Skip to main content
Top
Published in: Journal of Artificial Organs 3/2013

01-09-2013 | Original Article

Adipose tissue behavior is distinctly regulated by neighboring cells and fluid flow stress: a possible role of adipose tissue in peritoneal fibrosis

Authors: Shigehisa Aoki, Kazuma Udo, Hiroyuki Morimoto, Satoshi Ikeda, Toshiaki Takezawa, Kazuyoshi Uchihashi, Aki Nishijima-Matsunobu, Mitsuru Noguchi, Hajime Sugihara, Shuji Toda

Published in: Journal of Artificial Organs | Issue 3/2013

Login to get access

Abstract

Adipose tissue, together with the mesothelial layer and microvessels, is a major component of the mesenteric peritoneum, and the mesenterium is a target site for peritoneal fibrosis. Adipose tissue has been speculated to play a role in peritoneal dialysis (PD)-related fibrosis, but the precise cellular kinetics of adipose tissue during this process remain to be determined. To clarify this critical issue, we analyzed the kinetics of adipose tissue using a novel peritoneal reconstruction model in which the effects of mesothelial cells or endothelial cells could be identified. Adipose tissue was co-cultured with mesothelial cells or endothelial cells in a combined organ culture and fluid flow stress culture system. Spindle mesenchymal cells and immature adipocytes derived from adipose tissue were characterized by immunohistochemistry. Adipose tissue fragments cultured in this system yielded many spindle mesenchymal cells in non-co-culture conditions. However, the number of spindle mesenchymal cells emerging from adipose tissue was reduced in co-culture conditions with a covering layer of mesothelial cells. Mesothelial cells co-cultured in the separated condition did not inhibit the emergence of spindle mesenchymal cells from adipose tissue. Interestingly, endothelial cells promoted the emergence of lipid-laden immature adipocytes from adipose tissue under fluid flow stress. We have demonstrated that adipose tissue behavior is not only regulated by mesothelial cells and endothelial cells under fluid flow stress, but is also involved in fibrosis and fat mass production in the peritoneum. Our findings suggest that adipose tissue is a potential source of cells for peritoneal fibrosis caused by PD therapy.
Literature
1.
go back to reference Burkart JM. Peritoneal dialysis should be considered as the first line of renal replacement therapy for most ESRD patients. Blood Purif. 2001;19:179–84.PubMedCrossRef Burkart JM. Peritoneal dialysis should be considered as the first line of renal replacement therapy for most ESRD patients. Blood Purif. 2001;19:179–84.PubMedCrossRef
2.
go back to reference Chaudhary K, Sangha H, Khanna R. Peritoneal dialysis first: rationale. Clin J Am Soc Nephrol. 2011;6:447–56.PubMedCrossRef Chaudhary K, Sangha H, Khanna R. Peritoneal dialysis first: rationale. Clin J Am Soc Nephrol. 2011;6:447–56.PubMedCrossRef
3.
go back to reference Grassmann A, Gioberge S, Moeller S, Brown G. ESRD patients in 2004: global overview of patient numbers, treatment modalities and associated trends. Nephrol Dial Transpl. 2005;20:2587–93.CrossRef Grassmann A, Gioberge S, Moeller S, Brown G. ESRD patients in 2004: global overview of patient numbers, treatment modalities and associated trends. Nephrol Dial Transpl. 2005;20:2587–93.CrossRef
4.
go back to reference Bradley JA, Hamilton DN, McWhinnie DL, Briggs JD, Junor BJ. Sclerosing peritonitis after CAPD. Lancet. 1983;2:572–3.PubMedCrossRef Bradley JA, Hamilton DN, McWhinnie DL, Briggs JD, Junor BJ. Sclerosing peritonitis after CAPD. Lancet. 1983;2:572–3.PubMedCrossRef
5.
6.
