Skip to main content
Top
Published in: Archives of Virology 9/2011

01-09-2011 | Original Article

Identification and characterization of a neutralizing-epitope-containing spike protein fragment in turkey coronavirus

Authors: Yi-Ning Chen, Ching Ching Wu, Tsang Long Lin

Published in: Archives of Virology | Issue 9/2011

Login to get access

Abstract

Little is known about the neutralizing epitopes in turkey coronavirus (TCoV). The spike (S) protein gene of TCoV was divided into 10 fragments to identify the antigenic region containing neutralizing epitopes. The expression and antigenicity of S fragments was confirmed by immunofluorescence antibody (IFA) assay using an anti-histidine monoclonal antibody or anti-TCoV serum. Polyclonal antibodies raised against expressed S1 (amino acid position 1 to 573 from start codon of S protein), 4F/4R (482-678), 6F/6R (830-1071), or Mod4F/Epi4R (476-520) S fragment recognized native S1 protein and TCoV in the intestines of TCoV-infected turkey embryos. Anti-TCoV serum reacted with recombinant 4F/4R, 6F/6R, and Mod4F/Epi4R in a western blot. The results of a virus neutralization assay indicated that the carboxyl terminal region of the S1 protein (Mod4F/Epi4R) or the combined carboxyl terminal S1 and amino terminal S2 protein (4F/4R) possesses the neutralizing epitopes, while the S2 fragment (6F/6R) contains antigenic epitopes but not neutralizing epitopes.
Literature
1.
go back to reference Guy JS (2003) Turkey Coronavirus Enteritis. In: Saif YM, Barnes HJ, Glisson JR, Fadly AM, McDougald LR, Swayne DE (eds) Disease of poultry, 11th edn. Iowa State University Press, Ames, pp 300–307 Guy JS (2003) Turkey Coronavirus Enteritis. In: Saif YM, Barnes HJ, Glisson JR, Fadly AM, McDougald LR, Swayne DE (eds) Disease of poultry, 11th edn. Iowa State University Press, Ames, pp 300–307
2.
go back to reference Lin TL, Loa CC, Wu CC, Bryan T, Hooper T, Schrader D (2002) Antigenic relationship of turkey coronavirus isolates from different geographic locations in the United States. Avian Dis 46:466–472PubMedCrossRef Lin TL, Loa CC, Wu CC, Bryan T, Hooper T, Schrader D (2002) Antigenic relationship of turkey coronavirus isolates from different geographic locations in the United States. Avian Dis 46:466–472PubMedCrossRef
3.
go back to reference Dea S, Marsolais G, Beaubien J, Ruppanner R (1986) Coronaviruses associated with outbreaks of transmissible enteritis of turkeys in Quebec: hemagglutination properties and cell cultivation. Avian Dis 30:319–326PubMedCrossRef Dea S, Marsolais G, Beaubien J, Ruppanner R (1986) Coronaviruses associated with outbreaks of transmissible enteritis of turkeys in Quebec: hemagglutination properties and cell cultivation. Avian Dis 30:319–326PubMedCrossRef
4.
go back to reference Gomaa MH, Yoo D, Ojkic D, Barta JR (2008) Seroprevalence of turkey coronavirus in North American turkeys determined by a newly developed enzyme-linked immunosorbent assay based on recombinant antigen. Clin Vaccine Immunol 15:1839–1844PubMedCrossRef Gomaa MH, Yoo D, Ojkic D, Barta JR (2008) Seroprevalence of turkey coronavirus in North American turkeys determined by a newly developed enzyme-linked immunosorbent assay based on recombinant antigen. Clin Vaccine Immunol 15:1839–1844PubMedCrossRef
5.
go back to reference Cavanagh D, Mawditt K, Sharma M, Drury SE, Ainsworth HL, Britton P, Gough RE (2001) Detection of a coronavirus from turkey poults in Europe genetically related to infectious bronchitis virus of chickens. Avian Pathol 30:355–368PubMedCrossRef Cavanagh D, Mawditt K, Sharma M, Drury SE, Ainsworth HL, Britton P, Gough RE (2001) Detection of a coronavirus from turkey poults in Europe genetically related to infectious bronchitis virus of chickens. Avian Pathol 30:355–368PubMedCrossRef
