Skip to main content
Top
Published in: Clinical and Experimental Nephrology 1/2018

01-02-2018 | Review article

Complement regulation and kidney diseases: recent knowledge of the double-edged roles of complement activation in nephrology

Authors: Masashi Mizuno, Yasuhiro Suzuki, Yasuhiko Ito

Published in: Clinical and Experimental Nephrology | Issue 1/2018

Login to get access

Abstract

The complement activation system plays important roles to maintain homeostasis in the host and to fight foreign invaders to protect the host. Therefore, the complement system is considered a core part of innate immunity which also cross-talks to acquired immunity. In the history of nephrology, the complement system is familiar to us, because complement protein or fragment deposition, including C3, C4, C1q, and/or C4d, is routinely estimated by immunohistochemistry to diagnose renal pathologies. The relationships between pathological mechanisms and complement activation have been investigated for renal diseases such as post-infectious glomerulonephritis, lupus nephritis, and primary membranoproliferative glomerulonephritis, which are usually accompanied by hypocomplementemia. However, unregulated complement activation in local areas might be associated with progression of various renal injuries even in the normocomplementemic patient. Recently, attention has focused on dysfunction of complement regulation in various diseases including renal diseases such as atypical hemolytic uremic syndrome and C3 glomerulopathy. Some mechanisms associated with complement activation in these diseases were clarified. In addition, lots of anti-complement agents were developed and some of the agents have become clinically available. Now, anti-complement therapies represent a realistic choice of therapeutic approaches for complement-related diseases. Research on roles of complement activation is proceeding into new stages in the field of nephrology and in other fields involving both basic and clinical research. We herein summarize relationships between the complement activation and regulation systems, their physiological effects and roles in maintenance of homeostasis in the host, and how dysregulation of the complement system triggers disease, especially renal disease.
Literature
1.
go back to reference Baalasubramanian S, Harris CL, Donev RM, Mizuno M, Omidvar N, Song W, et al. CD59a is the primary regulator of membrane attack complex assembly in the mouse. J Immunol. 2004;173:3684–92.PubMedCrossRef Baalasubramanian S, Harris CL, Donev RM, Mizuno M, Omidvar N, Song W, et al. CD59a is the primary regulator of membrane attack complex assembly in the mouse. J Immunol. 2004;173:3684–92.PubMedCrossRef
2.
go back to reference Elward K, Griffiths M, Mizuno M, Harris CL, Neal JW, Morgan BP, et al. CD46 plays a key role in tailoring innate immune recognition of apoptotic and necrotic cells. J Biol Chem. 2005;280(43):36342–54.PubMedCrossRef Elward K, Griffiths M, Mizuno M, Harris CL, Neal JW, Morgan BP, et al. CD46 plays a key role in tailoring innate immune recognition of apoptotic and necrotic cells. J Biol Chem. 2005;280(43):36342–54.PubMedCrossRef
5.
go back to reference Petersen SV, Thiel S, Jensenius JC. The mannan-binding lectin pathway of complement activation: biology and disease association. Mol Immunol. 2001;38(2–3):133–49.PubMedCrossRef Petersen SV, Thiel S, Jensenius JC. The mannan-binding lectin pathway of complement activation: biology and disease association. Mol Immunol. 2001;38(2–3):133–49.PubMedCrossRef
6.
go back to reference Garred P, Genster N, Pilely K, Bayarri-Olmos R, Rosbjerg A, Ma YJ, et al. A journey through the lectin pathway of complement-MBL and beyond. Immunol Rev. 2016;274(1):74–97.PubMedCrossRef Garred P, Genster N, Pilely K, Bayarri-Olmos R, Rosbjerg A, Ma YJ, et al. A journey through the lectin pathway of complement-MBL and beyond. Immunol Rev. 2016;274(1):74–97.PubMedCrossRef
7.
go back to reference Banda NK, Takahashi M, Takahashi K, Stahl GL, Hyatt S, Glogowska M, et al. Mechanisms of mannose-binding lectin-associated serine proteases-1/3 activation of the alternative pathway of complement. Mol Immunol. 2011;49(1–2):281–9.PubMedPubMedCentralCrossRef Banda NK, Takahashi M, Takahashi K, Stahl GL, Hyatt S, Glogowska M, et al. Mechanisms of mannose-binding lectin-associated serine proteases-1/3 activation of the alternative pathway of complement. Mol Immunol. 2011;49(1–2):281–9.PubMedPubMedCentralCrossRef
8.
go back to reference Banda NK, Acharya S, Scheinman RI, Mehta G, Coulombe M, Takahashi M, et al. Mannan-binding lectin-associated serine protease 1/3 cleavage of pro-factor D into factor D in vivo and attenuation of collagen antibody-induced arthritis through their targeted inhibition by RNA interference-mediated gene silencing. J Immunol. 2016;197(9):3680–94.PubMedPubMedCentralCrossRef Banda NK, Acharya S, Scheinman RI, Mehta G, Coulombe M, Takahashi M, et al. Mannan-binding lectin-associated serine protease 1/3 cleavage of pro-factor D into factor D in vivo and attenuation of collagen antibody-induced arthritis through their targeted inhibition by RNA interference-mediated gene silencing. J Immunol. 2016;197(9):3680–94.PubMedPubMedCentralCrossRef
9.
go back to reference Chen Y, Yang C, Jin N, Xie Z, Tang Y, Fei L, et al. Terminal complement complex C5b-9-treated human monocyte-derived dendritic cells undergo maturation and induce Th1 polarization. Eur J Immunol. 2007;37(1):167–76.PubMedCrossRef Chen Y, Yang C, Jin N, Xie Z, Tang Y, Fei L, et al. Terminal complement complex C5b-9-treated human monocyte-derived dendritic cells undergo maturation and induce Th1 polarization. Eur J Immunol. 2007;37(1):167–76.PubMedCrossRef
11.
go back to reference Hila S, Soane L, Koski CL. Sublytic C5b-9-stimulated Schwann cell survival through PI 3-kinase-mediated phosphorylation of BAD. Glia. 2001;36(1):58–67.PubMedCrossRef Hila S, Soane L, Koski CL. Sublytic C5b-9-stimulated Schwann cell survival through PI 3-kinase-mediated phosphorylation of BAD. Glia. 2001;36(1):58–67.PubMedCrossRef
13.
go back to reference Mizuno M, Cole DS. Novel C5a regulators in inflammation. Expert Opin Invest Drugs. 2005;14:807–21.CrossRef Mizuno M, Cole DS. Novel C5a regulators in inflammation. Expert Opin Invest Drugs. 2005;14:807–21.CrossRef
14.
go back to reference Bénard M, Gonzalez BJ, Schouft MT, et al. Characterization of C3a and C5a receptors in rat cerebellar granule neurons during maturation. Neuroprotective effect of C5a against apoptotic cell death. J Biol Chem. 2004;279:43478–96.CrossRef Bénard M, Gonzalez BJ, Schouft MT, et al. Characterization of C3a and C5a receptors in rat cerebellar granule neurons during maturation. Neuroprotective effect of C5a against apoptotic cell death. J Biol Chem. 2004;279:43478–96.CrossRef
15.
go back to reference Markiewski MM, DeAngelis RA, Strey CW, Foukas PG, Gerard C, Gerard N, et al. The regulation of liver cell survival by complement. J Immunol. 2009;182(9):5412–8.PubMedPubMedCentralCrossRef Markiewski MM, DeAngelis RA, Strey CW, Foukas PG, Gerard C, Gerard N, et al. The regulation of liver cell survival by complement. J Immunol. 2009;182(9):5412–8.PubMedPubMedCentralCrossRef
16.
go back to reference Ignatius A, Ehrnthaller C, Brenner RE, Kreja L, Schoengraf P, Lisson P, et al. The anaphylatoxin receptor C5aR is present during fracture healing in rats and mediates osteoblast migration in vitro. J Trauma. 2011;71(4):952–60.PubMedPubMedCentralCrossRef Ignatius A, Ehrnthaller C, Brenner RE, Kreja L, Schoengraf P, Lisson P, et al. The anaphylatoxin receptor C5aR is present during fracture healing in rats and mediates osteoblast migration in vitro. J Trauma. 2011;71(4):952–60.PubMedPubMedCentralCrossRef
17.
go back to reference Guo Q, Cheng J, Zhang J, Su B, Bian C, Lin S, et al. Delayed post-injury administration of C5a improves regeneration and functional recovery after spinal cord injury in mice. Clin Exp Immunol. 2013;174(2):318–25.PubMedPubMedCentral Guo Q, Cheng J, Zhang J, Su B, Bian C, Lin S, et al. Delayed post-injury administration of C5a improves regeneration and functional recovery after spinal cord injury in mice. Clin Exp Immunol. 2013;174(2):318–25.PubMedPubMedCentral
18.
go back to reference Hollmann TJ, Mueller-Ortiz SL, Braun MC, Wetsel RA. Disruption of the C5a receptor gene increases resistance to acute Gram-negative bacteremia and endotoxic shock: opposing roles of C3a and C5a. Mol Immunol. 2008;45(7):1907–15.PubMedCrossRef Hollmann TJ, Mueller-Ortiz SL, Braun MC, Wetsel RA. Disruption of the C5a receptor gene increases resistance to acute Gram-negative bacteremia and endotoxic shock: opposing roles of C3a and C5a. Mol Immunol. 2008;45(7):1907–15.PubMedCrossRef
19.
go back to reference Seya T, Nakamura K, Masaki T, Ichihara-Itoh C, Matsumoto M, Nagasawa S. Human factor H and C4b-binding protein serve as factor I-cofactors both encompassing inactivation of C3b and C4b. Mol Immunol. 1995;32(5):355–60.PubMedCrossRef Seya T, Nakamura K, Masaki T, Ichihara-Itoh C, Matsumoto M, Nagasawa S. Human factor H and C4b-binding protein serve as factor I-cofactors both encompassing inactivation of C3b and C4b. Mol Immunol. 1995;32(5):355–60.PubMedCrossRef
20.
go back to reference Servais A, Frémeaux-Bacchi V, Lequintrec M, Salomon R, Blouin J, Knebelmann B, et al. Primary glomerulonephritis with isolated C3 deposits: a new entity which shares common genetic risk factors with haemolytic uraemic syndrome. J Med Genet. 2007;44(3):193–9.PubMedCrossRef Servais A, Frémeaux-Bacchi V, Lequintrec M, Salomon R, Blouin J, Knebelmann B, et al. Primary glomerulonephritis with isolated C3 deposits: a new entity which shares common genetic risk factors with haemolytic uraemic syndrome. J Med Genet. 2007;44(3):193–9.PubMedCrossRef
21.
go back to reference Pechtl IC, Kavanagh D, McIntosh N, Harris CL, Barlow PN. Disease-associated N-terminal complement factor H mutations perturb cofactor and decay-accelerating activities. J Biol Chem. 2011;286(13):11082–90.PubMedPubMedCentralCrossRef Pechtl IC, Kavanagh D, McIntosh N, Harris CL, Barlow PN. Disease-associated N-terminal complement factor H mutations perturb cofactor and decay-accelerating activities. J Biol Chem. 2011;286(13):11082–90.PubMedPubMedCentralCrossRef
22.