go back to reference Miyazaki M, Yuzawa Y. The role of peritoneal fibrosis in encapsulating peritoneal sclerosis. Perit Dial Int. 2005;25:S48–56.PubMed Miyazaki M, Yuzawa Y. The role of peritoneal fibrosis in encapsulating peritoneal sclerosis. Perit Dial Int. 2005;25:S48–56.PubMed
7.
go back to reference Mactier RA. The spectrum of peritoneal fibrosing syndromes in peritoneal dialysis. Adv Perit Dial. 2000;16:223–8.PubMed Mactier RA. The spectrum of peritoneal fibrosing syndromes in peritoneal dialysis. Adv Perit Dial. 2000;16:223–8.PubMed
8.
go back to reference Yanez-Mo M, Lara-Pezzi E, Selgas R, Ramirez-Huesca M, Dominguez-Jimenez C, Jimenez-Heffernan JA, et al. Peritoneal dialysis and epithelial-to-mesenchymal transition of mesothelial cells. N Engl J Med. 2003;348:403–13.PubMedCrossRef Yanez-Mo M, Lara-Pezzi E, Selgas R, Ramirez-Huesca M, Dominguez-Jimenez C, Jimenez-Heffernan JA, et al. Peritoneal dialysis and epithelial-to-mesenchymal transition of mesothelial cells. N Engl J Med. 2003;348:403–13.PubMedCrossRef
9.
go back to reference Margetts PJ, Bonniaud P, Liu L, Hoff CM, Holmes CJ, West-Mays JA, et al. Transient overexpression of TGF-{beta}1 induces epithelial mesenchymal transition in the rodent peritoneum. J Am Soc Nephrol. 2005;16:425–36.PubMedCrossRef Margetts PJ, Bonniaud P, Liu L, Hoff CM, Holmes CJ, West-Mays JA, et al. Transient overexpression of TGF-{beta}1 induces epithelial mesenchymal transition in the rodent peritoneum. J Am Soc Nephrol. 2005;16:425–36.PubMedCrossRef
10.
go back to reference Devuyst O, Margetts PJ, Topley N. The pathophysiology of the peritoneal membrane. J Am Soc Nephrol. 2010;21:1077–85.PubMedCrossRef Devuyst O, Margetts PJ, Topley N. The pathophysiology of the peritoneal membrane. J Am Soc Nephrol. 2010;21:1077–85.PubMedCrossRef
11.
go back to reference Goodlad C, Brown EA. Encapsulating peritoneal sclerosis: what have we learned? Semin Nephrol. 2011;31:183–98.PubMedCrossRef Goodlad C, Brown EA. Encapsulating peritoneal sclerosis: what have we learned? Semin Nephrol. 2011;31:183–98.PubMedCrossRef
12.
go back to reference Zuk PA, Zhu M, Ashjian P, De Ugarte DA, Huang JI, Mizuno H, et al. Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell. 2002;13:4279–95.PubMedCrossRef Zuk PA, Zhu M, Ashjian P, De Ugarte DA, Huang JI, Mizuno H, et al. Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell. 2002;13:4279–95.PubMedCrossRef
13.
go back to reference Strem BM, Hicok KC, Zhu M, Wulur I, Alfonso Z, Schreiber RE, et al. Multipotential differentiation of adipose tissue-derived stem cells. Keio J Med. 2005;54:132–41.PubMedCrossRef Strem BM, Hicok KC, Zhu M, Wulur I, Alfonso Z, Schreiber RE, et al. Multipotential differentiation of adipose tissue-derived stem cells. Keio J Med. 2005;54:132–41.PubMedCrossRef
14.
go back to reference Mitchell JB, McIntosh K, Zvonic S, Garrett S, Floyd ZE, Kloster A, et al. Immunophenotype of human adipose-derived cells: temporal changes in stromal-associated and stem cell-associated markers. Stem Cells. 2006;24:376–85.PubMedCrossRef Mitchell JB, McIntosh K, Zvonic S, Garrett S, Floyd ZE, Kloster A, et al. Immunophenotype of human adipose-derived cells: temporal changes in stromal-associated and stem cell-associated markers. Stem Cells. 2006;24:376–85.PubMedCrossRef
15.
go back to reference Di Paolo N, Sacchi G. Atlas of peritoneal histology. Perit Dial Int. 2000;20:S5–96.PubMed Di Paolo N, Sacchi G. Atlas of peritoneal histology. Perit Dial Int. 2000;20:S5–96.PubMed
16.
go back to reference Charriere G, Cousin B, Arnaud E, Andre M, Bacou F, Penicaud L, et al. Preadipocyte conversion to macrophage. Evidence of plasticity. J Biol Chem. 2003;278:9850–5.PubMedCrossRef Charriere G, Cousin B, Arnaud E, Andre M, Bacou F, Penicaud L, et al. Preadipocyte conversion to macrophage. Evidence of plasticity. J Biol Chem. 2003;278:9850–5.PubMedCrossRef
