Skip to main content
Top
Published in: Diabetologia 8/2014

01-08-2014 | Short Communication

Hypofibrinolysis in type 2 diabetes: the role of the inflammatory pathway and complement C3

Authors: Katharina Hess, Saad H. Alzahrani, Jackie F. Price, Mark W. Strachan, Natalie Oxley, Rhodri King, Tobias Gamlen, Verena Schroeder, Paul D. Baxter, Ramzi A. Ajjan

Published in: Diabetologia | Issue 8/2014

Login to get access

Abstract

Aims/hypothesis

Plasminogen activator inhibitor-1 (PAI-1) has been regarded as the main antifibrinolytic protein in diabetes, but recent work indicates that complement C3 (C3), an inflammatory protein, directly compromises fibrinolysis in type 1 diabetes. The aim of the current project was to investigate associations between C3 and fibrinolysis in a large cohort of individuals with type 2 diabetes.

Methods

Plasma levels of C3, C-reactive protein (CRP), PAI-1 and fibrinogen were analysed by ELISA in 837 patients enrolled in the Edinburgh Type 2 Diabetes Study. Fibrin clot lysis was analysed using a validated turbidimetric assay.

Results

Clot lysis time correlated with C3 and PAI-1 plasma levels (r = 0.24, p < 0.001 and r = 0.22, p < 0.001, respectively). In a multivariable regression model involving age, sex, BMI, C3, PAI-1, CRP and fibrinogen, and using log-transformed data as appropriate, C3 was associated with clot lysis time (regression coefficient 0.227 [95% CI 0.161, 0.292], p < 0.001), as was PAI-1 (regression coefficient 0.033 [95% CI 0.020, 0.064], p < 0.05) but not fibrinogen (regression coefficient 0.003 [95% CI −0.046, 0.051], p = 0.92) or CRP (regression coefficient 0.024 [95% CI −0.008, 0.056], p = 0.14). No correlation was demonstrated between plasma levels of C3 and PAI-1 (r = −0.03, p = 0.44), consistent with previous observations that the two proteins affect different pathways in the fibrinolytic system.

Conclusions/interpretation

Similarly to PAI-1, C3 plasma levels are independently associated with fibrin clot lysis in individuals with type 2 diabetes. Therefore, future studies should analyse C3 plasma levels as a surrogate marker of fibrinolysis potential in this population.
Appendix
Available only for authorised users
Literature
1.
go back to reference Alzahrani SH, Ajjan RA (2010) Coagulation and fibrinolysis in diabetes. Diabetes Vasc Dis Res 7:260–273CrossRef Alzahrani SH, Ajjan RA (2010) Coagulation and fibrinolysis in diabetes. Diabetes Vasc Dis Res 7:260–273CrossRef
2.
go back to reference Hess K, Alzahrani S, Mathai M et al (2012) A novel mechanism for hypofibrinolysis in diabetes: the role of complement C3. Diabetologia 55:1103–1113PubMedCrossRef Hess K, Alzahrani S, Mathai M et al (2012) A novel mechanism for hypofibrinolysis in diabetes: the role of complement C3. Diabetologia 55:1103–1113PubMedCrossRef
3.
go back to reference Alzahrani SH, Hess K, Price JF et al (2012) Gender-specific alterations in fibrin structure function in type 2 diabetes: associations with cardiometabolic and vascular markers. J Clin Endocrinol Metab 97:E2282–E2287PubMedCrossRef Alzahrani SH, Hess K, Price JF et al (2012) Gender-specific alterations in fibrin structure function in type 2 diabetes: associations with cardiometabolic and vascular markers. J Clin Endocrinol Metab 97:E2282–E2287PubMedCrossRef
4.
go back to reference Schroeder V, Carter AM, Dunne J, Mansfield MW, Grant PJ (2010) Proinflammatory and hypofibrinolytic phenotype in healthy first-degree relatives of patients with type 2 diabetes. J Thromb Haemost 8:2080–2082PubMedCrossRef Schroeder V, Carter AM, Dunne J, Mansfield MW, Grant PJ (2010) Proinflammatory and hypofibrinolytic phenotype in healthy first-degree relatives of patients with type 2 diabetes. J Thromb Haemost 8:2080–2082PubMedCrossRef
6.
go back to reference Yasojima K, Schwab C, McGeer EG, McGeer PL (2001) Complement components, but not complement inhibitors, are upregulated in atherosclerotic plaques. Arterioscler Thromb Vasc Biol 21:1214–1219PubMedCrossRef Yasojima K, Schwab C, McGeer EG, McGeer PL (2001) Complement components, but not complement inhibitors, are upregulated in atherosclerotic plaques. Arterioscler Thromb Vasc Biol 21:1214–1219PubMedCrossRef
7.
go back to reference Széplaki G, Prohászka Z, Duba J et al (2004) Association of high serum concentration of the third component of complement (C3) with pre-existing severe coronary artery disease and new vascular events in women. Atherosclerosis 177:383–389PubMedCrossRef Széplaki G, Prohászka Z, Duba J et al (2004) Association of high serum concentration of the third component of complement (C3) with pre-existing severe coronary artery disease and new vascular events in women. Atherosclerosis 177:383–389PubMedCrossRef
8.
go back to reference Wei JN, Li HY, Sung FC et al (2012) Obesity and clustering of cardiovascular disease risk factors are associated with elevated plasma complement C3 in children and adolescents. Pediatr Diabetes 13:476–483PubMedCrossRef Wei JN, Li HY, Sung FC et al (2012) Obesity and clustering of cardiovascular disease risk factors are associated with elevated plasma complement C3 in children and adolescents. Pediatr Diabetes 13:476–483PubMedCrossRef
9.
Metadata
Title
Hypofibrinolysis in type 2 diabetes: the role of the inflammatory pathway and complement C3
Authors
Katharina Hess
Saad H. Alzahrani
Jackie F. Price
Mark W. Strachan
Natalie Oxley
Rhodri King
Tobias Gamlen
Verena Schroeder
Paul D. Baxter
Ramzi A. Ajjan
Publication date
01-08-2014
Publisher
Springer Berlin Heidelberg
Published in
Diabetologia / Issue 8/2014
Print ISSN: 0012-186X
Electronic ISSN: 1432-0428
DOI
https://doi.org/10.1007/s00125-014-3267-z

Other articles of this Issue 8/2014

Diabetologia 8/2014 Go to the issue