24.
go back to reference Liszewski MK, Atkinson JP. Membrane cofactor protein. Curr Topics Microbiol Immunol. 1992;178:45–60. Liszewski MK, Atkinson JP. Membrane cofactor protein. Curr Topics Microbiol Immunol. 1992;178:45–60.
25.
go back to reference Post TW, Liszewski MK, Adams EM, Tedja I, Miller EA, Atkinson JP. Membrane cofactor protein of the complement system: alternative splicing of serine/threonine/proline-rich exons and cytoplasmic tails produces multiple isoforms that correlate with protein phenotype. J Exp Med. 1991;174:93–102.PubMedCrossRef Post TW, Liszewski MK, Adams EM, Tedja I, Miller EA, Atkinson JP. Membrane cofactor protein of the complement system: alternative splicing of serine/threonine/proline-rich exons and cytoplasmic tails produces multiple isoforms that correlate with protein phenotype. J Exp Med. 1991;174:93–102.PubMedCrossRef
26.
go back to reference Mizuno M, Harris CL, Johnson PM, Morgan BP. Rat membrane cofactor protein (MCP; CD46) is expressed only in the acrosome of developing and mature spermatozoa and mediates binding to immobilized activated C3. Biol Reprod. 2004;71(4):1374–83.PubMedCrossRef Mizuno M, Harris CL, Johnson PM, Morgan BP. Rat membrane cofactor protein (MCP; CD46) is expressed only in the acrosome of developing and mature spermatozoa and mediates binding to immobilized activated C3. Biol Reprod. 2004;71(4):1374–83.PubMedCrossRef
27.
go back to reference Harris CL, Mizuno M, Morgan BP. Spermatogenic cells distal to blood-testis barrier in rats lack C3 convertase regulators and may be at risk of complement-mediated injury. J Reprod Immunol. 2006;69:23–34.PubMedCrossRef Harris CL, Mizuno M, Morgan BP. Spermatogenic cells distal to blood-testis barrier in rats lack C3 convertase regulators and may be at risk of complement-mediated injury. J Reprod Immunol. 2006;69:23–34.PubMedCrossRef
28.
go back to reference Nicholson-Weller A, Wang CE. Structure and function of decay accelerating factor CD55. J Lab Clin Med. 1994;123(4):485–91.PubMed Nicholson-Weller A, Wang CE. Structure and function of decay accelerating factor CD55. J Lab Clin Med. 1994;123(4):485–91.PubMed
29.
go back to reference Mizuno M, Donev RM, Harris CL, Morgan BP. CD55 expression in rat male reproductive tissue: differential expression in testis and expression of a unique truncated isoform on spermatozoa. Mol Immunol. 2007;44:1613–22.PubMedCrossRef Mizuno M, Donev RM, Harris CL, Morgan BP. CD55 expression in rat male reproductive tissue: differential expression in testis and expression of a unique truncated isoform on spermatozoa. Mol Immunol. 2007;44:1613–22.PubMedCrossRef
30.
go back to reference Kim YU, Kinoshita T, Molina H, Hourcade D, Seya T, Wagner LM, et al. Mouse complement regulatory protein Crry/p65 uses the specific mechanisms of both human decay-accelerating factor and membrane cofactor protein. J Exp Med. 1995;181(1):151–9.PubMedCrossRef Kim YU, Kinoshita T, Molina H, Hourcade D, Seya T, Wagner LM, et al. Mouse complement regulatory protein Crry/p65 uses the specific mechanisms of both human decay-accelerating factor and membrane cofactor protein. J Exp Med. 1995;181(1):151–9.PubMedCrossRef
31.
go back to reference Merle NS, Church SE, Fremeaux-Bacchi V, Roumenina LT. Complement System Part I - Molecular Mechanisms of Activation and Regulation. Front Immunol. 2015;6:262.PubMedPubMedCentral Merle NS, Church SE, Fremeaux-Bacchi V, Roumenina LT. Complement System Part I - Molecular Mechanisms of Activation and Regulation. Front Immunol. 2015;6:262.PubMedPubMedCentral
32.
go back to reference Hansen CB, Csuka D, Munthe-Fog L, Varga L, Farkas H, Hansen KM, et al. The levels of the lectin pathway serine protease MASP-1 and its complex formation with C1 inhibitor are linked to the severity of hereditary angioedema. J Immunol. 2015;195(8):3596–604.PubMedCrossRef Hansen CB, Csuka D, Munthe-Fog L, Varga L, Farkas H, Hansen KM, et al. The levels of the lectin pathway serine protease MASP-1 and its complex formation with C1 inhibitor are linked to the severity of hereditary angioedema. J Immunol. 2015;195(8):3596–604.PubMedCrossRef
33.
go back to reference Nissen MH, Bregenholt S, Nording JA, Claesson MH. C1-esterase inhibitor blocks T lymphocyte proliferation and cytotoxic T lymphocyte generation in vitro. Int Immunol. 1998;10:167–73.PubMedCrossRef Nissen MH, Bregenholt S, Nording JA, Claesson MH. C1-esterase inhibitor blocks T lymphocyte proliferation and cytotoxic T lymphocyte generation in vitro. Int Immunol. 1998;10:167–73.PubMedCrossRef
34.
go back to reference McDonald JF, Nelsestuen GL. Potent inhibition of terminal complement assembly by clusterin: characterization of its impact on C9 polymerization. BioChemistry. 1997;36(24):7464–73.PubMedCrossRef McDonald JF, Nelsestuen GL. Potent inhibition of terminal complement assembly by clusterin: characterization of its impact on C9 polymerization. BioChemistry. 1997;36(24):7464–73.PubMedCrossRef
35.
go back to reference Bhakdi S, Käflein R, Halstensen TS, Hugo F, Preissner KT, Mollnes TE. Complement S-protein (vitronectin) is associated with cytolytic membrane-bound C5b-9 complexes. Clin Exp Immunol. 1988;74(3):459–64.PubMedPubMedCentral Bhakdi S, Käflein R, Halstensen TS, Hugo F, Preissner KT, Mollnes TE. Complement S-protein (vitronectin) is associated with cytolytic membrane-bound C5b-9 complexes. Clin Exp Immunol. 1988;74(3):459–64.PubMedPubMedCentral
36.
go back to reference Meri S, Morgan BP, Wing M, Jones J, Davies A, Podack E, et al. Human protectin (CD59), an 18-20-kD homologous complement restriction factor, does not restrict perforin-mediated lysis. J Exp Med. 1990;172(1):367–70.PubMedCrossRef Meri S, Morgan BP, Wing M, Jones J, Davies A, Podack E, et al. Human protectin (CD59), an 18-20-kD homologous complement restriction factor, does not restrict perforin-mediated lysis. J Exp Med. 1990;172(1):367–70.PubMedCrossRef
37.
go back to reference Meri S, Morgan BP, Davies A, Daniels RH, Olavesen MG, Waldmann H, et al. Human protectin (CD59), an 18,000–20,000 MW complement lysis restricting factor, inhibits C5b-8 catalysed insertion of C9 into lipid bilayers. Immunology. 1990;71(1):1–9.PubMedPubMedCentral Meri S, Morgan BP, Davies A, Daniels RH, Olavesen MG, Waldmann H, et al. Human protectin (CD59), an 18,000–20,000 MW complement lysis restricting factor, inhibits C5b-8 catalysed insertion of C9 into lipid bilayers. Immunology. 1990;71(1):1–9.PubMedPubMedCentral
38.
go back to reference Harris CL, Hanna SM, Mizuno M, Holt DS, Marchbank KJ, Morgan BP. Characterization of the mouse analogues of CD59 using novel monoclonal antibodies: tissue distribution and functional comparison. Immunology. 2003;109:117–26.PubMedPubMedCentralCrossRef Harris CL, Hanna SM, Mizuno M, Holt DS, Marchbank KJ, Morgan BP. Characterization of the mouse analogues of CD59 using novel monoclonal antibodies: tissue distribution and functional comparison. Immunology. 2003;109:117–26.PubMedPubMedCentralCrossRef
39.
go back to reference Seya T. CD46, a complement regulatory protein/measles virus receptor, and its relation to hematological disorders. Int J Hematol. 1991;64(2):101–9. Seya T. CD46, a complement regulatory protein/measles virus receptor, and its relation to hematological disorders. Int J Hematol. 1991;64(2):101–9.
