Skip to main content
Top
Published in: Archives of Virology 7/2020

01-07-2020 | Arthritis | Original Article

The Vif protein of caprine arthritis encephalitis virus inhibits interferon production

Authors: Yali Fu, Dong Lu, Yanxin Su, Heng Chi, Jiashun Wang, Jinhai Huang

Published in: Archives of Virology | Issue 7/2020

Login to get access

Abstract

Caprine arthritis-encephalitis (CAE) is a chronic progressive infectious disease caused by caprine arthritis-encephalitis virus (CAEV) that seriously threatens the goat industry. Chronic infection and life-long multi-tissue inflammation are the typical features of the disease. Innate antiviral immunity is essential for the host defense system that rapidly recognizes and eliminates invading viruses. Interferon β (IFN-β) is important for innate immunity and regulates immunity against a broad spectrum of viruses. To investigate the details of the IFN-β response to CAEV infection, the effects of six viral proteins and the molecular mechanisms by which they affect IFN-β production were analyzed. Overexpression of DU and Vif promote virus proliferation and inhibit the production of IFN-β. qRT-PCR and luciferase reporter assays showed that overexpression of Vif inhibits the expression of luciferase under the control of the ISRE, NF-κB or IFN-β promoter but does not affect the expression of IFN-β activated by IRF3, indicating that Vif negatively regulates IFN-β production by affecting upstream signal transduction of IRF3. Amino acids 149-164 of Vif were found to be necessary for the inhibitory effect of IFN-β production. Our results indicate that CAEV evades surveillance and clearance by intracellular innate immunity by downregulating IFN-β production.
Literature
1.
go back to reference O’Sullivan BM, Eaves FW, Baxendell SA, Rowan KJ (1978) Leucoencephalomyelitis of goat kids. Aust Vet J 54:479–483PubMedCrossRef O’Sullivan BM, Eaves FW, Baxendell SA, Rowan KJ (1978) Leucoencephalomyelitis of goat kids. Aust Vet J 54:479–483PubMedCrossRef
2.
go back to reference Adams DS, Crawford TB, Klevjer-Anderson P (1980) A pathogenetic study of the early connective tissue lesions of viral caprine arthritis–encephalitis. Am J Pathol 99:257–278PubMedPubMedCentral Adams DS, Crawford TB, Klevjer-Anderson P (1980) A pathogenetic study of the early connective tissue lesions of viral caprine arthritis–encephalitis. Am J Pathol 99:257–278PubMedPubMedCentral
3.
go back to reference Crawford TB, Adams DS, Cheevers WP, Cork LC (1980) Chronic arthritis in goats caused by a retrovirus. Science 207:997–999PubMedCrossRef Crawford TB, Adams DS, Cheevers WP, Cork LC (1980) Chronic arthritis in goats caused by a retrovirus. Science 207:997–999PubMedCrossRef
4.
go back to reference Lamara A, Fieni F, Chatagnon G, Larrat M, Dubreil L, Chebloune Y (2013) Caprine arthritis encephalitis virus (CAEV) replicates productively in cultured epididymal cells from goats. Comp Immunol Microbiol Infect Dis 36:397–404PubMedCrossRef Lamara A, Fieni F, Chatagnon G, Larrat M, Dubreil L, Chebloune Y (2013) Caprine arthritis encephalitis virus (CAEV) replicates productively in cultured epididymal cells from goats. Comp Immunol Microbiol Infect Dis 36:397–404PubMedCrossRef
5.
go back to reference Li Y, Zhou F, Li X, Wang J, Zhao X, Huang J (2013) Development of TaqMan-based qPCR method for detection of caprine arthritis-encephalitis virus (CAEV) infection. Arch Virol 158:2135–2141PubMedCrossRefPubMedCentral Li Y, Zhou F, Li X, Wang J, Zhao X, Huang J (2013) Development of TaqMan-based qPCR method for detection of caprine arthritis-encephalitis virus (CAEV) infection. Arch Virol 158:2135–2141PubMedCrossRefPubMedCentral
6.
