Skip to main content
Top
Published in: Clinical and Experimental Nephrology 7/2019

01-07-2019 | Epigenetics | Original article

Human MiR-4660 regulates the expression of alanine–glyoxylate aminotransferase and may be a biomarker for idiopathic oxalosis

Published in: Clinical and Experimental Nephrology | Issue 7/2019

Login to get access

Abstract

Background

Dysfunction of oxalate synthesis can cause calcium oxalate stone disease and inherited primary hyperoxaluria (PH) disorders. PH type I (PH1) is one of the most severe hyperoxaluria disorders, which results in urolithiasis, nephrocalcinosis, and end-stage renal disease. Here, we sought to determine the role of microRNAs in regulating AGXT to contribute to the pathogenesis of mutation-negative idiopathic oxalosis.

Methods

We conducted bioinformatics to search for microRNAs binding to AGXT, and examined the expression of the highest hit (miR-4660) in serum samples of patients with oxalosis, liver tissue samples, and determined the correlation and regulation between the microRNA and AGXT in vitro.

Results

MiR-4660 expression was downregulated in patients with oxalosis compared with healthy controls (84.03 copies/µL vs 33.02 copies/µL, P < 0.0001). Moreover, miR-4660 epigenetically decreased the expression of AGT in human liver tissues (Rho = − 0543, P = 0.037). Overexpression of miR-4660 in HepG2 and L02 cell lines led to dysregulation of AGXT at both the mRNA (by 71% and 81%, respectively; P < 0.001) and protein (by 49% and 42%, respectively; P < 0.0001) levels. We confirmed the direct target site of miR-4660 binding to the 3′UTR of AGXT by a luciferase assay.