17.
go back to reference Sonoda E, Aoki S, Uchihashi K, Soejima H, Kanaji S, Izuhara K, et al. A new organotypic culture of adipose tissue fragments maintains viable mature adipocytes for a long term, together with development of immature adipocytes and mesenchymal stem cell-like cells. Endocrinology. 2008;149:4794–8.PubMedCrossRef Sonoda E, Aoki S, Uchihashi K, Soejima H, Kanaji S, Izuhara K, et al. A new organotypic culture of adipose tissue fragments maintains viable mature adipocytes for a long term, together with development of immature adipocytes and mesenchymal stem cell-like cells. Endocrinology. 2008;149:4794–8.PubMedCrossRef
18.
go back to reference Sugihara H, Funatsumaru S, Yonemitsu N, Miyabara S, Toda S, Hikichi Y. A simple culture method of fat cells from mature fat tissue fragments. J Lipid Res. 1989;30:1987–95.PubMed Sugihara H, Funatsumaru S, Yonemitsu N, Miyabara S, Toda S, Hikichi Y. A simple culture method of fat cells from mature fat tissue fragments. J Lipid Res. 1989;30:1987–95.PubMed
19.
go back to reference Aoki S, Makino J, Nagashima A, Takezawa T, Nomoto N, Uchihashi K, et al. Fluid flow stress affects peritoneal cell kinetics: possible pathogenesis of peritoneal fibrosis. Perit Dial Int. 2011;31:466–76.PubMedCrossRef Aoki S, Makino J, Nagashima A, Takezawa T, Nomoto N, Uchihashi K, et al. Fluid flow stress affects peritoneal cell kinetics: possible pathogenesis of peritoneal fibrosis. Perit Dial Int. 2011;31:466–76.PubMedCrossRef
20.
go back to reference Aoki S, Ikeda S, Takezawa T, Kishi T, Makino J, Uchihashi K, et al. Prolonged effect of fluid flow stress on the proliferative activity of mesothelial cells after abrupt discontinuation of fluid streaming. Biochem Biophys Res Commun. 2011;416:391–6.PubMedCrossRef Aoki S, Ikeda S, Takezawa T, Kishi T, Makino J, Uchihashi K, et al. Prolonged effect of fluid flow stress on the proliferative activity of mesothelial cells after abrupt discontinuation of fluid streaming. Biochem Biophys Res Commun. 2011;416:391–6.PubMedCrossRef
21.
go back to reference Anan M, Uchihashi K, Aoki S, Matsunobu A, Ootani A, Node K, et al. A promising culture model for analyzing the interaction between adipose tissue and cardiomyocytes. Endocrinology. 2011;152:1599–605.PubMedCrossRef Anan M, Uchihashi K, Aoki S, Matsunobu A, Ootani A, Node K, et al. A promising culture model for analyzing the interaction between adipose tissue and cardiomyocytes. Endocrinology. 2011;152:1599–605.PubMedCrossRef
22.
go back to reference Nomoto-Kojima N, Aoki S, Uchihashi K, Matsunobu A, Koike E, Ootani A, et al. Interaction between adipose tissue stromal cells and gastric cancer cells in vitro. Cell Tissue Res. 2011;344:287–98.PubMedCrossRef Nomoto-Kojima N, Aoki S, Uchihashi K, Matsunobu A, Koike E, Ootani A, et al. Interaction between adipose tissue stromal cells and gastric cancer cells in vitro. Cell Tissue Res. 2011;344:287–98.PubMedCrossRef
23.
go back to reference Aoki S, Takezawa T, Uchihashi K, Sugihara H, Toda S. Non-skin mesenchymal cell types support epidermal regeneration in a mesenchymal stem cell or myofibroblast phenotype-independent manner. Pathol Int. 2009;59:368–75.PubMedCrossRef Aoki S, Takezawa T, Uchihashi K, Sugihara H, Toda S. Non-skin mesenchymal cell types support epidermal regeneration in a mesenchymal stem cell or myofibroblast phenotype-independent manner. Pathol Int. 2009;59:368–75.PubMedCrossRef
24.