go back to reference Crawford TB, Adams DS (1981) Caprine arthritis–encephalitis: clinical features and presence of antibody in selected goat populations. J Am Vet Med Assoc 178:713–719PubMed Crawford TB, Adams DS (1981) Caprine arthritis–encephalitis: clinical features and presence of antibody in selected goat populations. J Am Vet Med Assoc 178:713–719PubMed
7.
go back to reference Tageldin MH, Johnson EH, Al-Busaidi RM, Al-Habsi KR, Al-Habsi SS (2012) Serological evidence of caprine arthritis-encephalitis virus (CAEV) infection in indigenous goats in the Sultanate of Oman. Trop Anim Health Prod 44:1–3PubMedCrossRef Tageldin MH, Johnson EH, Al-Busaidi RM, Al-Habsi KR, Al-Habsi SS (2012) Serological evidence of caprine arthritis-encephalitis virus (CAEV) infection in indigenous goats in the Sultanate of Oman. Trop Anim Health Prod 44:1–3PubMedCrossRef
8.
go back to reference Tu PA, Shiu JS, Lee SH, Pang VF, Wang DC, Wang PH (2017) Development of a recombinase polymerase amplification lateral flow dipstick (RPA-LFD) for the field diagnosis of caprine arthritis–encephalitis virus (CAEV) infection. J Virol Methods 243:98–104PubMedCrossRef Tu PA, Shiu JS, Lee SH, Pang VF, Wang DC, Wang PH (2017) Development of a recombinase polymerase amplification lateral flow dipstick (RPA-LFD) for the field diagnosis of caprine arthritis–encephalitis virus (CAEV) infection. J Virol Methods 243:98–104PubMedCrossRef
9.
go back to reference Michiels R, Van Mael E, Quinet C, Welby S, Cay AB, De Regge N (2018) Seroprevalence and risk factors related to small ruminant lentivirus infections in Belgian sheep and goats. Prev Vet Med 151:13–20PubMedCrossRef Michiels R, Van Mael E, Quinet C, Welby S, Cay AB, De Regge N (2018) Seroprevalence and risk factors related to small ruminant lentivirus infections in Belgian sheep and goats. Prev Vet Med 151:13–20PubMedCrossRef
10.
go back to reference Adedeji AO, Barr B, Gomez-Lucia E, Murphy B (2013) A polytropic caprine arthritis encephalitis virus promoter isolated from multiple tissues from a sheep with multisystemic lentivirus-associated inflammatory disease. Viruses 5:2005–2018PubMedCrossRefPubMedCentral Adedeji AO, Barr B, Gomez-Lucia E, Murphy B (2013) A polytropic caprine arthritis encephalitis virus promoter isolated from multiple tissues from a sheep with multisystemic lentivirus-associated inflammatory disease. Viruses 5:2005–2018PubMedCrossRefPubMedCentral
11.
go back to reference Hess JL, Pyper JM, Clements JE (1986) Nucleotide sequence and transcriptional activity of the caprine arthritis–encephalitis virus long terminal repeat. J Virol 60:385–393PubMedCrossRefPubMedCentral Hess JL, Pyper JM, Clements JE (1986) Nucleotide sequence and transcriptional activity of the caprine arthritis–encephalitis virus long terminal repeat. J Virol 60:385–393PubMedCrossRefPubMedCentral
12.
go back to reference Barros SC, Andresdottir V, Fevereiro M (2005) Cellular specificity and replication rate of Maedi Visna virus in vitro can be controlled by LTR sequences. Arch Virol 150:201–213PubMedCrossRef Barros SC, Andresdottir V, Fevereiro M (2005) Cellular specificity and replication rate of Maedi Visna virus in vitro can be controlled by LTR sequences. Arch Virol 150:201–213PubMedCrossRef
13.