40.
go back to reference Gaggar A, Shayakhmetov DM, Liszewski MK, Atkinson JP, Lieber A. Localization of regions in CD46 that interact with adenovirus. J Virol. 2005;79:7503–13.PubMedPubMedCentralCrossRef Gaggar A, Shayakhmetov DM, Liszewski MK, Atkinson JP, Lieber A. Localization of regions in CD46 that interact with adenovirus. J Virol. 2005;79:7503–13.PubMedPubMedCentralCrossRef
41.
go back to reference Marttila M, Persson D, Gustafsson D, et al. CD46 is a cellular receptor for all species B adenoviruses except types 3 and 7. J Virol. 2005;79:14429–36.PubMedPubMedCentralCrossRef Marttila M, Persson D, Gustafsson D, et al. CD46 is a cellular receptor for all species B adenoviruses except types 3 and 7. J Virol. 2005;79:14429–36.PubMedPubMedCentralCrossRef
42.
go back to reference Pettigrew DM, Williams DT, Kerrigan D, Evans DJ, Lea SM, Bhella D. Structural and functional insights into the interaction of echoviruses and decay-accelerating factor. J Biol Chem. 2006;281:5169–77.PubMedCrossRef Pettigrew DM, Williams DT, Kerrigan D, Evans DJ, Lea SM, Bhella D. Structural and functional insights into the interaction of echoviruses and decay-accelerating factor. J Biol Chem. 2006;281:5169–77.PubMedCrossRef
44.
go back to reference Krautkrämer E, Zeier M. Hantavirus causing hemorrhagic fever with renal syndrome enters from the apical surface and requires decay-accelerating factor (DAF/CD55). J Virol. 2008;82:4257–64.PubMedPubMedCentralCrossRef Krautkrämer E, Zeier M. Hantavirus causing hemorrhagic fever with renal syndrome enters from the apical surface and requires decay-accelerating factor (DAF/CD55). J Virol. 2008;82:4257–64.PubMedPubMedCentralCrossRef
45.
go back to reference Zhou J, To KK, Dong H, Cheng ZS, Lau CC, Poon VK, et al. A functional variation in CD55 increases the severity of 2009 pandemic H1N1 influenza A virus infection. J Infect Dis. 2012;206(4):495–503.PubMedCrossRef Zhou J, To KK, Dong H, Cheng ZS, Lau CC, Poon VK, et al. A functional variation in CD55 increases the severity of 2009 pandemic H1N1 influenza A virus infection. J Infect Dis. 2012;206(4):495–503.PubMedCrossRef
46.
go back to reference Sobo K, Rubbia-Brandt L, Brown TD, Stuart AD, McKee TA. Decay-accelerating factor binding determines the entry route of echovirus 11 in polarized epithelial cells. J Virol. 2011;85(23):12376–86.PubMedPubMedCentralCrossRef Sobo K, Rubbia-Brandt L, Brown TD, Stuart AD, McKee TA. Decay-accelerating factor binding determines the entry route of echovirus 11 in polarized epithelial cells. J Virol. 2011;85(23):12376–86.PubMedPubMedCentralCrossRef
47.
go back to reference Plevka P, Hafenstein S, Harris KG, Cifuente JO, Zhang Y, Bowman VD, et al. Interaction of decay-accelerating factor with echovirus 7. J Virol. 2010;84(24):12665–74.PubMedPubMedCentralCrossRef Plevka P, Hafenstein S, Harris KG, Cifuente JO, Zhang Y, Bowman VD, et al. Interaction of decay-accelerating factor with echovirus 7. J Virol. 2010;84(24):12665–74.PubMedPubMedCentralCrossRef
48.
go back to reference Conde JN, da Silva EM, Allonso D, Coelho DR, Andrade ID, de Medeiros LN, et al. Inhibition of the membrane attack complex by dengue virus NS1 through Interaction with vitronectin and terminal complement proteins. J Virol. 2016;90(21):9570–81.PubMedPubMedCentralCrossRef Conde JN, da Silva EM, Allonso D, Coelho DR, Andrade ID, de Medeiros LN, et al. Inhibition of the membrane attack complex by dengue virus NS1 through Interaction with vitronectin and terminal complement proteins. J Virol. 2016;90(21):9570–81.PubMedPubMedCentralCrossRef
49.
go back to reference Young KA, Chen XS, Holers VM, Hannan JP. Isolating the Epstein–Barr virus gp350/220 binding site on complement receptor type 2 (CR2/CD21). J Biol Chem. 2007;282(50):36614–25.PubMedCrossRef Young KA, Chen XS, Holers VM, Hannan JP. Isolating the Epstein–Barr virus gp350/220 binding site on complement receptor type 2 (CR2/CD21). J Biol Chem. 2007;282(50):36614–25.PubMedCrossRef
50.
go back to reference Johnson JB, Grant K, Parks GD. The paramyxoviruses simian virus 5 and mumps virus recruit host cell CD46 to evade complement-mediated neutralization. J Virol. 2009;83(15):7602–11.PubMedPubMedCentralCrossRef Johnson JB, Grant K, Parks GD. The paramyxoviruses simian virus 5 and mumps virus recruit host cell CD46 to evade complement-mediated neutralization. J Virol. 2009;83(15):7602–11.PubMedPubMedCentralCrossRef
51.
go back to reference Oliver MA, Rojo JM, Rodríguez de Córdoba S, Alberti S. Binding of complement regulatory proteins to group A Streptococcus. Vaccine. 2008;26(Suppl 8):175–8. Oliver MA, Rojo JM, Rodríguez de Córdoba S, Alberti S. Binding of complement regulatory proteins to group A Streptococcus. Vaccine. 2008;26(Suppl 8):175–8.
52.
go back to reference Hallström T, Singh B, Kraiczy P, Hammerschmidt S, Skerka C, Zipfel PF, et al. conserved patterns of microbial immune escape: pathogenic microbes of diverse origin target the human terminal complement inhibitor vitronectin via a single common motif. PLoS One. 2016;11(1):e0147709.PubMedPubMedCentralCrossRef Hallström T, Singh B, Kraiczy P, Hammerschmidt S, Skerka C, Zipfel PF, et al. conserved patterns of microbial immune escape: pathogenic microbes of diverse origin target the human terminal complement inhibitor vitronectin via a single common motif. PLoS One. 2016;11(1):e0147709.PubMedPubMedCentralCrossRef
53.
go back to reference Díaz A, Ferreira A, Sim RB. Complement evasion by Echinococcus granulosus: sequestration of host factor H in the hydatid cyst wall. J Immunol. 1997;158(8):3779–86.PubMed Díaz A, Ferreira A, Sim RB. Complement evasion by Echinococcus granulosus: sequestration of host factor H in the hydatid cyst wall. J Immunol. 1997;158(8):3779–86.PubMed
54.
go back to reference Poltermann S, Kuner A, von der Heide M, Eck R, Hartmann A, Zipfel PF. Gpm1p is a factor H-, FHL-1-, and plasminogen-binding surface protein of Candida albicans. J Biol Chem. 2007;282(52):37537–44.PubMedCrossRef Poltermann S, Kuner A, von der Heide M, Eck R, Hartmann A, Zipfel PF. Gpm1p is a factor H-, FHL-1-, and plasminogen-binding surface protein of Candida albicans. J Biol Chem. 2007;282(52):37537–44.PubMedCrossRef
55.
go back to reference van Beek J, Elward K, Gasque P. Activation of complement in the central nervous system: roles in neurodegeneration and neuroprotection. Ann N Y Acad Sci. 2003;992:56–71.PubMedCrossRef van Beek J, Elward K, Gasque P. Activation of complement in the central nervous system: roles in neurodegeneration and neuroprotection. Ann N Y Acad Sci. 2003;992:56–71.PubMedCrossRef
56.
go back to reference Bonifati DMK U. Role of complement in neurodegeneration and neuroinflammation. Mol Immunol. 2007;44(5):999–1010.CrossRef Bonifati DMK U. Role of complement in neurodegeneration and neuroinflammation. Mol Immunol. 2007;44(5):999–1010.CrossRef
57.
go back to reference Carroll MC. A protective role for innate immunity in systemic lupus erythematosus. Nat Rev Immunol. 2004;4(10):825–31.PubMedCrossRef Carroll MC. A protective role for innate immunity in systemic lupus erythematosus. Nat Rev Immunol. 2004;4(10):825–31.PubMedCrossRef
58.
go back to reference Hannan JP. The structure-function relationships of complement receptor type 2 (CR2; CD21). Curr Protein Pept Sci. 2016;17(5):463–87.PubMedCrossRef Hannan JP. The structure-function relationships of complement receptor type 2 (CR2; CD21). Curr Protein Pept Sci. 2016;17(5):463–87.PubMedCrossRef
61.
go back to reference Molnár E, Erdei A, Prechl J. Novel roles for murine complement receptors type 1 and 2 I. Regulation of B cell survival and proliferation by CR1/2. Immunol Lett. 2008;116:156–62.PubMedCrossRef Molnár E, Erdei A, Prechl J. Novel roles for murine complement receptors type 1 and 2 I. Regulation of B cell survival and proliferation by CR1/2. Immunol Lett. 2008;116:156–62.PubMedCrossRef
62.
go back to reference Shimizu I, Kawahara T, Haspot F, Bardwell PD, Carroll MC, Sykes M. B-cell extrinsic CR1/CR2 promotes natural antibody production and tolerance induction of anti-alphaGAL-producing B-1 cells. Blood. 2007;109:1773–81.PubMedPubMedCentralCrossRef Shimizu I, Kawahara T, Haspot F, Bardwell PD, Carroll MC, Sykes M. B-cell extrinsic CR1/CR2 promotes natural antibody production and tolerance induction of anti-alphaGAL-producing B-1 cells. Blood. 2007;109:1773–81.PubMedPubMedCentralCrossRef
63.
