Skip to main content
Top
Published in: Clinical and Experimental Nephrology 7/2019

01-07-2019 | Original article

Role of the putative PKC phosphorylation sites of the type IIc sodium-dependent phosphate transporter in parathyroid hormone regulation

Authors: Toru Fujii, Hiroko Segawa, Ai Hanazaki, Shiori Nishiguchi, Sakura Minoshima, Akiko Ohi, Rieko Tominaga, Sumire Sasaki, Kazuya Tanifuji, Megumi Koike, Yuki Arima, Yuji Shiozaki, Ichiro Kaneko, Mikiko Ito, Sawako Tatsumi, Ken-ichi Miyamoto

Published in: Clinical and Experimental Nephrology | Issue 7/2019

Login to get access

Abstract

Background

Injection of parathyroid hormone (PTH) rapidly stimulates renal Pi excretion, in part by downregulating NaPi-IIa (Npt2a/SLC34A1) and NaPi-IIc (Npt2c/SLC34A3) transporters. The mechanisms underlying the effects of PTH on NaPi-IIc are not fully elucidated.

Methods

We analyzed the effect of PTH on inorganic phosphate (Pi) reabsorption in Npt2a−/− mice to eliminate the influence of Npt2a on renal Pi reabsorption. In opossum kidney (OK) cells and Xenopus oocytes, we investigated the effect of NaPi-IIc transporter phosphorylation. Studies of mice with mutations of NaPi-IIc protein in which serine and threonine were replaced with either alanine (A), which prevents phosphorylation, or aspartic acid (D), which mimics the charged state of phosphorylated NaPi-IIc, were also performed to evaluate the involvement of phosphorylation in the regulation of transport function.

Results

The Npt2a−/− experiments showed that PTH administration rapidly inactivated NaPi-IIc function in the apical membrane of proximal tubular cells. Analysis of mutant proteins (S71, S138, T151, S174, T583) at putative protein kinase C sites, revealed that S138 markedly suppressed the function and cellular expression of mouse NaPi-IIc in Xenopus oocytes and OK cells. In addition, 138D had a short half-life compared with wild-type protein.