go back to reference Oskarsson T, Hreggvidsdottir HS, Agnarsdottir G, Matthiasdottir S, Ogmundsdottir MH, Jonsson SR, Georgsson G, Ingvarsson S, Andresson OS, Andresdottir V (2007) Duplicated sequence motif in the long terminal repeat of maedi-visna virus extends cell tropism and is associated with neurovirulence. J Virol 81:4052–4057PubMedCrossRefPubMedCentral Oskarsson T, Hreggvidsdottir HS, Agnarsdottir G, Matthiasdottir S, Ogmundsdottir MH, Jonsson SR, Georgsson G, Ingvarsson S, Andresson OS, Andresdottir V (2007) Duplicated sequence motif in the long terminal repeat of maedi-visna virus extends cell tropism and is associated with neurovirulence. J Virol 81:4052–4057PubMedCrossRefPubMedCentral
14.
go back to reference L’Homme Y, Leboeuf A, Arsenault J, Fras M (2015) Identification and characterization of an emerging small ruminant lentivirus circulating recombinant form (CRF). Virology 475:159–171PubMedCrossRef L’Homme Y, Leboeuf A, Arsenault J, Fras M (2015) Identification and characterization of an emerging small ruminant lentivirus circulating recombinant form (CRF). Virology 475:159–171PubMedCrossRef
15.
go back to reference Valas S, Benoit C, Baudry C, Perrin G, Mamoun RZ (2000) Variability and immunogenicity of caprine arthritis–encephalitis virus surface glycoprotein. J Virol 74:6178–6185PubMedCrossRefPubMedCentral Valas S, Benoit C, Baudry C, Perrin G, Mamoun RZ (2000) Variability and immunogenicity of caprine arthritis–encephalitis virus surface glycoprotein. J Virol 74:6178–6185PubMedCrossRefPubMedCentral
16.
go back to reference Harmache A, Russo P, Guiguen F, Vitu C, Vignoni M, Bouyac M, Hieblot C, Pepin M, Vigne R, Suzan M (1996) Requirement of caprine arthritis encephalitis virus vif gene for in vivo replication. Virology 224:246–255PubMedCrossRef Harmache A, Russo P, Guiguen F, Vitu C, Vignoni M, Bouyac M, Hieblot C, Pepin M, Vigne R, Suzan M (1996) Requirement of caprine arthritis encephalitis virus vif gene for in vivo replication. Virology 224:246–255PubMedCrossRef
17.
go back to reference Schoborg RV, Saltarelli MJ, Clements JE (1994) A Rev protein is expressed in caprine arthritis encephalitis virus (CAEV)-infected cells and is required for efficient viral replication. Virology 202:1–15PubMedCrossRef Schoborg RV, Saltarelli MJ, Clements JE (1994) A Rev protein is expressed in caprine arthritis encephalitis virus (CAEV)-infected cells and is required for efficient viral replication. Virology 202:1–15PubMedCrossRef
18.
go back to reference Korb J, Travnicek M, Riman J (1976) The oncornavirus maturation process: quantitative correlation between morphological changes and conversion of genomic virion RNA. Intervirology 7:211–224PubMedCrossRef Korb J, Travnicek M, Riman J (1976) The oncornavirus maturation process: quantitative correlation between morphological changes and conversion of genomic virion RNA. Intervirology 7:211–224PubMedCrossRef
19.
go back to reference Lamara A, Fieni F, Mselli-Lakhal L, Chatagnon G, Bruyas JF, Tainturier D, Battut I, Fornazero C, Chebloune Y (2002) Early embryonic cells from in vivo-produced goat embryos transmit the caprine arthritis-encephalitis virus (CAEV). Theriogenology 58:1153–1163PubMedCrossRef Lamara A, Fieni F, Mselli-Lakhal L, Chatagnon G, Bruyas JF, Tainturier D, Battut I, Fornazero C, Chebloune Y (2002) Early embryonic cells from in vivo-produced goat embryos transmit the caprine arthritis-encephalitis virus (CAEV). Theriogenology 58:1153–1163PubMedCrossRef
20.