go back to reference Higashi Y, Abe K, Kuzumoto T, Hara T, Miyamoto K, Murata T, et al. Characterization of peritoneal dialysis effluent-derived cells: diagnosis of peritoneal integrity. J Artif Organs. 2012. doi:10.1007/s10047-012-0673-1.PubMed Higashi Y, Abe K, Kuzumoto T, Hara T, Miyamoto K, Murata T, et al. Characterization of peritoneal dialysis effluent-derived cells: diagnosis of peritoneal integrity. J Artif Organs. 2012. doi:10.​1007/​s10047-012-0673-1.PubMed
25.
go back to reference Kruitwagen RF, Poels LG, Willemsen WN, Jap PH, de Ronde IJ, Hanselaar TG, et al. Immunocytochemical markerprofile of endometriotic epithelial, endometrial epithelial, and mesothelial cells: a comparative study. Eur J Obstet Gynecol Reprod Biol. 1991;41:215–23.PubMedCrossRef Kruitwagen RF, Poels LG, Willemsen WN, Jap PH, de Ronde IJ, Hanselaar TG, et al. Immunocytochemical markerprofile of endometriotic epithelial, endometrial epithelial, and mesothelial cells: a comparative study. Eur J Obstet Gynecol Reprod Biol. 1991;41:215–23.PubMedCrossRef
26.
go back to reference Friedman JM. Obesity in the new millennium. Nature. 2000;404:632–4.PubMed Friedman JM. Obesity in the new millennium. Nature. 2000;404:632–4.PubMed
27.
go back to reference Myers MG Jr. Leptin receptor signaling and the regulation of mammalian physiology. Recent Prog Horm Res. 2004;59:287–304.PubMedCrossRef Myers MG Jr. Leptin receptor signaling and the regulation of mammalian physiology. Recent Prog Horm Res. 2004;59:287–304.PubMedCrossRef
28.
go back to reference Lai KN, Leung JC. Peritoneal adipocytes and their role in inflammation during peritoneal dialysis. Mediat Inflamm. 2010;2010:495416.CrossRef Lai KN, Leung JC. Peritoneal adipocytes and their role in inflammation during peritoneal dialysis. Mediat Inflamm. 2010;2010:495416.CrossRef
29.
go back to reference Bradley JA, McWhinnie DL, Hamilton DN, Starnes F, Macpherson SG, Seywright M, et al. Sclerosing obstructive peritonitis after continuous ambulatory peritoneal dialysis. Lancet. 1983;2:113–4.PubMedCrossRef Bradley JA, McWhinnie DL, Hamilton DN, Starnes F, Macpherson SG, Seywright M, et al. Sclerosing obstructive peritonitis after continuous ambulatory peritoneal dialysis. Lancet. 1983;2:113–4.PubMedCrossRef
30.
go back to reference Dobbie JW. Pathogenesis of peritoneal fibrosing syndromes (sclerosing peritonitis) in peritoneal dialysis. Perit Dial Int. 1992;12:14–27.PubMed Dobbie JW. Pathogenesis of peritoneal fibrosing syndromes (sclerosing peritonitis) in peritoneal dialysis. Perit Dial Int. 1992;12:14–27.PubMed
31.
go back to reference Leung JC, Chan LY, Tang SC, Chu KM, Lai KN. Leptin induces TGF-beta synthesis through functional leptin receptor expressed by human peritoneal mesothelial cell. Kidney Int. 2006;69:2078–86.PubMedCrossRef Leung JC, Chan LY, Tang SC, Chu KM, Lai KN. Leptin induces TGF-beta synthesis through functional leptin receptor expressed by human peritoneal mesothelial cell. Kidney Int. 2006;69:2078–86.PubMedCrossRef
32.
go back to reference Kiyonaga H, Doi Y, Karasaki Y, Arashidani K, Itoh H, Fujimoto S. Expressions of endothelin-1, fibronectin, and interleukin-1alpha of human umbilical vein endothelial cells under prolonged culture. Med Electron Microsc. 2001;34:41–53.PubMedCrossRef Kiyonaga H, Doi Y, Karasaki Y, Arashidani K, Itoh H, Fujimoto S. Expressions of endothelin-1, fibronectin, and interleukin-1alpha of human umbilical vein endothelial cells under prolonged culture. Med Electron Microsc. 2001;34:41–53.PubMedCrossRef
33.
go back to reference Harrison DG, Cai H. Endothelial control of vasomotion and nitric oxide production. Cardiol Clin. 2003;21:289–302.PubMedCrossRef Harrison DG, Cai H. Endothelial control of vasomotion and nitric oxide production. Cardiol Clin. 2003;21:289–302.PubMedCrossRef