go back to reference Heesters BA, Chatterjee P, Kim YA, Gonzalez SF, Kuligowski MP, Kirchhausen T, et al. Endocytosis and recycling of immune complexes by follicular dendritic cells enhances B cell antigen binding and activation. Immunity. 2013;38(6):1164–75.PubMedPubMedCentralCrossRef Heesters BA, Chatterjee P, Kim YA, Gonzalez SF, Kuligowski MP, Kirchhausen T, et al. Endocytosis and recycling of immune complexes by follicular dendritic cells enhances B cell antigen binding and activation. Immunity. 2013;38(6):1164–75.PubMedPubMedCentralCrossRef
64.
go back to reference Marie JC, Astier AL, Rivailler P, Rabourdin-Combe C, Wild TF, Horvat B. Linking innate and acquired immunity: divergent role of CD46 cytoplasmic domains in T cell induced inflammation. Nat Immunol. 2002;3:659–66.PubMedCrossRef Marie JC, Astier AL, Rivailler P, Rabourdin-Combe C, Wild TF, Horvat B. Linking innate and acquired immunity: divergent role of CD46 cytoplasmic domains in T cell induced inflammation. Nat Immunol. 2002;3:659–66.PubMedCrossRef
65.
go back to reference Kemper C, Chan AC, Green JM, Brett KA, Murphy KM, Atkinson JP. Activation of human CD4+ cells with CD3 and CD46 induces a T-regulatory cell 1 phenotype. Nature. 2003;421:388–92.PubMedCrossRef Kemper C, Chan AC, Green JM, Brett KA, Murphy KM, Atkinson JP. Activation of human CD4+ cells with CD3 and CD46 induces a T-regulatory cell 1 phenotype. Nature. 2003;421:388–92.PubMedCrossRef
66.
go back to reference Fu H, Liu B, Frost JL, Hong S, Jin M, Ostaszewski B, et al. Complement component C3 and complement receptor type 3 contribute to the phagocytosis and clearance of fibrillar Aβ by microglia. Glia. 2012;60(6):993–1003.PubMedPubMedCentralCrossRef Fu H, Liu B, Frost JL, Hong S, Jin M, Ostaszewski B, et al. Complement component C3 and complement receptor type 3 contribute to the phagocytosis and clearance of fibrillar Aβ by microglia. Glia. 2012;60(6):993–1003.PubMedPubMedCentralCrossRef
67.
go back to reference Huber-Lang M, Sarma JV, Zetoune FS, Rittirsch D, Neff TA, McGuire SR, et al. Generation of C5a in the absence of C3: a new complement activation pathway. Nat Med. 2006;12(6):682–7.PubMedCrossRef Huber-Lang M, Sarma JV, Zetoune FS, Rittirsch D, Neff TA, McGuire SR, et al. Generation of C5a in the absence of C3: a new complement activation pathway. Nat Med. 2006;12(6):682–7.PubMedCrossRef
68.
go back to reference Ikeda K, Nagasawa K, Horiuchi T, al. e. C5a induces tissue factpr activity on endothelial cells. Thromb Haemast. 1997;77:394–8. Ikeda K, Nagasawa K, Horiuchi T, al. e. C5a induces tissue factpr activity on endothelial cells. Thromb Haemast. 1997;77:394–8.
69.
go back to reference Ferrer-Lopez P, Renesto P, Schattner M, et al. Activation of human platelets by C5a-stimulated neutrophils: a role for cathepson G. Am J Physiol. 1990;258:C1100–C7.PubMedCrossRef Ferrer-Lopez P, Renesto P, Schattner M, et al. Activation of human platelets by C5a-stimulated neutrophils: a role for cathepson G. Am J Physiol. 1990;258:C1100–C7.PubMedCrossRef
70.
go back to reference Kondo C, Mizuno M, Nishikawa K, Yuzawa Y, Hotta N, Matsuo S. The role of C5a in the development of thrombotic glomerulonephritis in rats. Clin Exp Immunol. 2001;124:323–9.PubMedPubMedCentralCrossRef Kondo C, Mizuno M, Nishikawa K, Yuzawa Y, Hotta N, Matsuo S. The role of C5a in the development of thrombotic glomerulonephritis in rats. Clin Exp Immunol. 2001;124:323–9.PubMedPubMedCentralCrossRef
71.
72.
go back to reference Kastl SP, Speidl WS, Kaun C, Rega G, Assadian A, Weiss TW, et al. The complement component C5a induces the expression of plasminogen activator inhibitor-1 in human macrophages via NF-kappaB activation. J Thromb Haemost. 2006;4(8):1790–7.PubMedCrossRef Kastl SP, Speidl WS, Kaun C, Rega G, Assadian A, Weiss TW, et al. The complement component C5a induces the expression of plasminogen activator inhibitor-1 in human macrophages via NF-kappaB activation. J Thromb Haemost. 2006;4(8):1790–7.PubMedCrossRef
73.
go back to reference Hess K, Alzahrani SH, Price JF, Strachan MW, Oxley N, King R, et al. Hypofibrinolysis in type 2 diabetes: the role of the inflammatory pathway and complement C3. Diabetologia. 2014;57(8):1737–41.PubMedCrossRef Hess K, Alzahrani SH, Price JF, Strachan MW, Oxley N, King R, et al. Hypofibrinolysis in type 2 diabetes: the role of the inflammatory pathway and complement C3. Diabetologia. 2014;57(8):1737–41.PubMedCrossRef
74.
go back to reference King R, Tiede C, Simmons K, Fishwick C, Tomlinson D, Ajjan R. Inhibition of complement C3 and fibrinogen interaction: a potential novel therapeutic target to reduce cardiovascular disease in diabetes. Lancet. 2015;385(Suppl 1):S57.PubMedCrossRef King R, Tiede C, Simmons K, Fishwick C, Tomlinson D, Ajjan R. Inhibition of complement C3 and fibrinogen interaction: a potential novel therapeutic target to reduce cardiovascular disease in diabetes. Lancet. 2015;385(Suppl 1):S57.PubMedCrossRef
75.
go back to reference Campbell W, Okada N, Okada H. Carboxypeptidase R is an inactivator of complement-derived inflammatory peptides and an inhibitor of fibrinolysis. Immunol Rev. 2001;180:162–7.PubMedCrossRef Campbell W, Okada N, Okada H. Carboxypeptidase R is an inactivator of complement-derived inflammatory peptides and an inhibitor of fibrinolysis. Immunol Rev. 2001;180:162–7.PubMedCrossRef
76.
go back to reference La Bonte LR, Pavlov VI, Tan YS, Takahashi K, Takahashi M, Banda NK, et al. Mannose-binding lectin-associated serine protease-1 is a significant contributor to coagulation in a murine model of occlusive thrombosis. J Immunol. 2012;188(2):885–91.PubMedCrossRef La Bonte LR, Pavlov VI, Tan YS, Takahashi K, Takahashi M, Banda NK, et al. Mannose-binding lectin-associated serine protease-1 is a significant contributor to coagulation in a murine model of occlusive thrombosis. J Immunol. 2012;188(2):885–91.PubMedCrossRef
77.
go back to reference Madsen DE, Sidelmann JJ, Biltoft D, Gram J, Hansen S. Ca-inhibitor plymers activate the FXII-dependent kallikrein-kinin system: Implication for a role in hereditary angioedema. Biochim Biophys Acta. 2015;1850(6):1336–42.PubMedCrossRef Madsen DE, Sidelmann JJ, Biltoft D, Gram J, Hansen S. Ca-inhibitor plymers activate the FXII-dependent kallikrein-kinin system: Implication for a role in hereditary angioedema. Biochim Biophys Acta. 2015;1850(6):1336–42.PubMedCrossRef
78.
go back to reference Ravindran S, Schapira M, Patston PA. Modulation of C1-inhibitor and plasma kallikrein activities by thpe IV collagen. Int J Biomater. 2012;2012:212417.PubMedPubMedCentralCrossRef Ravindran S, Schapira M, Patston PA. Modulation of C1-inhibitor and plasma kallikrein activities by thpe IV collagen. Int J Biomater. 2012;2012:212417.PubMedPubMedCentralCrossRef
79.
go back to reference Zhou A, Huntington JA, Pannu NS, Carrell RW, Read RJ. How vitronectin binds PAI-1 to modulate fibrinolysis and cell migration. Nat Struct Biol. 2003;10(7):541–4.PubMedCrossRef Zhou A, Huntington JA, Pannu NS, Carrell RW, Read RJ. How vitronectin binds PAI-1 to modulate fibrinolysis and cell migration. Nat Struct Biol. 2003;10(7):541–4.PubMedCrossRef
80.
go back to reference Zhong J, Yang HC, Kon V, Fogo AB, Lawrence DA, Ma J. Vitonectin-binding PAI-1 protects against the development of cardiac fibrosis through interaction with fibrosis. Lab Invest. 2014;94(6):633–44.PubMedPubMedCentralCrossRef Zhong J, Yang HC, Kon V, Fogo AB, Lawrence DA, Ma J. Vitonectin-binding PAI-1 protects against the development of cardiac fibrosis through interaction with fibrosis. Lab Invest. 2014;94(6):633–44.PubMedPubMedCentralCrossRef
81.
go back to reference Amara U, Rittirsch D, Flierl M, Bruckner U, Klos A, Gebhard F, et al. Interaction between the coagulation and complement system. Adv Exp Med Biol. 2008;632:71–9.PubMedPubMedCentral Amara U, Rittirsch D, Flierl M, Bruckner U, Klos A, Gebhard F, et al. Interaction between the coagulation and complement system. Adv Exp Med Biol. 2008;632:71–9.PubMedPubMedCentral
82.
go back to reference Mizuno M, Morgan BP. An update on the roles of the complement system in autoimmune diseases and the therapeutic possibilities of anti-complement agents. Curr Drug Therapy. 2011;6:35–50.CrossRef Mizuno M, Morgan BP. An update on the roles of the complement system in autoimmune diseases and the therapeutic possibilities of anti-complement agents. Curr Drug Therapy. 2011;6:35–50.CrossRef
83.