go back to reference Lamara A, Fieni F, Mselli-Lakhal L, Tainturier D, Chebloune Y (2001) Efficient replication of caprine arthritis-encephalitis virus in goat granulosa cells. Virus Res 79:165–172PubMedCrossRef Lamara A, Fieni F, Mselli-Lakhal L, Tainturier D, Chebloune Y (2001) Efficient replication of caprine arthritis-encephalitis virus in goat granulosa cells. Virus Res 79:165–172PubMedCrossRef
21.
go back to reference Cardinaux L, Zahno ML, Deubelbeiss M, Zanoni R, Vogt HR, Bertoni G (2013) Virological and phylogenetic characterization of attenuated small ruminant lentivirus isolates eluding efficient serological detection. Vet Microbiol 162:572–581PubMedCrossRef Cardinaux L, Zahno ML, Deubelbeiss M, Zanoni R, Vogt HR, Bertoni G (2013) Virological and phylogenetic characterization of attenuated small ruminant lentivirus isolates eluding efficient serological detection. Vet Microbiol 162:572–581PubMedCrossRef
22.
go back to reference Blacklaws BA (2012) Small ruminant lentiviruses: immunopathogenesis of visna-maedi and caprine arthritis and encephalitis virus. Comp Immunol Microbiol Infect Dis 35:259–269PubMedCrossRef Blacklaws BA (2012) Small ruminant lentiviruses: immunopathogenesis of visna-maedi and caprine arthritis and encephalitis virus. Comp Immunol Microbiol Infect Dis 35:259–269PubMedCrossRef
23.
go back to reference Jarczak J, Kaba J, Reczynska D, Bagnicka E (2016) Impaired expression of cytokines as a result of viral infections with an emphasis on small ruminant lentivirus infection in goats. Viruses 8(186):1–12CrossRefPubMedCentral Jarczak J, Kaba J, Reczynska D, Bagnicka E (2016) Impaired expression of cytokines as a result of viral infections with an emphasis on small ruminant lentivirus infection in goats. Viruses 8(186):1–12CrossRefPubMedCentral
24.
go back to reference Medin CL, Rothman AL (2006) Cell type-specific mechanisms of interleukin-8 induction by dengue virus and differential response to drug treatment. J Infect Dis 193:1070–1077PubMedCrossRef Medin CL, Rothman AL (2006) Cell type-specific mechanisms of interleukin-8 induction by dengue virus and differential response to drug treatment. J Infect Dis 193:1070–1077PubMedCrossRef
25.
go back to reference Tanji T, Ip YT (2005) Regulators of the Toll and Imd pathways in the Drosophila innate immune response. Trends Immunol 26:193–198PubMedCrossRef Tanji T, Ip YT (2005) Regulators of the Toll and Imd pathways in the Drosophila innate immune response. Trends Immunol 26:193–198PubMedCrossRef
26.
go back to reference Bourgeois C, Majer O, Frohner IE, Lesiak-Markowicz I, Hildering KS, Glaser W, Stockinger S, Decker T, Akira S, Muller M, Kuchler K (2011) Conventional dendritic cells mount a type I IFN response against Candida spp. requiring novel phagosomal TLR7-mediated IFN-beta signaling. J Immunol 186:3104–3112PubMedCrossRef Bourgeois C, Majer O, Frohner IE, Lesiak-Markowicz I, Hildering KS, Glaser W, Stockinger S, Decker T, Akira S, Muller M, Kuchler K (2011) Conventional dendritic cells mount a type I IFN response against Candida spp. requiring novel phagosomal TLR7-mediated IFN-beta signaling. J Immunol 186:3104–3112PubMedCrossRef
27.
go back to reference Li J, Liu Y, Zhang X (2010) Murine coronavirus induces type I interferon in oligodendrocytes through recognition by RIG-I and MDA5. J Virol 84:6472–6482PubMedCrossRefPubMedCentral Li J, Liu Y, Zhang X (2010) Murine coronavirus induces type I interferon in oligodendrocytes through recognition by RIG-I and MDA5. J Virol 84:6472–6482PubMedCrossRefPubMedCentral
28.