34.
go back to reference Busse R, Fleming I. Vascular endothelium and blood flow. Handb Exp Pharmacol. 2006;176(Pt 2):43–78. Busse R, Fleming I. Vascular endothelium and blood flow. Handb Exp Pharmacol. 2006;176(Pt 2):43–78.
35.
go back to reference Bonnefont-Rousselot D. Glucose and reactive oxygen species. Curr Opin Clin Nutr Metab Care. 2002;5:561–8.PubMedCrossRef Bonnefont-Rousselot D. Glucose and reactive oxygen species. Curr Opin Clin Nutr Metab Care. 2002;5:561–8.PubMedCrossRef
36.
go back to reference Cai H, Harrison DG. Endothelial dysfunction in cardiovascular diseases: the role of oxidant stress. Circ Res. 2000;87:840–4.PubMedCrossRef Cai H, Harrison DG. Endothelial dysfunction in cardiovascular diseases: the role of oxidant stress. Circ Res. 2000;87:840–4.PubMedCrossRef
37.
go back to reference Chiu JJ, Chien S. Effects of disturbed flow on vascular endothelium: pathophysiological basis and clinical perspectives. Physiol Rev. 2011;91:327–87.PubMedCrossRef Chiu JJ, Chien S. Effects of disturbed flow on vascular endothelium: pathophysiological basis and clinical perspectives. Physiol Rev. 2011;91:327–87.PubMedCrossRef
38.
go back to reference Achike FI, To NH, Wang H, Kwan CY. Obesity, metabolic syndrome, adipocytes and vascular function: a holistic viewpoint. Clin Exp Pharmacol Physiol. 2011;38:1–10.PubMedCrossRef Achike FI, To NH, Wang H, Kwan CY. Obesity, metabolic syndrome, adipocytes and vascular function: a holistic viewpoint. Clin Exp Pharmacol Physiol. 2011;38:1–10.PubMedCrossRef
39.
go back to reference Aoki S, Toda S, Sakemi T, Sugihara H. Coculture of endothelial cells and mature adipocytes actively promotes immature preadipocyte development in vitro. Cell Struct Funct. 2003;28:55–60.PubMedCrossRef Aoki S, Toda S, Sakemi T, Sugihara H. Coculture of endothelial cells and mature adipocytes actively promotes immature preadipocyte development in vitro. Cell Struct Funct. 2003;28:55–60.PubMedCrossRef
40.
go back to reference Fernstrom A, Hylander B, Moritz A, Jacobsson H, Rossner S. Increase of intra-abdominal fat in patients treated with continuous ambulatory peritoneal dialysis. Perit Dial Int. 1998;18:166–71.PubMed Fernstrom A, Hylander B, Moritz A, Jacobsson H, Rossner S. Increase of intra-abdominal fat in patients treated with continuous ambulatory peritoneal dialysis. Perit Dial Int. 1998;18:166–71.PubMed
41.
go back to reference Heimburger O. Obesity on PD patients: causes and management. Contrib Nephrol. 2003;140:91–7. Heimburger O. Obesity on PD patients: causes and management. Contrib Nephrol. 2003;140:91–7.
42.
go back to reference Sugihara H, Yonemitsu N, Miyabara S, Toda S. Proliferation of unilocular fat cells in the primary culture. J Lipid Res. 1987;28:1038–45.PubMed Sugihara H, Yonemitsu N, Miyabara S, Toda S. Proliferation of unilocular fat cells in the primary culture. J Lipid Res. 1987;28:1038–45.PubMed
Metadata
Title
Adipose tissue behavior is distinctly regulated by neighboring cells and fluid flow stress: a possible role of adipose tissue in peritoneal fibrosis
Authors
Shigehisa Aoki
Kazuma Udo
Hiroyuki Morimoto
Satoshi Ikeda
Toshiaki Takezawa
Kazuyoshi Uchihashi
Aki Nishijima-Matsunobu
Mitsuru Noguchi
Hajime Sugihara
Shuji Toda
Publication date
01-09-2013
Publisher
Springer Japan
Published in
Journal of Artificial Organs / Issue 3/2013
Print ISSN: 1434-7229
Electronic ISSN: 1619-0904
DOI
https://doi.org/10.1007/s10047-013-0702-8

Other articles of this Issue 3/2013

Journal of Artificial Organs 3/2013 Go to the issue