84.
go back to reference Fijen CA, Kuijper EJ, te Bulte MT, Daha MR, Dankert J. Assessment of complement deficiency in patients with meningococcal disease in The Netherlands. Clin Infect Dis. 1999;28(1):98–105.PubMedCrossRef Fijen CA, Kuijper EJ, te Bulte MT, Daha MR, Dankert J. Assessment of complement deficiency in patients with meningococcal disease in The Netherlands. Clin Infect Dis. 1999;28(1):98–105.PubMedCrossRef
85.
go back to reference Drogari-Apiranthitou M, Kuijper EJ, Dekker N, Dankert J. Complement activation and formation of the membrane attack complex on serogroup B Neisseria meningitidis in the presence or absence of serum bactericidal activity. Infect Immun. 2002;70(7):3752–8.PubMedPubMedCentralCrossRef Drogari-Apiranthitou M, Kuijper EJ, Dekker N, Dankert J. Complement activation and formation of the membrane attack complex on serogroup B Neisseria meningitidis in the presence or absence of serum bactericidal activity. Infect Immun. 2002;70(7):3752–8.PubMedPubMedCentralCrossRef
86.
go back to reference Rooryck C, Diaz-Font A, Osborn DPS, Chabchoub E, Hernandez-Hernandez V, Shamseldin H, et al. Mutations in the lectin complement pathway genes COLEC11 and MASP1 cause 3MC syndrom. Nat Gent. 2011; 43(3):197–203.CrossRef Rooryck C, Diaz-Font A, Osborn DPS, Chabchoub E, Hernandez-Hernandez V, Shamseldin H, et al. Mutations in the lectin complement pathway genes COLEC11 and MASP1 cause 3MC syndrom. Nat Gent. 2011; 43(3):197–203.CrossRef
87.
go back to reference Yongqing T, Wilmann PG, Reeve SB, Coetzer TH, Smith AI, Whisstock JC, et al. The X-ray crystal structure of mannose-binding lectin-associated serine proteinase-3 reveals the structural basis for enzyme inactivity associated with the Carnevale, Mingarelli, Malpuech, and Michels (3MC) syndrome. J Biol Chem. 2013;288(31):22399–407.PubMedPubMedCentralCrossRef Yongqing T, Wilmann PG, Reeve SB, Coetzer TH, Smith AI, Whisstock JC, et al. The X-ray crystal structure of mannose-binding lectin-associated serine proteinase-3 reveals the structural basis for enzyme inactivity associated with the Carnevale, Mingarelli, Malpuech, and Michels (3MC) syndrome. J Biol Chem. 2013;288(31):22399–407.PubMedPubMedCentralCrossRef
88.
go back to reference Urquhart J, Roberts R, de Silva D, Shalev S, Chervinsky E, Nampoothiri S, et al. Exploring the genetic basis of 3MC syndrome: findings in 12 further families. Am J Med Genet A. 2016;170A(5):1216–24.PubMedCrossRef Urquhart J, Roberts R, de Silva D, Shalev S, Chervinsky E, Nampoothiri S, et al. Exploring the genetic basis of 3MC syndrome: findings in 12 further families. Am J Med Genet A. 2016;170A(5):1216–24.PubMedCrossRef
90.
91.
go back to reference Unterberger U, Eichelberger B, Ulz A, Panzer S. Antibodies against complement-regulatory proteins on platelets in immune thrombocytopenia. Platelets. 2016;13:1–5. Unterberger U, Eichelberger B, Ulz A, Panzer S. Antibodies against complement-regulatory proteins on platelets in immune thrombocytopenia. Platelets. 2016;13:1–5.
92.
go back to reference Horiuchi T, Ohi H, Ohsawa I, Fujita T, Matsushita M, Okada N, et al. Guideline for hereditary angioedema (HAE) 2010 by the Japanese association for complement research. Allergol Int. 2012;61(4):559–62.PubMedCrossRef Horiuchi T, Ohi H, Ohsawa I, Fujita T, Matsushita M, Okada N, et al. Guideline for hereditary angioedema (HAE) 2010 by the Japanese association for complement research. Allergol Int. 2012;61(4):559–62.PubMedCrossRef
93.
go back to reference Varga L, Széplaki G, Visy B, Füst G, Harmat G, Miklós K, et al. C1-inhibitor (C1-INH) autoantibodies in hereditary angioedema. Strong correlation with the severity of disease in C1-INH concentrate naïve patients. Mol Immunol. 2007;44(6):1454–60.PubMedCrossRef Varga L, Széplaki G, Visy B, Füst G, Harmat G, Miklós K, et al. C1-inhibitor (C1-INH) autoantibodies in hereditary angioedema. Strong correlation with the severity of disease in C1-INH concentrate naïve patients. Mol Immunol. 2007;44(6):1454–60.PubMedCrossRef
94.
go back to reference Haines JL, Hauser MA, Schmidt S, Scott WK, Olson LM, Gallins P, et al. Complement factor H variant increases the risk of age-related macular degeneration. Science. 2005;308(5720):419–21.PubMedCrossRef Haines JL, Hauser MA, Schmidt S, Scott WK, Olson LM, Gallins P, et al. Complement factor H variant increases the risk of age-related macular degeneration. Science. 2005;308(5720):419–21.PubMedCrossRef
96.
go back to reference Kato H, Nangaku M, Hataya H, Sawai T, Ashida A, Fujimaru R, et al. Joint Committee for the Revision of Clinical Guides of Atypical Hemolytic Uremic Syndrome in Japan. Clinical guides for atypical hemolytic uremic syndrome in Japan. Clin Exp Nephrol. 2016;20(4):536–43.PubMedCrossRef Kato H, Nangaku M, Hataya H, Sawai T, Ashida A, Fujimaru R, et al. Joint Committee for the Revision of Clinical Guides of Atypical Hemolytic Uremic Syndrome in Japan. Clinical guides for atypical hemolytic uremic syndrome in Japan. Clin Exp Nephrol. 2016;20(4):536–43.PubMedCrossRef
97.
go back to reference Sawai T, Nangaku M, Ashida A, Fujimaru R, Hataya H, Hidaka Y, et al. Joint Committee of the Japanese Society of Nephrology and the Japan Pediatric Society. Diagnostic criteria for atypical hemolytic uremic syndrome proposed by the Joint Committee of the Japanese Society of Nephrology and the Japan Pediatric Society. Clin Exp Nephrol. 2014;18(1):4–9.PubMedCrossRef Sawai T, Nangaku M, Ashida A, Fujimaru R, Hataya H, Hidaka Y, et al. Joint Committee of the Japanese Society of Nephrology and the Japan Pediatric Society. Diagnostic criteria for atypical hemolytic uremic syndrome proposed by the Joint Committee of the Japanese Society of Nephrology and the Japan Pediatric Society. Clin Exp Nephrol. 2014;18(1):4–9.PubMedCrossRef
98.
go back to reference Paixão-Cavalcante D, López-Trascasa M, Skattum L, Giclas PC, Goodship TH, de Córdoba SR, et al. Sensitive and specific assays for C3 nephritic factors clarify mechanisms underlying complement dysregulation. Kidney Int. 2012;82(10):1084–92.PubMedPubMedCentralCrossRef Paixão-Cavalcante D, López-Trascasa M, Skattum L, Giclas PC, Goodship TH, de Córdoba SR, et al. Sensitive and specific assays for C3 nephritic factors clarify mechanisms underlying complement dysregulation. Kidney Int. 2012;82(10):1084–92.PubMedPubMedCentralCrossRef
99.
go back to reference Goodship TH, Pappworth IY, Toth T, Denton M, Houlberg K, McCormick F, et al. Factor H autoantibodies in membranoproliferative glomerulonephritis. Mol Immunol. 2012;52(2–3):200–6.PubMedCrossRef Goodship TH, Pappworth IY, Toth T, Denton M, Houlberg K, McCormick F, et al. Factor H autoantibodies in membranoproliferative glomerulonephritis. Mol Immunol. 2012;52(2–3):200–6.PubMedCrossRef
100.
go back to reference Lambert JC, Heath S, Even G, Campion D, Sleegers K, Hiltunen M, et al. Genome-wide association study identifies variants at GLU and CR1 associated with Alzheimer’s disease. Nat Genet. 2009;41(10):1094–9.PubMedCrossRef Lambert JC, Heath S, Even G, Campion D, Sleegers K, Hiltunen M, et al. Genome-wide association study identifies variants at GLU and CR1 associated with Alzheimer’s disease. Nat Genet. 2009;41(10):1094–9.PubMedCrossRef
101.
go back to reference Ingram G, Loveless S, Howell OW, Hakobyan S, Dancey B, Harris CL, et al. Complement activation in multiple sclerosis plaques: an immunohistochemical analysis. Acta Neuropathol Commun. 2014;2:53.PubMedPubMedCentralCrossRef Ingram G, Loveless S, Howell OW, Hakobyan S, Dancey B, Harris CL, et al. Complement activation in multiple sclerosis plaques: an immunohistochemical analysis. Acta Neuropathol Commun. 2014;2:53.PubMedPubMedCentralCrossRef
102.
go back to reference Tortajada A, Yébenes H, Abarrategui-Garrido C, Anter J, García-Fernández JM, Martínez-Barricarte R, et al. C3 glomerulopathy-associated CFHR1 mutation alters FHR oligomerization and complement regulation. J Clin Invest. 2013;123(6):2434–46.PubMedPubMedCentralCrossRef Tortajada A, Yébenes H, Abarrategui-Garrido C, Anter J, García-Fernández JM, Martínez-Barricarte R, et al. C3 glomerulopathy-associated CFHR1 mutation alters FHR oligomerization and complement regulation. J Clin Invest. 2013;123(6):2434–46.PubMedPubMedCentralCrossRef
103.