go back to reference Meylan E, Tschopp J, Karin M (2006) Intracellular pattern recognition receptors in the host response. Nature 442:39–44PubMedCrossRef Meylan E, Tschopp J, Karin M (2006) Intracellular pattern recognition receptors in the host response. Nature 442:39–44PubMedCrossRef
29.
go back to reference Belgnaoui SM, Paz S, Samuel S, Goulet ML, Sun Q, Kikkert M, Iwai K, Dikic I, Hiscott J, Lin R (2012) Linear ubiquitination of NEMO negatively regulates the interferon antiviral response through disruption of the MAVS–TRAF3 complex. Cell Host Microbe 12:211–222PubMedCrossRef Belgnaoui SM, Paz S, Samuel S, Goulet ML, Sun Q, Kikkert M, Iwai K, Dikic I, Hiscott J, Lin R (2012) Linear ubiquitination of NEMO negatively regulates the interferon antiviral response through disruption of the MAVS–TRAF3 complex. Cell Host Microbe 12:211–222PubMedCrossRef
30.
go back to reference Liu X, Wang Q, Pan Y, Wang C (2015) Sensing and responding to cytosolic viruses invasions: an orchestra of kaleidoscopic ubiquitinations. Cytokine Growth Factor Rev 26:379–387PubMedCrossRef Liu X, Wang Q, Pan Y, Wang C (2015) Sensing and responding to cytosolic viruses invasions: an orchestra of kaleidoscopic ubiquitinations. Cytokine Growth Factor Rev 26:379–387PubMedCrossRef
31.
go back to reference Thanos D, Maniatis T (1995) Virus induction of human IFN beta gene expression requires the assembly of an enhanceosome. Cell 83:1091–1100PubMedCrossRef Thanos D, Maniatis T (1995) Virus induction of human IFN beta gene expression requires the assembly of an enhanceosome. Cell 83:1091–1100PubMedCrossRef
32.
go back to reference Shi P, Su Y, Li R, Liang Z, Dong S, Huang J (2019) PEDV nsp16 negatively regulates innate immunity to promote viral proliferation. Virus Res 265:57–66PubMedCrossRefPubMedCentral Shi P, Su Y, Li R, Liang Z, Dong S, Huang J (2019) PEDV nsp16 negatively regulates innate immunity to promote viral proliferation. Virus Res 265:57–66PubMedCrossRefPubMedCentral
33.
go back to reference Cheevers WP, Beyer JC, Hotzel I (2001) Plasmid DNA encoding caprine interferon gamma inhibits antibody response to caprine arthritis-encephalitis virus (CAEV) surface protein encoded by a co-administered plasmid expressing CAEV env and tat genes. Vaccine 19:3209–3215PubMedCrossRef Cheevers WP, Beyer JC, Hotzel I (2001) Plasmid DNA encoding caprine interferon gamma inhibits antibody response to caprine arthritis-encephalitis virus (CAEV) surface protein encoded by a co-administered plasmid expressing CAEV env and tat genes. Vaccine 19:3209–3215PubMedCrossRef
34.
go back to reference Hariya Y, Yokosawa N, Yonekura N, Kohama G, Fuji N (2013) Mumps virus can suppress the effective augmentation of HPC-induced apoptosis by IFN-gamma through disruption of IFN signaling in U937 cells. Microbiol Immunol 44:537–541CrossRef Hariya Y, Yokosawa N, Yonekura N, Kohama G, Fuji N (2013) Mumps virus can suppress the effective augmentation of HPC-induced apoptosis by IFN-gamma through disruption of IFN signaling in U937 cells. Microbiol Immunol 44:537–541CrossRef
35.
go back to reference Peng Q, Lan X, Wang C, Ren Y, Yue N, Wang J, Zhong B, Zhu Q (2017) Kobuvirus VP3 protein restricts the IFN-β-triggered signaling pathway by inhibiting STAT2–IRF9 and STAT2–STAT2 complex formation. Virology 507:161PubMedCrossRef Peng Q, Lan X, Wang C, Ren Y, Yue N, Wang J, Zhong B, Zhu Q (2017) Kobuvirus VP3 protein restricts the IFN-β-triggered signaling pathway by inhibiting STAT2–IRF9 and STAT2–STAT2 complex formation. Virology 507:161PubMedCrossRef
36.