Conclusions

The present study suggests that acute regulation of NaPi-IIc protein by PTH is involved in the inactivation of Na+-dependent Pi cotransporter activity and that phosphorylation of the transporter is involved in the rapid modification.
Appendix
Available only for authorised users
Literature
1.
go back to reference Wagner CA, Hernando N, Forster IC, Biber J. The SLC34 family of sodium-dependent phosphate transporters. Pflugers Arch. 2014;466(1):139–53.CrossRefPubMed Wagner CA, Hernando N, Forster IC, Biber J. The SLC34 family of sodium-dependent phosphate transporters. Pflugers Arch. 2014;466(1):139–53.CrossRefPubMed
2.
go back to reference Tatsumi S, Miyagawa A, Kaneko I, Shiozaki Y, Segawa H, Miyamoto K. Regulation of renal phosphate handling: inter-organ communication in health and disease. J Bone Miner Metab. 2016;34(1):1–10.CrossRefPubMed Tatsumi S, Miyagawa A, Kaneko I, Shiozaki Y, Segawa H, Miyamoto K. Regulation of renal phosphate handling: inter-organ communication in health and disease. J Bone Miner Metab. 2016;34(1):1–10.CrossRefPubMed
3.
go back to reference Beck L, Karaplis AC, Amizuka N, Hewson AS, Ozawa H, Tenenhouse HS. Targeted inactivation of Npt2 in mice leads to severe renal phosphate wasting, hypercalciuria, and skeletal abnormalities. Proc Natl Acad Sci USA. 1998;95(9):5372–7.CrossRefPubMedPubMedCentral Beck L, Karaplis AC, Amizuka N, Hewson AS, Ozawa H, Tenenhouse HS. Targeted inactivation of Npt2 in mice leads to severe renal phosphate wasting, hypercalciuria, and skeletal abnormalities. Proc Natl Acad Sci USA. 1998;95(9):5372–7.CrossRefPubMedPubMedCentral
4.
go back to reference Bergwitz C, Roslin NM, Tieder M, Loredo-Osti JC, Bastepe M, Abu-Zahra H, et al. SLC34A3 mutations in patients with hereditary hypophosphatemic rickets with hypercalciuria predict a key role for the sodium-phosphate cotransporter NaPi-IIc in maintaining phosphate homeostasis. Am J Hum Genet. 2006;78(2):179–92.CrossRefPubMed Bergwitz C, Roslin NM, Tieder M, Loredo-Osti JC, Bastepe M, Abu-Zahra H, et al. SLC34A3 mutations in patients with hereditary hypophosphatemic rickets with hypercalciuria predict a key role for the sodium-phosphate cotransporter NaPi-IIc in maintaining phosphate homeostasis. Am J Hum Genet. 2006;78(2):179–92.CrossRefPubMed
5.
go back to reference Lorenz-Depiereux B, Benet-Pages A, Eckstein G, Tenenbaum-Rakover Y, Wagenstaller J, Tiosano D, et al. Hereditary hypophosphatemic rickets with hypercalciuria is caused by mutations in the sodium-phosphate cotransporter gene SLC34A3. Am J Hum Genet. 2006;78(2):193–201.CrossRefPubMed Lorenz-Depiereux B, Benet-Pages A, Eckstein G, Tenenbaum-Rakover Y, Wagenstaller J, Tiosano D, et al. Hereditary hypophosphatemic rickets with hypercalciuria is caused by mutations in the sodium-phosphate cotransporter gene SLC34A3. Am J Hum Genet. 2006;78(2):193–201.CrossRefPubMed
6.
go back to reference Bergwitz C, Miyamoto KI. Hereditary hypophosphatemic rickets with hypercalciuria: pathophysiology, clinical presentation, diagnosis and therapy. Pflugers Arch. 2019;471(1):149–63.CrossRefPubMed Bergwitz C, Miyamoto KI. Hereditary hypophosphatemic rickets with hypercalciuria: pathophysiology, clinical presentation, diagnosis and therapy. Pflugers Arch. 2019;471(1):149–63.CrossRefPubMed
7.
go back to reference Keusch I, Traebert M, Lotscher M, Kaissling B, Murer H, Biber J. Parathyroid hormone and dietary phosphate provoke a lysosomal routing of the proximal tubular Na/Pi-cotransporter type II. Kidney Int. 1998;54(4):1224–32.CrossRefPubMed Keusch I, Traebert M, Lotscher M, Kaissling B, Murer H, Biber J. Parathyroid hormone and dietary phosphate provoke a lysosomal routing of the proximal tubular Na/Pi-cotransporter type II. Kidney Int. 1998;54(4):1224–32.CrossRefPubMed