Conclusion

MiR-4660 is probably a new biomarker for mutation-negative idiopathic oxalosis by regulating the post-transcription of AGXT, providing a potential treatment target of mutation-negative idiopathic oxalosis.
Appendix
Available only for authorised users
Literature
1.
go back to reference Holmes RP, Assimos DG. Glyoxylate synthesis, and its modulation and influence on oxalate synthesis. J Urol. 1998;160:1617–24.CrossRefPubMed Holmes RP, Assimos DG. Glyoxylate synthesis, and its modulation and influence on oxalate synthesis. J Urol. 1998;160:1617–24.CrossRefPubMed
2.
go back to reference Salido E, Pey AL, Rodriguez R, Lorenzo V. Primary hyperoxalurias: disorders of glyoxylate detoxification. Biochim Biophys Acta. 2012;1822:1453–64.CrossRefPubMed Salido E, Pey AL, Rodriguez R, Lorenzo V. Primary hyperoxalurias: disorders of glyoxylate detoxification. Biochim Biophys Acta. 2012;1822:1453–64.CrossRefPubMed
4.
go back to reference Hoppe B, Dittlich K, Fehrenbach H, Plum G, Beck BB. Reduction of plasma oxalate levels by oral application of Oxalobacter formigenes in 2 patients with infantile oxalosis. Am J Kidney Dis. 2011;58:453–5.CrossRefPubMed Hoppe B, Dittlich K, Fehrenbach H, Plum G, Beck BB. Reduction of plasma oxalate levels by oral application of Oxalobacter formigenes in 2 patients with infantile oxalosis. Am J Kidney Dis. 2011;58:453–5.CrossRefPubMed
5.
go back to reference M’Dimegh S, Aquaviva-Bourdain C, Omezzine A, M’Barek I, Souche G, Zellama D, et al. A novel mutation in the AGXT gene causing primary hyperoxaluria type I: genotype-phenotype correlation. J Genet. 2016;95:659–66.CrossRefPubMed M’Dimegh S, Aquaviva-Bourdain C, Omezzine A, M’Barek I, Souche G, Zellama D, et al. A novel mutation in the AGXT gene causing primary hyperoxaluria type I: genotype-phenotype correlation. J Genet. 2016;95:659–66.CrossRefPubMed
6.
go back to reference Danpure CJ. Variable peroxisomal and mitochondrial targeting of alanine: glyoxylate aminotransferase in mammalian evolution and disease. Bioessays. 1997;19:317–26.CrossRefPubMed Danpure CJ. Variable peroxisomal and mitochondrial targeting of alanine: glyoxylate aminotransferase in mammalian evolution and disease. Bioessays. 1997;19:317–26.CrossRefPubMed
7.
go back to reference Danpure CJ, Purdue PE, Fryer P, Griffiths S, Allsop J, Lumb MJ, et al. Enzymological and mutational analysis of a complex primary hyperoxaluria type 1 phenotype involving alanine:glyoxylate aminotransferase peroxisome-to-mitochondrion mistargeting and intraperoxisomal aggregation. Am J Hum Genet. 1993;53:417–32.PubMedPubMedCentral Danpure CJ, Purdue PE, Fryer P, Griffiths S, Allsop J, Lumb MJ, et al. Enzymological and mutational analysis of a complex primary hyperoxaluria type 1 phenotype involving alanine:glyoxylate aminotransferase peroxisome-to-mitochondrion mistargeting and intraperoxisomal aggregation. Am J Hum Genet. 1993;53:417–32.PubMedPubMedCentral
8.
go back to reference Cellini B, Montioli R, Voltattorni CB. Human liver peroxisomal alanine:glyoxylate aminotransferase: characterization of the two allelic forms and their pathogenic variants. Biochim Biophys Acta. 2011;1814:1577–84.CrossRefPubMed Cellini B, Montioli R, Voltattorni CB. Human liver peroxisomal alanine:glyoxylate aminotransferase: characterization of the two allelic forms and their pathogenic variants. Biochim Biophys Acta. 2011;1814:1577–84.CrossRefPubMed
9.
go back to reference Santana A, Salido E, Torres A, Shapiro LJ. Primary hyperoxaluria type 1 in the Canary Islands: a conformational disease due to I244T mutation in the P11L-containing alanine:glyoxylate aminotransferase. Proc Natl Acad Sci USA. 2003;100:7277–82.CrossRefPubMed Santana A, Salido E, Torres A, Shapiro LJ. Primary hyperoxaluria type 1 in the Canary Islands: a conformational disease due to I244T mutation in the P11L-containing alanine:glyoxylate aminotransferase. Proc Natl Acad Sci USA. 2003;100:7277–82.CrossRefPubMed
10.
go back to reference Du DF, Li QQ, Chen C, Shi SM, Zhao YY, Jiang JP, et al. Updated genetic testing of primary hyperoxaluria type 1 in a Chinese population: results from a single center study and a systematic review. Curr Med Sci. 2018;38:749–57.CrossRefPubMed Du DF, Li QQ, Chen C, Shi SM, Zhao YY, Jiang JP, et al. Updated genetic testing of primary hyperoxaluria type 1 in a Chinese population: results from a single center study and a systematic review. Curr Med Sci. 2018;38:749–57.CrossRefPubMed