go back to reference Murphy B, Hillman C, Castillo D, Vapniarsky N, Rowe J (2012) The presence or absence of the gamma-activated site determines IFN gamma-mediated transcriptional activation in CAEV promoters cloned from the mammary gland and joint synovium of a single CAEV-infected goat. Virus Res 163:537–545PubMedCrossRef Murphy B, Hillman C, Castillo D, Vapniarsky N, Rowe J (2012) The presence or absence of the gamma-activated site determines IFN gamma-mediated transcriptional activation in CAEV promoters cloned from the mammary gland and joint synovium of a single CAEV-infected goat. Virus Res 163:537–545PubMedCrossRef
37.
go back to reference White-Ziegler CA, Low DA (1992) Thermoregulation of the pap operon: evidence for the involvement of RimJ, the N-terminal acetylase of ribosomal protein S5. J Bacteriol 174:7003PubMedCrossRefPubMedCentral White-Ziegler CA, Low DA (1992) Thermoregulation of the pap operon: evidence for the involvement of RimJ, the N-terminal acetylase of ribosomal protein S5. J Bacteriol 174:7003PubMedCrossRefPubMedCentral
38.
go back to reference Turelli P, Guiguen F, Mornex JF, Vigne R, Querat G (1997) dUTPase-minus caprine arthritis-encephalitis virus is attenuated for pathogenesis and accumulates G-to-A substitutions. J Virol 71:4522–4530PubMedCrossRefPubMedCentral Turelli P, Guiguen F, Mornex JF, Vigne R, Querat G (1997) dUTPase-minus caprine arthritis-encephalitis virus is attenuated for pathogenesis and accumulates G-to-A substitutions. J Virol 71:4522–4530PubMedCrossRefPubMedCentral
39.
go back to reference Carruth LM, Hardwick JM, Morse BA, Clements JE (1994) Visna virus Tat protein: a potent transcription factor with both activator and suppressor domains. J Virol 68:6137–6146PubMedCrossRefPubMedCentral Carruth LM, Hardwick JM, Morse BA, Clements JE (1994) Visna virus Tat protein: a potent transcription factor with both activator and suppressor domains. J Virol 68:6137–6146PubMedCrossRefPubMedCentral
40.
go back to reference Li R, Chen C, He J, Zhang L, Zhang L, Guo Y, Zhang W, Tan K, Huang J (2019) E3 ligase ASB8 promotes porcine reproductive and respiratory syndrome virus proliferation by stabilizing the viral Nsp1alpha protein and degrading host IKKbeta kinase. Virology 532:55–68PubMedCrossRef Li R, Chen C, He J, Zhang L, Zhang L, Guo Y, Zhang W, Tan K, Huang J (2019) E3 ligase ASB8 promotes porcine reproductive and respiratory syndrome virus proliferation by stabilizing the viral Nsp1alpha protein and degrading host IKKbeta kinase. Virology 532:55–68PubMedCrossRef
41.
go back to reference Shi P, Su Y, Li R, Zhang L, Chen C, Zhang L, Faaberg K, Huang J (2018) Dual regulation of host TRAIP post-translation and nuclear/plasma distribution by porcine reproductive and respiratory syndrome virus non-structural protein 1alpha promotes viral proliferation. Front Immunol 9:3023PubMedCrossRefPubMedCentral Shi P, Su Y, Li R, Zhang L, Chen C, Zhang L, Faaberg K, Huang J (2018) Dual regulation of host TRAIP post-translation and nuclear/plasma distribution by porcine reproductive and respiratory syndrome virus non-structural protein 1alpha promotes viral proliferation. Front Immunol 9:3023PubMedCrossRefPubMedCentral
42.
go back to reference Pulido MR, Sáiz M (2017) Molecular mechanisms of foot-and-mouth disease virus targeting the host antiviral response. Front Cell Infect Microbiol 7:252CrossRef Pulido MR, Sáiz M (2017) Molecular mechanisms of foot-and-mouth disease virus targeting the host antiviral response. Front Cell Infect Microbiol 7:252CrossRef
43.