8.
go back to reference Biber J, Hernando N, Traebert M, Volkl H, Murer H. Parathyroid hormone-mediated regulation of renal phosphate reabsorption. Nephrol Dial Transplant. 2000;15(Suppl 6):29–30.CrossRefPubMed Biber J, Hernando N, Traebert M, Volkl H, Murer H. Parathyroid hormone-mediated regulation of renal phosphate reabsorption. Nephrol Dial Transplant. 2000;15(Suppl 6):29–30.CrossRefPubMed
9.
go back to reference Traebert M, Volkl H, Biber J, Murer H, Kaissling B. Luminal and contraluminal action of 1–34 and 3–34 PTH peptides on renal type IIa Na-P(i) cotransporter. Am J Physiol Renal Physiol. 2000;278(5):F792-8.CrossRefPubMed Traebert M, Volkl H, Biber J, Murer H, Kaissling B. Luminal and contraluminal action of 1–34 and 3–34 PTH peptides on renal type IIa Na-P(i) cotransporter. Am J Physiol Renal Physiol. 2000;278(5):F792-8.CrossRefPubMed
10.
go back to reference Gattineni J, Friedman PA. Regulation of hormone-sensitive renal phosphate transport. Vitam Horm. 2015;98:249–306.CrossRefPubMed Gattineni J, Friedman PA. Regulation of hormone-sensitive renal phosphate transport. Vitam Horm. 2015;98:249–306.CrossRefPubMed
11.
go back to reference Murer H, Biber J. Renal sodium-phosphate cotransport. Curr Opin Nephrol Hypertens. 1994;3(5):504–10.CrossRefPubMed Murer H, Biber J. Renal sodium-phosphate cotransport. Curr Opin Nephrol Hypertens. 1994;3(5):504–10.CrossRefPubMed
12.
go back to reference Hayes G, Busch AE, Lang F, Biber J, Murer H. Protein kinase C consensus sites and the regulation of renal Na/Pi-cotransport (NaPi-2) expressed in XENOPUS laevis oocytes. Pflugers Arch. 1995;430(5):819–24.CrossRefPubMed Hayes G, Busch AE, Lang F, Biber J, Murer H. Protein kinase C consensus sites and the regulation of renal Na/Pi-cotransport (NaPi-2) expressed in XENOPUS laevis oocytes. Pflugers Arch. 1995;430(5):819–24.CrossRefPubMed
13.
go back to reference Deliot N, Hernando N, Horst-Liu Z, Gisler SM, Capuano P, Wagner CA, et al. Parathyroid hormone treatment induces dissociation of type IIa Na+-P(i) cotransporter-Na+/H+ exchanger regulatory factor-1 complexes. Am J Physiol Cell Physiol. 2005;289(1):C159-67.CrossRefPubMed Deliot N, Hernando N, Horst-Liu Z, Gisler SM, Capuano P, Wagner CA, et al. Parathyroid hormone treatment induces dissociation of type IIa Na+-P(i) cotransporter-Na+/H+ exchanger regulatory factor-1 complexes. Am J Physiol Cell Physiol. 2005;289(1):C159-67.CrossRefPubMed
14.
go back to reference Weinman EJ, Cunningham R, Wade JB, Shenolikar S. The role of NHERF-1 in the regulation of renal proximal tubule sodium-hydrogen exchanger 3 and sodium-dependent phosphate cotransporter 2a. J Physiol. 2005;567(Pt 1):27–32.CrossRefPubMedPubMedCentral Weinman EJ, Cunningham R, Wade JB, Shenolikar S. The role of NHERF-1 in the regulation of renal proximal tubule sodium-hydrogen exchanger 3 and sodium-dependent phosphate cotransporter 2a. J Physiol. 2005;567(Pt 1):27–32.CrossRefPubMedPubMedCentral
15.
go back to reference Weinman EJ, Biswas RS, Peng G, Shen L, Turner CL, Xiaofei E, et al. Parathyroid hormone inhibits renal phosphate transport by phosphorylation of serine 77 of sodium-hydrogen exchanger regulatory factor-1. J Clin Invest. 2007;117(11):3412–20.CrossRefPubMedPubMedCentral Weinman EJ, Biswas RS, Peng G, Shen L, Turner CL, Xiaofei E, et al. Parathyroid hormone inhibits renal phosphate transport by phosphorylation of serine 77 of sodium-hydrogen exchanger regulatory factor-1. J Clin Invest. 2007;117(11):3412–20.CrossRefPubMedPubMedCentral
16.