go back to reference Martínez-Barricarte R, Heurich M, Valdes-Cañedo F, Vazquez-Martul E, Torreira E, Montes T, et al. Human C3 mutation reveals a mechanism of dense deposit disease pathogenesis and provides insights into complement activation and regulation. J Clin Invest. 2010;120(10):3702–12.PubMedPubMedCentralCrossRef Martínez-Barricarte R, Heurich M, Valdes-Cañedo F, Vazquez-Martul E, Torreira E, Montes T, et al. Human C3 mutation reveals a mechanism of dense deposit disease pathogenesis and provides insights into complement activation and regulation. J Clin Invest. 2010;120(10):3702–12.PubMedPubMedCentralCrossRef
104.
go back to reference Goicoechea de Jorge E, Harris CL, Esparza-Gordillo J, Carreras L, Arranz EA, Garrido CA, et al. Gain-of-function mutations in complement factor B are associated with atypical hemolytic uremic syndrome. Proc Natl Acad Sci USA. 2007;104(1):240–5.PubMedCrossRef Goicoechea de Jorge E, Harris CL, Esparza-Gordillo J, Carreras L, Arranz EA, Garrido CA, et al. Gain-of-function mutations in complement factor B are associated with atypical hemolytic uremic syndrome. Proc Natl Acad Sci USA. 2007;104(1):240–5.PubMedCrossRef
105.
go back to reference Martínez-Barricarte R, Heurich M, López-Perrote A, Tortajada A, Pinto S, López-Trascasa M, et al. The molecular and structural bases for the association of complement C3 mutations with atypical hemolytic uremic syndrome. Mol Immunol. 2015;66(2):263–73.PubMedPubMedCentralCrossRef Martínez-Barricarte R, Heurich M, López-Perrote A, Tortajada A, Pinto S, López-Trascasa M, et al. The molecular and structural bases for the association of complement C3 mutations with atypical hemolytic uremic syndrome. Mol Immunol. 2015;66(2):263–73.PubMedPubMedCentralCrossRef
106.
go back to reference Yoshida Y, Miyata T, Matsumoto M, Shirotani-Ikejima H, Uchida Y, Ohyama Y, et al. A novel quantitative hemolytic assay coupled with restriction fragment length polymorphisms analysis enabled early diagnosis of atypical hemolytic uremic syndrome and identified unique predisposing mutations in Japan. PLoS One. 2015;10:e0124655.PubMedPubMedCentralCrossRef Yoshida Y, Miyata T, Matsumoto M, Shirotani-Ikejima H, Uchida Y, Ohyama Y, et al. A novel quantitative hemolytic assay coupled with restriction fragment length polymorphisms analysis enabled early diagnosis of atypical hemolytic uremic syndrome and identified unique predisposing mutations in Japan. PLoS One. 2015;10:e0124655.PubMedPubMedCentralCrossRef
107.
go back to reference Zipfel PF MC, Müller D, Licht C, Wigger M, Skerka C; European DEAP-HUS Study Group. DEAP-HUS: deficiency of CFHR plasma proteins and autoantibody-positive form of hemolytic uremic syndrome. Pediatr Nephrol. 2010;25(10):2009–19.PubMedCrossRef Zipfel PF MC, Müller D, Licht C, Wigger M, Skerka C; European DEAP-HUS Study Group. DEAP-HUS: deficiency of CFHR plasma proteins and autoantibody-positive form of hemolytic uremic syndrome. Pediatr Nephrol. 2010;25(10):2009–19.PubMedCrossRef
108.
go back to reference Mizuno M. A review of current knowledge of the complement system and the therapeutic opportunities in inflammatory arthritis. Curr Med Chem. 2006;13:1707–17.PubMedCrossRef Mizuno M. A review of current knowledge of the complement system and the therapeutic opportunities in inflammatory arthritis. Curr Med Chem. 2006;13:1707–17.PubMedCrossRef
109.
go back to reference Cosio FG, Sedmak DD, Mahan JD, Nahman NSJ. Localization of decay accelerating factor in normal and diseased kidneys. Kidney Int. 1989;36:100–7.PubMedCrossRef Cosio FG, Sedmak DD, Mahan JD, Nahman NSJ. Localization of decay accelerating factor in normal and diseased kidneys. Kidney Int. 1989;36:100–7.PubMedCrossRef
110.
go back to reference Tamai H, Matsuo S, Fukatsu A, Nishikawa K, Sakamoto N, Yoshioka K, et al. Localization of 2O-kD homologous restriction factor (HRF20) in diseased human glomeruli. An immunofluorescence study. Clin Exp Immunol. 1991;84:256–62.PubMedPubMedCentralCrossRef Tamai H, Matsuo S, Fukatsu A, Nishikawa K, Sakamoto N, Yoshioka K, et al. Localization of 2O-kD homologous restriction factor (HRF20) in diseased human glomeruli. An immunofluorescence study. Clin Exp Immunol. 1991;84:256–62.PubMedPubMedCentralCrossRef
111.
go back to reference Endoh M, Yamashina M, Ohi H, Funahashi K, Ikuno T, Yasugi T, et al. Immunohistochemical demonstration of membrane cofactor protein (MCP) of complement in normal and diseased kidney tissues. Clin Exp Immunol. 1993;94:183–8. Endoh M, Yamashina M, Ohi H, Funahashi K, Ikuno T, Yasugi T, et al. Immunohistochemical demonstration of membrane cofactor protein (MCP) of complement in normal and diseased kidney tissues. Clin Exp Immunol. 1993;94:183–8.
112.
go back to reference Ichida S, Yuzawa Y, Okada H, Yoshioka K, .S. M.. Localization of the complement regulatory proteins in the normal human kidney. Kidney Int. 1994;46:89–96.PubMedCrossRef Ichida S, Yuzawa Y, Okada H, Yoshioka K, .S. M.. Localization of the complement regulatory proteins in the normal human kidney. Kidney Int. 1994;46:89–96.PubMedCrossRef
113.
go back to reference Matsuo S, Morita Y, Mizuno M, Nishikawa K, Yuzawa Y. Complement mediated renal injury: Its mechanisms and role of membrane regulators of complement. Clin Exp Nephrol. 1998;2:276–81.CrossRef Matsuo S, Morita Y, Mizuno M, Nishikawa K, Yuzawa Y. Complement mediated renal injury: Its mechanisms and role of membrane regulators of complement. Clin Exp Nephrol. 1998;2:276–81.CrossRef
114.
go back to reference Hanafusa N, Sogabe H, Yamada K, Wada T, Fujita T, Nangaku M. Contribution of genetically engineered animals to the analyses of complement in the pathogenesis of nephritis. Nephrol Dial Transplant. 2002;17(Suppl 9):34–6.PubMedCrossRef Hanafusa N, Sogabe H, Yamada K, Wada T, Fujita T, Nangaku M. Contribution of genetically engineered animals to the analyses of complement in the pathogenesis of nephritis. Nephrol Dial Transplant. 2002;17(Suppl 9):34–6.PubMedCrossRef
115.
go back to reference Mizuno M, Nozaki M, Morine N, Suzuki N, Nishikawa K, Morgan BP, et al. A protein toxin from the sea anemone Phyllodiscus semoni targets the kidney and causes a severe renal Injury with predominant glomerular endothelial damage. Am J Pathol. 2007;171(2):402–14.PubMedPubMedCentralCrossRef Mizuno M, Nozaki M, Morine N, Suzuki N, Nishikawa K, Morgan BP, et al. A protein toxin from the sea anemone Phyllodiscus semoni targets the kidney and causes a severe renal Injury with predominant glomerular endothelial damage. Am J Pathol. 2007;171(2):402–14.PubMedPubMedCentralCrossRef
116.
go back to reference Hatanaka Y, Yuzawa Y, Nishikawa K, Fukatsu A, Okada N, Okada H, et al. Role of a rat membrane inhibitor of complement in anti-basement membrane antibody-induced renal injury. Kidney Int. 1995;48:1728–37.PubMedCrossRef Hatanaka Y, Yuzawa Y, Nishikawa K, Fukatsu A, Okada N, Okada H, et al. Role of a rat membrane inhibitor of complement in anti-basement membrane antibody-induced renal injury. Kidney Int. 1995;48:1728–37.PubMedCrossRef
117.
go back to reference Nangaku M, Alpers CE, Pippin J, Shankland SJ, Kurokawa K, Adler S, et al. Renal microvascular injury induced by antibody to glomerular endothelial cells is mediated by C5b-9. Kidney Int. 1997;52:1570–8.PubMedCrossRef Nangaku M, Alpers CE, Pippin J, Shankland SJ, Kurokawa K, Adler S, et al. Renal microvascular injury induced by antibody to glomerular endothelial cells is mediated by C5b-9. Kidney Int. 1997;52:1570–8.PubMedCrossRef
118.
go back to reference Yashima A, Mizuno M, Yuzawa Y, Shimada K, Suzuki N, Tawada H, et al. Mesangial proliferative glomerulonephritis in murine malaria parasite, Plasmodium chabaudi AS, infected NC mice. Clin Exp Nephrol. 2016 (in press) Yashima A, Mizuno M, Yuzawa Y, Shimada K, Suzuki N, Tawada H, et al. Mesangial proliferative glomerulonephritis in murine malaria parasite, Plasmodium chabaudi AS, infected NC mice. Clin Exp Nephrol. 2016 (in press)
119.
go back to reference Mizuno M, Ito Y, Morgan BP. Exploiting the nephrotoxic effects of venom from the sea anemone, Phyllodiscus semoni, to create a hemolytic uremic syndrome model in the rat. Mar Drugs. 2012;10(7):1582–604.PubMedPubMedCentralCrossRef Mizuno M, Ito Y, Morgan BP. Exploiting the nephrotoxic effects of venom from the sea anemone, Phyllodiscus semoni, to create a hemolytic uremic syndrome model in the rat. Mar Drugs. 2012;10(7):1582–604.PubMedPubMedCentralCrossRef
120.