go back to reference Zhang HL, Ye HQ, Liu SQ, Deng CL, Li XD, Shi PY, Zhang B (2017) West Nile virus NS1 antagonizes interferon-Î2 production by targeting RIG-I and MDA5. J Virol 91:JVI.02396-16CrossRef Zhang HL, Ye HQ, Liu SQ, Deng CL, Li XD, Shi PY, Zhang B (2017) West Nile virus NS1 antagonizes interferon-Î2 production by targeting RIG-I and MDA5. J Virol 91:JVI.02396-16CrossRef
44.
go back to reference Okumura A, Alce T, Lubyova B, Ezelle H, Strebel K, Pitha PM (2008) HIV-1 accessory proteins VPR and Vif modulate antiviral response by targeting IRF-3 for degradation. Virology 373:85–97PubMedCrossRef Okumura A, Alce T, Lubyova B, Ezelle H, Strebel K, Pitha PM (2008) HIV-1 accessory proteins VPR and Vif modulate antiviral response by targeting IRF-3 for degradation. Virology 373:85–97PubMedCrossRef
45.
go back to reference Park SY, Waheed AA, Zhang ZR, Freed EO, Bonifacino JS (2014) HIV-1 Vpu accessory protein induces caspase-mediated cleavage of IRF3 transcription factor. J Biol Chem 289:35102–35110PubMedCrossRefPubMedCentral Park SY, Waheed AA, Zhang ZR, Freed EO, Bonifacino JS (2014) HIV-1 Vpu accessory protein induces caspase-mediated cleavage of IRF3 transcription factor. J Biol Chem 289:35102–35110PubMedCrossRefPubMedCentral
49.
go back to reference Harmache A, Bouyac M, Audoly G, Hieblot C, Peveri P, Vigne R, Suzan M (1995) The vif gene is essential for efficient replication of caprine arthritis encephalitis virus in goat synovial membrane cells and affects the late steps of the virus replication cycle. J Virol 69:3247–3257PubMedCrossRefPubMedCentral Harmache A, Bouyac M, Audoly G, Hieblot C, Peveri P, Vigne R, Suzan M (1995) The vif gene is essential for efficient replication of caprine arthritis encephalitis virus in goat synovial membrane cells and affects the late steps of the virus replication cycle. J Virol 69:3247–3257PubMedCrossRefPubMedCentral
50.
go back to reference Seroude V, Audoly G, Gluschankof P, Suzan M (2001) Tryptophan 95, an amino acid residue of the Caprine arthritis encephalitis virus vif protein which is essential for virus replication. Virology 280:232–242PubMedCrossRef Seroude V, Audoly G, Gluschankof P, Suzan M (2001) Tryptophan 95, an amino acid residue of the Caprine arthritis encephalitis virus vif protein which is essential for virus replication. Virology 280:232–242PubMedCrossRef
51.
go back to reference Sauter D, Kirchhoff F (2018) Multilayered and versatile inhibition of cellular antiviral factors by HIV and SIV accessory proteins. Cytokine Growth Factor Rev 40:3–12PubMedCrossRef Sauter D, Kirchhoff F (2018) Multilayered and versatile inhibition of cellular antiviral factors by HIV and SIV accessory proteins. Cytokine Growth Factor Rev 40:3–12PubMedCrossRef
Metadata
Title
The Vif protein of caprine arthritis encephalitis virus inhibits interferon production
Authors
Yali Fu
Dong Lu
Yanxin Su
Heng Chi
Jiashun Wang
Jinhai Huang
Publication date
01-07-2020
Publisher
Springer Vienna
Published in
Archives of Virology / Issue 7/2020
Print ISSN: 0304-8608
Electronic ISSN: 1432-8798
DOI
https://doi.org/10.1007/s00705-020-04637-z

Other articles of this Issue 7/2020

Archives of Virology 7/2020 Go to the issue