go back to reference Weinman EJ, Steplock D, Zhang Y, Biswas R, Bloch RJ, Shenolikar S. Cooperativity between the phosphorylation of Thr95 and Ser77 of NHERF-1 in the hormonal regulation of renal phosphate transport. J Biol Chem. 2010;285(33):25134–8.CrossRefPubMedPubMedCentral Weinman EJ, Steplock D, Zhang Y, Biswas R, Bloch RJ, Shenolikar S. Cooperativity between the phosphorylation of Thr95 and Ser77 of NHERF-1 in the hormonal regulation of renal phosphate transport. J Biol Chem. 2010;285(33):25134–8.CrossRefPubMedPubMedCentral
17.
go back to reference Lanzano L, Lei T, Okamura K, Giral H, Caldas Y, Masihzadeh O, et al. Differential modulation of the molecular dynamics of the type IIa and IIc sodium phosphate cotransporters by parathyroid hormone. Am J Physiol Cell Physiol. 2011;301(4):C850-61.CrossRefPubMed Lanzano L, Lei T, Okamura K, Giral H, Caldas Y, Masihzadeh O, et al. Differential modulation of the molecular dynamics of the type IIa and IIc sodium phosphate cotransporters by parathyroid hormone. Am J Physiol Cell Physiol. 2011;301(4):C850-61.CrossRefPubMed
18.
go back to reference Gutierrez OM, Smith KT, Barchi-Chung A, Patel NM, Isakova T, Wolf M. (1–34) Parathyroid hormone infusion acutely lowers fibroblast growth factor 23 concentrations in adult volunteers. Clin J Am Soc Nephrol. 2012;7(1):139–45.CrossRefPubMed Gutierrez OM, Smith KT, Barchi-Chung A, Patel NM, Isakova T, Wolf M. (1–34) Parathyroid hormone infusion acutely lowers fibroblast growth factor 23 concentrations in adult volunteers. Clin J Am Soc Nephrol. 2012;7(1):139–45.CrossRefPubMed
19.
go back to reference Segawa H, Yamanaka S, Onitsuka A, Tomoe Y, Kuwahata M, Ito M, et al. Parathyroid hormone-dependent endocytosis of renal type IIc Na-Pi cotransporter. Am J Physiol Renal Physiol. 2007;292(1):F395–403.CrossRefPubMed Segawa H, Yamanaka S, Onitsuka A, Tomoe Y, Kuwahata M, Ito M, et al. Parathyroid hormone-dependent endocytosis of renal type IIc Na-Pi cotransporter. Am J Physiol Renal Physiol. 2007;292(1):F395–403.CrossRefPubMed
20.
go back to reference Matsumoto N, Hemmi A, Yamato H, Ohnishi R, Segawa H, Ohno S, et al. Immunohistochemical analyses of parathyroid hormone-dependent downregulation of renal type II Na-Pi cotransporters by cryobiopsy. J Med Invest. 2010;57(1–2):138–45.CrossRefPubMed Matsumoto N, Hemmi A, Yamato H, Ohnishi R, Segawa H, Ohno S, et al. Immunohistochemical analyses of parathyroid hormone-dependent downregulation of renal type II Na-Pi cotransporters by cryobiopsy. J Med Invest. 2010;57(1–2):138–45.CrossRefPubMed
21.
go back to reference Segawa H, Yamanaka S, Ito M, Kuwahata M, Shono M, Yamamoto T, et al. Internalization of renal type IIc Na-Pi cotransporter in response to a high-phosphate diet. Am J Physiol Renal Physiol. 2005;288(3):F587-96.CrossRefPubMed Segawa H, Yamanaka S, Ito M, Kuwahata M, Shono M, Yamamoto T, et al. Internalization of renal type IIc Na-Pi cotransporter in response to a high-phosphate diet. Am J Physiol Renal Physiol. 2005;288(3):F587-96.CrossRefPubMed
22.
go back to reference Segawa H, Onitsuka A, Furutani J, Kaneko I, Aranami F, Matsumoto N, et al. Npt2a and Npt2c in mice play distinct and synergistic roles in inorganic phosphate metabolism and skeletal development. Am J Physiol Renal Physiol. 2009;297(3):F671-8.CrossRefPubMed Segawa H, Onitsuka A, Furutani J, Kaneko I, Aranami F, Matsumoto N, et al. Npt2a and Npt2c in mice play distinct and synergistic roles in inorganic phosphate metabolism and skeletal development. Am J Physiol Renal Physiol. 2009;297(3):F671-8.CrossRefPubMed
23.