go back to reference Yamamoto ET, Mizuno M, Nishikawa K, Miyazawa S, Zhang L, Matsuo S, et al. Shiga toxin-1 causes direct renal injury in rats. Infect Immun. 2005;73:7099–106.PubMedPubMedCentralCrossRef Yamamoto ET, Mizuno M, Nishikawa K, Miyazawa S, Zhang L, Matsuo S, et al. Shiga toxin-1 causes direct renal injury in rats. Infect Immun. 2005;73:7099–106.PubMedPubMedCentralCrossRef
122.
go back to reference Sethi S, Nester CM, Smith RJ. Membranoproliferative glomerulonephritis and C3 glomerulopathy: resolving the confusion. Kidney Int. 2012;81(5):434–41.PubMedCrossRef Sethi S, Nester CM, Smith RJ. Membranoproliferative glomerulonephritis and C3 glomerulopathy: resolving the confusion. Kidney Int. 2012;81(5):434–41.PubMedCrossRef
123.
go back to reference Sheerin NS, Springall T, Carroll MC, Hartley B, Sacks SH. Protection against anti-glomerular basement membrane (GBM)-mediated nephritis in C3- and C4-deficient mice. Clin Exp Immunol. 1997;110(3):403–9.PubMedPubMedCentralCrossRef Sheerin NS, Springall T, Carroll MC, Hartley B, Sacks SH. Protection against anti-glomerular basement membrane (GBM)-mediated nephritis in C3- and C4-deficient mice. Clin Exp Immunol. 1997;110(3):403–9.PubMedPubMedCentralCrossRef
124.
go back to reference Thanei S, Vanhecke D, Trendelenburg M. Anti-C1q autoantibodies from systemic lupus erythematosus patients activate the complement system via both the classical and lectin pathways. Clin Immunol. 2015;160(2):180–7.PubMedCrossRef Thanei S, Vanhecke D, Trendelenburg M. Anti-C1q autoantibodies from systemic lupus erythematosus patients activate the complement system via both the classical and lectin pathways. Clin Immunol. 2015;160(2):180–7.PubMedCrossRef
125.
go back to reference Kim MK, Maeng YI, Lee SJ, Lee IH, Bae J, Kang YN, et al. Pathogenesis and significance of glomerular C4d deposition in lupus nephritis: activation of classical and lectin pathways. Int J Clin Exp Pathol. 2013;15(6):2157–67. Kim MK, Maeng YI, Lee SJ, Lee IH, Bae J, Kang YN, et al. Pathogenesis and significance of glomerular C4d deposition in lupus nephritis: activation of classical and lectin pathways. Int J Clin Exp Pathol. 2013;15(6):2157–67.
126.
go back to reference Segawa Y, Hisano S, Matsushita M, Fujita T, Hirose S, Takeshita M, et al. IgG subclasses and complement pathway in segmental and global membranous nephropathy. Pediatr Nephrol. 2010;25(6):1091–9.PubMedCrossRef Segawa Y, Hisano S, Matsushita M, Fujita T, Hirose S, Takeshita M, et al. IgG subclasses and complement pathway in segmental and global membranous nephropathy. Pediatr Nephrol. 2010;25(6):1091–9.PubMedCrossRef
127.
go back to reference Kawa S. The immunobiology of immunoglobulin G4 and complement activation pathways in IgG4-related disease. Curr Top Microbiol Immunol. 2017;401:61–73.PubMed Kawa S. The immunobiology of immunoglobulin G4 and complement activation pathways in IgG4-related disease. Curr Top Microbiol Immunol. 2017;401:61–73.PubMed
128.
go back to reference Ma R, Cui Z, Hu SY, Jia XY, Yang R, Zheng X, et al. The alternative pathway of complement activation may be involved in the renal damage of human anti-glomerular basement membrane disease. PLoS One. 2016;9(3):e92150. Ma R, Cui Z, Hu SY, Jia XY, Yang R, Zheng X, et al. The alternative pathway of complement activation may be involved in the renal damage of human anti-glomerular basement membrane disease. PLoS One. 2016;9(3):e92150.
129.
130.
go back to reference Yuan J, Chen M, Zhao MH. Complement in antineutrophil cytoplasmic antibody-associated vasculitis. Clin Exp Nephrol. 2013;17(5):642–5.PubMedCrossRef Yuan J, Chen M, Zhao MH. Complement in antineutrophil cytoplasmic antibody-associated vasculitis. Clin Exp Nephrol. 2013;17(5):642–5.PubMedCrossRef
131.
go back to reference Kallenberg CG, Heeringa P. Complement system activation in ANCA vasculitis: a translational success story? Mol Immunol. 2015;68(1):53–6.PubMedCrossRef Kallenberg CG, Heeringa P. Complement system activation in ANCA vasculitis: a translational success story? Mol Immunol. 2015;68(1):53–6.PubMedCrossRef
132.
go back to reference Borza DB. Alternative pathway dysregulation and the conundrum of complement activation by IgG4 immune complexes in membranous nephropathy. Front Immunol. 2016;7:157.PubMedPubMedCentralCrossRef Borza DB. Alternative pathway dysregulation and the conundrum of complement activation by IgG4 immune complexes in membranous nephropathy. Front Immunol. 2016;7:157.PubMedPubMedCentralCrossRef
133.
go back to reference Farrar CA, Tran D, Li K, Wu W, Peng Q, Schwaeble W, et al. Collectin-11 detects stress-induced L-fucose pattern to trigger renal epithelial injury. J Clin Invest. 2016;126(5):1911–25.PubMedPubMedCentralCrossRef Farrar CA, Tran D, Li K, Wu W, Peng Q, Schwaeble W, et al. Collectin-11 detects stress-induced L-fucose pattern to trigger renal epithelial injury. J Clin Invest. 2016;126(5):1911–25.PubMedPubMedCentralCrossRef
134.
go back to reference Gerard NP, Gerard C. The chemotactic receptor for human C5a anaphylatoxin. Nature. 1991;349:614–7.PubMedCrossRef Gerard NP, Gerard C. The chemotactic receptor for human C5a anaphylatoxin. Nature. 1991;349:614–7.PubMedCrossRef
135.
go back to reference Chao TH, Ember JA, Wang M, Bayon Y, Hugli TE, Ye RD. Role of the second extracellular loop of human C3a receptor in agonist binding and receptor function. J Biol Chem. 1999;274:9721–8.PubMedCrossRef Chao TH, Ember JA, Wang M, Bayon Y, Hugli TE, Ye RD. Role of the second extracellular loop of human C3a receptor in agonist binding and receptor function. J Biol Chem. 1999;274:9721–8.PubMedCrossRef
136.
go back to reference Scola AM, Johswich KO, Morgan BP, Klos A, Monk PN. The human complement fragment receptor, C5L2, is a recycling decoy receptor. Mol Immunol. 2009;46(6):1149–62.PubMedPubMedCentralCrossRef Scola AM, Johswich KO, Morgan BP, Klos A, Monk PN. The human complement fragment receptor, C5L2, is a recycling decoy receptor. Mol Immunol. 2009;46(6):1149–62.PubMedPubMedCentralCrossRef
137.
go back to reference Braun MC, Reins RY, Li TB, et al. Renal expression of the C3a receptor and functional responses of primary human proximal tubular epithelial cells. J Immunol. 2004;173:4190–6.PubMedCrossRef Braun MC, Reins RY, Li TB, et al. Renal expression of the C3a receptor and functional responses of primary human proximal tubular epithelial cells. J Immunol. 2004;173:4190–6.PubMedCrossRef
138.
go back to reference Mizuno M, Blanchin S, Gasque P, Nishikawa K, Matsuo S. High levels of complement C3a receptor in the glomeruli in lupus nephritis. Am J Kidney Dis. 2007;49:598–606.PubMedCrossRef Mizuno M, Blanchin S, Gasque P, Nishikawa K, Matsuo S. High levels of complement C3a receptor in the glomeruli in lupus nephritis. Am J Kidney Dis. 2007;49:598–606.PubMedCrossRef
139.
go back to reference Kiafard Z TT, Schweyer S, Bley A, Neumann D, Zwirner J. Use of monoclonal antibodies to assess expression of anaphylatoxin receptors in tubular epithelial cells of human, murine and rat kidneys. Immunobiology. 2007;212:129–39.PubMedCrossRef Kiafard Z TT, Schweyer S, Bley A, Neumann D, Zwirner J. Use of monoclonal antibodies to assess expression of anaphylatoxin receptors in tubular epithelial cells of human, murine and rat kidneys. Immunobiology. 2007;212:129–39.PubMedCrossRef
140.
go back to reference Bao L, Osawe I, Haas M, Quigg RJ. Signaling through up-regulated C3a receptor is key to the development of experimental lupus nephritis. J Immunol. 2005;175(3):1947–55.PubMedCrossRef Bao L, Osawe I, Haas M, Quigg RJ. Signaling through up-regulated C3a receptor is key to the development of experimental lupus nephritis. J Immunol. 2005;175(3):1947–55.PubMedCrossRef
141.
go back to reference Schreiber A, Xiao H, Jennette JC, Schneider W, Luft FC, Kettritz R. C5a receptor mediated neutrophil activation and ANCA-induced glomerulonephritis. J Am Soc Nephrol. 2009;20:289–98.PubMedPubMedCentralCrossRef Schreiber A, Xiao H, Jennette JC, Schneider W, Luft FC, Kettritz R. C5a receptor mediated neutrophil activation and ANCA-induced glomerulonephritis. J Am Soc Nephrol. 2009;20:289–98.PubMedPubMedCentralCrossRef
142.
