubMed Kim RJ, Wu E, Rafael A, Chen EL, Parker MA, Simonetti O, Klocke FJ, Bonow RO, Judd RM: The use of contrast-enhanced magnetic resonance imaging to identify reversible myocardial dysfunction. N Engl J Med. 2000, 343 (20): 1445-1453. 10.1056/NEJM200011163432003.CrossRefPubMed
18.
go back to reference Piechnik SK, Ferreira VM, Dall'Armellina E, Cochlin LE, Robson MD: Shortened Modified Look Locker Inversion recovery (Sh-MOLLI) cardiac gated mapping of T1 - Theory and phantom verification. 26th Annual Scientific Meeting, ESMRMB Oct 1-3, 2009 2009; Antalya, Turkey. 2009, 485- Piechnik SK, Ferreira VM, Dall'Armellina E, Cochlin LE, Robson MD: Shortened Modified Look Locker Inversion recovery (Sh-MOLLI) cardiac gated mapping of T1 - Theory and phantom verification. 26th Annual Scientific Meeting, ESMRMB Oct 1-3, 2009 2009; Antalya, Turkey. 2009, 485-
19.
go back to reference Sharma P, Socolow J, Patel S, Pettigrew RI, Oshinski JN: Effect of Gd-DTPA-BMA on blood and myocardial T1 at 1.5T and 3T in humans. J Magn Reson Imaging. 2006, 23 (3): 323-330. 10.1002/jmri.20504.CrossRefPubMed Sharma P, Socolow J, Patel S, Pettigrew RI, Oshinski JN: Effect of Gd-DTPA-BMA on blood and myocardial T1 at 1.5T and 3T in humans. J Magn Reson Imaging. 2006, 23 (3): 323-330. 10.1002/jmri.20504.CrossRefPubMed
20.
go back to reference Been M, Ridgeway JP, Douglas RHB: Characterisation of acute myocardial infarction by gated magnetic resonance imaging. Lancet. 1985, 2 (8451): 348-350. 10.1016/S0140-6736(85)92494-8.CrossRefPubMed Been M, Ridgeway JP, Douglas RHB: Characterisation of acute myocardial infarction by gated magnetic resonance imaging. Lancet. 1985, 2 (8451): 348-350. 10.1016/S0140-6736(85)92494-8.CrossRefPubMed
Metadata
Title
Shortened Modified Look-Locker Inversion recovery (ShMOLLI) for clinical myocardial T1-mapping at 1.5 and 3 T within a 9 heartbeat breathhold
Authors
Stefan K Piechnik
Vanessa M Ferreira
Erica Dall'Armellina
Lowri E Cochlin
Andreas Greiser
Stefan Neubauer
Matthew D Robson
Publication date
01-12-2010
Publisher
BioMed Central
Published in
Journal of Cardiovascular Magnetic Resonance / Issue 1/2010
Electronic ISSN: 1532-429X
DOI
https://doi.org/10.1186/1532-429X-12-69

Other articles of this Issue 1/2010

Journal of Cardiovascular Magnetic Resonance 1/2010 Go to the issue