go back to reference Haito-Sugino S, Ito M, Ohi A, Shiozaki Y, Kangawa N, Nishiyama T, et al. Processing and stability of type IIc sodium-dependent phosphate cotransporter mutations in patients with hereditary hypophosphatemic rickets with hypercalciuria. Am J Physiol Cell Physiol. 2012;302(9):C1316-30.CrossRefPubMed Haito-Sugino S, Ito M, Ohi A, Shiozaki Y, Kangawa N, Nishiyama T, et al. Processing and stability of type IIc sodium-dependent phosphate cotransporter mutations in patients with hereditary hypophosphatemic rickets with hypercalciuria. Am J Physiol Cell Physiol. 2012;302(9):C1316-30.CrossRefPubMed
24.
go back to reference Ito M, Sakurai A, Hayashi K, Ohi A, Kangawa N, Nishiyama T, et al. An apical expression signal of the renal type IIc Na+-dependent phosphate cotransporter in renal epithelial cells. Am J Physiol Renal Physiol. 2010;299(1):F243-54.CrossRefPubMed Ito M, Sakurai A, Hayashi K, Ohi A, Kangawa N, Nishiyama T, et al. An apical expression signal of the renal type IIc Na+-dependent phosphate cotransporter in renal epithelial cells. Am J Physiol Renal Physiol. 2010;299(1):F243-54.CrossRefPubMed
25.
go back to reference Ohkido I, Segawa H, Yanagida R, Nakamura M, Miyamoto K. Cloning, gene structure and dietary regulation of the type-IIc Na/Pi cotransporter in the mouse kidney. Pflugers Arch. 2003;446(1):106–15.CrossRefPubMed Ohkido I, Segawa H, Yanagida R, Nakamura M, Miyamoto K. Cloning, gene structure and dietary regulation of the type-IIc Na/Pi cotransporter in the mouse kidney. Pflugers Arch. 2003;446(1):106–15.CrossRefPubMed
26.
go back to reference Segawa H, Kaneko I, Takahashi A, Kuwahata M, Ito M, Ohkido I, et al. Growth-related renal type II Na/Pi cotransporter. J Biol Chem. 2002;277(22):19665–72.CrossRefPubMed Segawa H, Kaneko I, Takahashi A, Kuwahata M, Ito M, Ohkido I, et al. Growth-related renal type II Na/Pi cotransporter. J Biol Chem. 2002;277(22):19665–72.CrossRefPubMed
27.
go back to reference Forster IC. The molecular mechanism of SLC34 proteins: insights from two decades of transport assays and structure-function studies. Pflugers Arch. 2019;471(1):15–42.CrossRefPubMed Forster IC. The molecular mechanism of SLC34 proteins: insights from two decades of transport assays and structure-function studies. Pflugers Arch. 2019;471(1):15–42.CrossRefPubMed
28.
go back to reference Fenollar-Ferrer C, Forrest LR. Structural models of the NaPi-II sodium-phosphate cotransporters. Pflugers Arch. 2019;471(1):43–52.CrossRefPubMed Fenollar-Ferrer C, Forrest LR. Structural models of the NaPi-II sodium-phosphate cotransporters. Pflugers Arch. 2019;471(1):43–52.CrossRefPubMed
29.
go back to reference Forster IC, Hernando N, Biber J, Murer H. Phosphate transporters of the SLC20 and SLC34 families. Mol Aspects Med. 2013;34(2–3):386–95.CrossRefPubMed Forster IC, Hernando N, Biber J, Murer H. Phosphate transporters of the SLC20 and SLC34 families. Mol Aspects Med. 2013;34(2–3):386–95.CrossRefPubMed
30.
go back to reference Kohler K, Forster IC, Stange G, Biber J, Murer H. Identification of functionally important sites in the first intracellular loop of the NaPi-IIa cotransporter. Am J Physiol Renal Physiol. 2002;282(4):F687-96.CrossRefPubMed Kohler K, Forster IC, Stange G, Biber J, Murer H. Identification of functionally important sites in the first intracellular loop of the NaPi-IIa cotransporter. Am J Physiol Renal Physiol. 2002;282(4):F687-96.CrossRefPubMed
31.
go back to reference Picard N, Capuano P, Stange G, Mihailova M, Kaissling B, Murer H, et al. Acute parathyroid hormone differentially regulates renal brush border membrane phosphate cotransporters. Pflugers Arch. 2010;460(3):677–87.CrossRefPubMed Picard N, Capuano P, Stange G, Mihailova M, Kaissling B, Murer H, et al. Acute parathyroid hormone differentially regulates renal brush border membrane phosphate cotransporters. Pflugers Arch. 2010;460(3):677–87.CrossRefPubMed
32.