go back to reference Huugen D, van Esch A, Xiao H, Peutz-Kootstra CJ, Buurman WA, Tervaert JW, et al. Inhibition of complement factor C5 protects against anti-myeloperoxidase antibody-mediated glomerulonephritis in mice. Kidney Int. 2007;71(7):646–54.PubMedCrossRef Huugen D, van Esch A, Xiao H, Peutz-Kootstra CJ, Buurman WA, Tervaert JW, et al. Inhibition of complement factor C5 protects against anti-myeloperoxidase antibody-mediated glomerulonephritis in mice. Kidney Int. 2007;71(7):646–54.PubMedCrossRef
143.
go back to reference Xiao H, Schreiber A, Heeringa P, Falk RJ, Jennette JC. Alternative complement pathway in the pathogenesis of disease mediated by anti-neutrophil cytoplasmic autoantibodies. Am J Pathol. 2007;170(1):52–64.PubMedPubMedCentralCrossRef Xiao H, Schreiber A, Heeringa P, Falk RJ, Jennette JC. Alternative complement pathway in the pathogenesis of disease mediated by anti-neutrophil cytoplasmic autoantibodies. Am J Pathol. 2007;170(1):52–64.PubMedPubMedCentralCrossRef
144.
go back to reference Wenderfer SE, Wang H, Ke B, Wetsel RA, Braun MC. C3a receptor deficiency accelerates the onset of renal injury in the MRL/lpr mouse. Mol Immunol. 2009;46:1397–404.PubMedPubMedCentralCrossRef Wenderfer SE, Wang H, Ke B, Wetsel RA, Braun MC. C3a receptor deficiency accelerates the onset of renal injury in the MRL/lpr mouse. Mol Immunol. 2009;46:1397–404.PubMedPubMedCentralCrossRef
145.
go back to reference Yamada K, Hori Y, Hanafusa N, Okuda T, Nagano N, Choi-Miura NH, et al. Clusterin is up-regulated in glomerular mesangial cells in complement-mediated injury. Kidney Int. 2001;59(1):137–46.PubMedCrossRef Yamada K, Hori Y, Hanafusa N, Okuda T, Nagano N, Choi-Miura NH, et al. Clusterin is up-regulated in glomerular mesangial cells in complement-mediated injury. Kidney Int. 2001;59(1):137–46.PubMedCrossRef
146.
go back to reference Rioux P. TP-10 (AVANT Immunotherapeutics). Curr Opin Investig Drugs. 2001;2(3):364–71.PubMed Rioux P. TP-10 (AVANT Immunotherapeutics). Curr Opin Investig Drugs. 2001;2(3):364–71.PubMed
147.
go back to reference Schmid RA, Hillinger S, Hamacher J, Stammberger U. TP20 is superior to TP10 in reducing ischemia/reperfusion injury in rat lung grafts. Transplant Proc. 2001;33(1–2):948–9.PubMedCrossRef Schmid RA, Hillinger S, Hamacher J, Stammberger U. TP20 is superior to TP10 in reducing ischemia/reperfusion injury in rat lung grafts. Transplant Proc. 2001;33(1–2):948–9.PubMedCrossRef
148.
go back to reference Yazdanbakhsh K, Scaradavou A. CR1-based inhibitors for prevention of complement-mediated immune hemolysis. Drug News Perspect. 2004;17(5):314–20.PubMedCrossRef Yazdanbakhsh K, Scaradavou A. CR1-based inhibitors for prevention of complement-mediated immune hemolysis. Drug News Perspect. 2004;17(5):314–20.PubMedCrossRef
149.
go back to reference Bowen T CM, Farkas H, et al. Canadian 2003 internatinal consensus alogrithm for the diagnosis, therapy, and management of hereditary angioedema. J Allergy Clin Immunol. 2003;114:629–937.CrossRef Bowen T CM, Farkas H, et al. Canadian 2003 internatinal consensus alogrithm for the diagnosis, therapy, and management of hereditary angioedema. J Allergy Clin Immunol. 2003;114:629–937.CrossRef
150.
go back to reference Luzzatto L, Gianfaldoni G. Recent advances in biological and clinical aspects of paroxysmal nocturnal hemoglobinuria. Int J Hematol. 2006;84:104–12.PubMedCrossRef Luzzatto L, Gianfaldoni G. Recent advances in biological and clinical aspects of paroxysmal nocturnal hemoglobinuria. Int J Hematol. 2006;84:104–12.PubMedCrossRef
151.
go back to reference Mahaffey KW, Granger CB, Nicolau JC, et al. Effect of pexelizumab, an anti-C5 complement antibody, as adjunctive therapy to fibrinolysis in acute myocardial infarction: the COMPlement inhibition in myocardial infarction treated with thromboLYtics (COMPLY) trial. Circulation. 2003;108(10):1176–83.PubMedCrossRef Mahaffey KW, Granger CB, Nicolau JC, et al. Effect of pexelizumab, an anti-C5 complement antibody, as adjunctive therapy to fibrinolysis in acute myocardial infarction: the COMPlement inhibition in myocardial infarction treated with thromboLYtics (COMPLY) trial. Circulation. 2003;108(10):1176–83.PubMedCrossRef
152.
go back to reference Nunn MA, Sharma A, Paesen GC, et al. Complement inhibitor of C5 activation from the soft tick Ornithodoros moubata. J Immunol. 2005;174:2084–91.PubMedCrossRef Nunn MA, Sharma A, Paesen GC, et al. Complement inhibitor of C5 activation from the soft tick Ornithodoros moubata. J Immunol. 2005;174:2084–91.PubMedCrossRef
153.
go back to reference Ring T, Pedersen BB, Salkus G, Goodship TH. Use of eculizumab in crescentic IgA nephropathy: proof of principle and conundrum? Clin Kidney J. 2015;8(5):489–91.PubMedPubMedCentralCrossRef Ring T, Pedersen BB, Salkus G, Goodship TH. Use of eculizumab in crescentic IgA nephropathy: proof of principle and conundrum? Clin Kidney J. 2015;8(5):489–91.PubMedPubMedCentralCrossRef
154.
go back to reference Pickering MC, Ismajli M, Condon MB, McKenna N, Hall AE, Lightstone L, et al. Eculizumab as rescue therapy in severe resistant lupus nephritis. Rheumatology (Oxford). 2015;54(12):2286–8. Pickering MC, Ismajli M, Condon MB, McKenna N, Hall AE, Lightstone L, et al. Eculizumab as rescue therapy in severe resistant lupus nephritis. Rheumatology (Oxford). 2015;54(12):2286–8.
155.
go back to reference Jordan SC, Choi J, Kahwaji J, Vo A. Complement inhibition for prevention and treatment of antibody-mediated rejection in renal allograft recipients. Transplant Proc. 2016;48(3):806–8.PubMedCrossRef Jordan SC, Choi J, Kahwaji J, Vo A. Complement inhibition for prevention and treatment of antibody-mediated rejection in renal allograft recipients. Transplant Proc. 2016;48(3):806–8.PubMedCrossRef
156.
go back to reference Nishimura J, Yamamoto M, Hayashi S, et al. Genetic variants in C5 and poor response to eculizumab. N Engl J Med. 2014;370(7):632–9.PubMedCrossRef Nishimura J, Yamamoto M, Hayashi S, et al. Genetic variants in C5 and poor response to eculizumab. N Engl J Med. 2014;370(7):632–9.PubMedCrossRef
157.
go back to reference Fraser DA, Harris CL, Williams AS, Mizuno M, Sean Gallagher S, Smith RAG, et al. Generation of a recombinant, membrane-targeted form of the complement regulator CD59. J Biol Chem. 2003;278(49):48921–7.PubMedCrossRef Fraser DA, Harris CL, Williams AS, Mizuno M, Sean Gallagher S, Smith RAG, et al. Generation of a recombinant, membrane-targeted form of the complement regulator CD59. J Biol Chem. 2003;278(49):48921–7.PubMedCrossRef
158.
go back to reference Franco DA, Truran S, Burciu C, Gutterman DD, Maltagliati A, Weissig V, et al. Protective role of clusterin in preserving endothelial function in AL amyloidosis. Atherosclerosis. 2012;225(1):220–3.PubMedPubMedCentralCrossRef Franco DA, Truran S, Burciu C, Gutterman DD, Maltagliati A, Weissig V, et al. Protective role of clusterin in preserving endothelial function in AL amyloidosis. Atherosclerosis. 2012;225(1):220–3.PubMedPubMedCentralCrossRef
159.
go back to reference Yuan X, Gavriilaki E, Thanassi JA, Yang G, Baines AC, Podos SD, et al. Small-molecule Factor D inhibitors selectively block the althernative pathway of complement in paroxysmal nocturnal hemoglobinuria and atypical uremic syndrome. Haematologica. 2017;102(3):466–75.PubMedPubMedCentralCrossRef Yuan X, Gavriilaki E, Thanassi JA, Yang G, Baines AC, Podos SD, et al. Small-molecule Factor D inhibitors selectively block the althernative pathway of complement in paroxysmal nocturnal hemoglobinuria and atypical uremic syndrome. Haematologica. 2017;102(3):466–75.PubMedPubMedCentralCrossRef
Metadata
Title
Complement regulation and kidney diseases: recent knowledge of the double-edged roles of complement activation in nephrology
Authors
Masashi Mizuno
Yasuhiro Suzuki
Yasuhiko Ito
Publication date
01-02-2018
Publisher
Springer Japan
Published in
Clinical and Experimental Nephrology / Issue 1/2018
Print ISSN: 1342-1751
Electronic ISSN: 1437-7799
DOI
https://doi.org/10.1007/s10157-017-1405-x

Other articles of this Issue 1/2018

Clinical and Experimental Nephrology 1/2018 Go to the issue
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.