11.
go back to reference Hoppe B. Evidence of true genotype-phenotype correlation in primary hyperoxaluria type 1. Kidney Int. 2010;77:383–5.CrossRefPubMed Hoppe B. Evidence of true genotype-phenotype correlation in primary hyperoxaluria type 1. Kidney Int. 2010;77:383–5.CrossRefPubMed
12.
go back to reference Lynn FC. Meta-regulation: microRNA regulation of glucose and lipid metabolism. Trends Endocrinol Metab. 2009;20:452–9.CrossRefPubMed Lynn FC. Meta-regulation: microRNA regulation of glucose and lipid metabolism. Trends Endocrinol Metab. 2009;20:452–9.CrossRefPubMed
13.
go back to reference Rivera-Barahona A, Perez B, Richard E, Desviat LR. Role of miRNAs in human disease and inborn errors of metabolism. J Inherit Metab Dis. 2017;40:471–80.CrossRefPubMed Rivera-Barahona A, Perez B, Richard E, Desviat LR. Role of miRNAs in human disease and inborn errors of metabolism. J Inherit Metab Dis. 2017;40:471–80.CrossRefPubMed
14.
go back to reference Ferracin M, Negrini M. Quantification of circulating microRNAs by droplet digital PCR. Methods Mol Biol. 2018;1768:445–57.CrossRefPubMed Ferracin M, Negrini M. Quantification of circulating microRNAs by droplet digital PCR. Methods Mol Biol. 2018;1768:445–57.CrossRefPubMed
15.
go back to reference Zhao Y, Huang Y, Li W, Wang Z, Zhan S, Zhou M, et al. Post-transcriptional regulation of cardiac sodium channel gene SCN5A expression and function by miR-192-5p. Biochim Biophys Acta. 2015;1852:2024–34.CrossRefPubMedPubMedCentral Zhao Y, Huang Y, Li W, Wang Z, Zhan S, Zhou M, et al. Post-transcriptional regulation of cardiac sodium channel gene SCN5A expression and function by miR-192-5p. Biochim Biophys Acta. 2015;1852:2024–34.CrossRefPubMedPubMedCentral
16.
go back to reference Meseguer S, Martinez-Zamora A, Garcia-Arumi E, Andreu AL, Armengod ME. The ROS-sensitive microRNA-9/9* controls the expression of mitochondrial tRNA-modifying enzymes and is involved in the molecular mechanism of MELAS syndrome. Hum Mol Genet. 2015;24:167–84.CrossRefPubMed Meseguer S, Martinez-Zamora A, Garcia-Arumi E, Andreu AL, Armengod ME. The ROS-sensitive microRNA-9/9* controls the expression of mitochondrial tRNA-modifying enzymes and is involved in the molecular mechanism of MELAS syndrome. Hum Mol Genet. 2015;24:167–84.CrossRefPubMed
17.
go back to reference Martino F, Carlomosti F, Avitabile D, Persico L, Picozza M, Barilla F, et al. Circulating miR-33a and miR-33b are up-regulated in familial hypercholesterolaemia in paediatric age. Clin Sci. 2015;129:963–72.CrossRefPubMed Martino F, Carlomosti F, Avitabile D, Persico L, Picozza M, Barilla F, et al. Circulating miR-33a and miR-33b are up-regulated in familial hypercholesterolaemia in paediatric age. Clin Sci. 2015;129:963–72.CrossRefPubMed
18.
go back to reference Li Y, Peng T, Wang X, Duan R, Gao H, Guan W, et al. A primary study on down-regulated miR-9-1 and its biological significances in methylmalonic acidemia. J Mol Neurosci. 2014;53:280–6.CrossRefPubMed Li Y, Peng T, Wang X, Duan R, Gao H, Guan W, et al. A primary study on down-regulated miR-9-1 and its biological significances in methylmalonic acidemia. J Mol Neurosci. 2014;53:280–6.CrossRefPubMed
19.
go back to reference Liu Z, Jiang H, Yang J, Wang T, Ding Y, Liu J, et al. Analysis of altered microRNA expression profiles in the kidney tissues of ethylene glycol-induced hyperoxaluric rats. Mol Med Rep. 2016;14:4650–8.CrossRefPubMedPubMedCentral Liu Z, Jiang H, Yang J, Wang T, Ding Y, Liu J, et al. Analysis of altered microRNA expression profiles in the kidney tissues of ethylene glycol-induced hyperoxaluric rats. Mol Med Rep. 2016;14:4650–8.CrossRefPubMedPubMedCentral
20.
go back to reference ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human genome. Nature. 2012;489:57–74.CrossRef ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human genome. Nature. 2012;489:57–74.CrossRef
Metadata
Title
Human MiR-4660 regulates the expression of alanine–glyoxylate aminotransferase and may be a biomarker for idiopathic oxalosis
Publication date
01-07-2019
Published in
Clinical and Experimental Nephrology / Issue 7/2019
Print ISSN: 1342-1751
Electronic ISSN: 1437-7799
DOI
https://doi.org/10.1007/s10157-019-01723-8

Other articles of this Issue 7/2019

Clinical and Experimental Nephrology 7/2019 Go to the issue