go back to reference Guo J, Song L, Liu M, Segawa H, Miyamoto K, Bringhurst FR, et al. Activation of a non-cAMP/PKA signaling pathway downstream of the PTH/PTHrP receptor is essential for a sustained hypophosphatemic response to PTH infusion in male mice. Endocrinology. 2013;154(5):1680–9.CrossRefPubMedPubMedCentral Guo J, Song L, Liu M, Segawa H, Miyamoto K, Bringhurst FR, et al. Activation of a non-cAMP/PKA signaling pathway downstream of the PTH/PTHrP receptor is essential for a sustained hypophosphatemic response to PTH infusion in male mice. Endocrinology. 2013;154(5):1680–9.CrossRefPubMedPubMedCentral
33.
go back to reference Nagai S, Okazaki M, Segawa H, Bergwitz C, Dean T, Potts JT Jr, et al. Acute down-regulation of sodium-dependent phosphate transporter NPT2a involves predominantly the cAMP/PKA pathway as revealed by signaling-selective parathyroid hormone analogs. J Biol Chem. 2011;286(2):1618–26.CrossRefPubMed Nagai S, Okazaki M, Segawa H, Bergwitz C, Dean T, Potts JT Jr, et al. Acute down-regulation of sodium-dependent phosphate transporter NPT2a involves predominantly the cAMP/PKA pathway as revealed by signaling-selective parathyroid hormone analogs. J Biol Chem. 2011;286(2):1618–26.CrossRefPubMed
34.
go back to reference Jacquillet G, Unwin RJ. Physiological regulation of phosphate by vitamin D, parathyroid hormone (PTH) and phosphate (Pi). Pflugers Arch. 2019;471(1):83–98.CrossRefPubMed Jacquillet G, Unwin RJ. Physiological regulation of phosphate by vitamin D, parathyroid hormone (PTH) and phosphate (Pi). Pflugers Arch. 2019;471(1):83–98.CrossRefPubMed
35.
go back to reference Cunningham R, Biswas R, Brazie M, Steplock D, Shenolikar S, Weinman EJ. Signaling pathways utilized by PTH and dopamine to inhibit phosphate transport in mouse renal proximal tubule cells. Am J Physiol Renal Physiol. 2009;296(2):F355-61.CrossRefPubMed Cunningham R, Biswas R, Brazie M, Steplock D, Shenolikar S, Weinman EJ. Signaling pathways utilized by PTH and dopamine to inhibit phosphate transport in mouse renal proximal tubule cells. Am J Physiol Renal Physiol. 2009;296(2):F355-61.CrossRefPubMed
36.
go back to reference Moe OW. Acute regulation of proximal tubule apical membrane Na/H exchanger NHE-3: role of phosphorylation, protein trafficking, and regulatory factors. J Am Soc Nephrol. 1999;10(11):2412–25.PubMed Moe OW. Acute regulation of proximal tubule apical membrane Na/H exchanger NHE-3: role of phosphorylation, protein trafficking, and regulatory factors. J Am Soc Nephrol. 1999;10(11):2412–25.PubMed
37.
go back to reference Collazo R, Fan L, Hu MC, Zhao H, Wiederkehr MR, Moe OW. Acute regulation of Na+/H + exchanger NHE3 by parathyroid hormone via NHE3 phosphorylation and dynamin-dependent endocytosis. J Biol Chem. 2000;275(41):31601–8.CrossRefPubMed Collazo R, Fan L, Hu MC, Zhao H, Wiederkehr MR, Moe OW. Acute regulation of Na+/H + exchanger NHE3 by parathyroid hormone via NHE3 phosphorylation and dynamin-dependent endocytosis. J Biol Chem. 2000;275(41):31601–8.CrossRefPubMed
Metadata
Title
Role of the putative PKC phosphorylation sites of the type IIc sodium-dependent phosphate transporter in parathyroid hormone regulation
Authors
Toru Fujii
Hiroko Segawa
Ai Hanazaki
Shiori Nishiguchi
Sakura Minoshima
Akiko Ohi
Rieko Tominaga
Sumire Sasaki
Kazuya Tanifuji
Megumi Koike
Yuki Arima
Yuji Shiozaki
Ichiro Kaneko
Mikiko Ito
Sawako Tatsumi
Ken-ichi Miyamoto
Publication date
01-07-2019
Publisher
Springer Singapore
Published in
Clinical and Experimental Nephrology / Issue 7/2019
Print ISSN: 1342-1751
Electronic ISSN: 1437-7799
DOI
https://doi.org/10.1007/s10157-019-01725-6

Other articles of this Issue 7/2019

Clinical and Experimental Nephrology 7/2019 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.