6.
go back to reference Teixeira MC, Luvizotto MC, Ferrari HF, Mendes AR, da Silva SE, Cardoso TC (2007) Detection of turkey coronavirus in commercial turkey poults in Brazil. Avian Pathol 36:29–33PubMedCrossRef Teixeira MC, Luvizotto MC, Ferrari HF, Mendes AR, da Silva SE, Cardoso TC (2007) Detection of turkey coronavirus in commercial turkey poults in Brazil. Avian Pathol 36:29–33PubMedCrossRef
7.
go back to reference Gomaa MH, Yoo D, Ojkic D, Barta JR (2009) Virus shedding and serum antibody responses during experimental turkey coronavirus infections in young turkey poults. Avian Pathol 38:181–186PubMedCrossRef Gomaa MH, Yoo D, Ojkic D, Barta JR (2009) Virus shedding and serum antibody responses during experimental turkey coronavirus infections in young turkey poults. Avian Pathol 38:181–186PubMedCrossRef
8.
go back to reference Loa CC, Lin TL, Wu CC, Bryan T, Thacker HL, Hooper T, Schrader D (2001) Humoral and cellular immune responses in turkey poults infected with turkey coronavirus. Poult Sci 80:1416–1424PubMed Loa CC, Lin TL, Wu CC, Bryan T, Thacker HL, Hooper T, Schrader D (2001) Humoral and cellular immune responses in turkey poults infected with turkey coronavirus. Poult Sci 80:1416–1424PubMed
10.
go back to reference Woo PC, Lau SK, Huang Y, Yuen KY (2009) Coronavirus diversity, phylogeny and interspecies jumping. Exp Biol Med 234:1117–1127CrossRef Woo PC, Lau SK, Huang Y, Yuen KY (2009) Coronavirus diversity, phylogeny and interspecies jumping. Exp Biol Med 234:1117–1127CrossRef
11.
go back to reference Lin TL, Loa CC, Tsai SC, Wu CC, Bryan TA, Thacker HL, Hooper T, Schrader D (2002) Characterization of turkey coronavirus from turkey poults with acute enteritis. Vet Microbiol 84:179–186PubMedCrossRef Lin TL, Loa CC, Tsai SC, Wu CC, Bryan TA, Thacker HL, Hooper T, Schrader D (2002) Characterization of turkey coronavirus from turkey poults with acute enteritis. Vet Microbiol 84:179–186PubMedCrossRef
12.
go back to reference Ignjatovic J, Galli L (1994) The S1 glycoprotein but not the N or M proteins of avian infectious bronchitis virus induces protection in vaccine chickens. Arch Virol 138:117–134PubMedCrossRef Ignjatovic J, Galli L (1994) The S1 glycoprotein but not the N or M proteins of avian infectious bronchitis virus induces protection in vaccine chickens. Arch Virol 138:117–134PubMedCrossRef
13.
go back to reference Taguchi F, Kubo H (1995) Localization of neutralizing epitopes and receptor-binding site in murine coronavirus spike protein. Adv Exp Med Biol 380:359–365PubMed Taguchi F, Kubo H (1995) Localization of neutralizing epitopes and receptor-binding site in murine coronavirus spike protein. Adv Exp Med Biol 380:359–365PubMed
14.
go back to reference Daniel C, Talbot PJ (1990) Protection of mice from lethal coronavirus MHV-A59 infection by monoclonal affinity-purified spike glycoprotein. Adv Exp Med Bio 276:205–210 Daniel C, Talbot PJ (1990) Protection of mice from lethal coronavirus MHV-A59 infection by monoclonal affinity-purified spike glycoprotein. Adv Exp Med Bio 276:205–210
15.
go back to reference Du L, Zhao G, Chan CC, Sun S, Chen M, Liu Z, Guo H, He Y, Zhou Y, Zheng BJ, Jiang S (2009) Recombinant receptor-binding domain of SARS-CoV spike protein expressed in mammalian, insect and E. coli elicits potent neutralizing antibody and protective immunity. Virology 393:144–150PubMedCrossRef Du L, Zhao G, Chan CC, Sun S, Chen M, Liu Z, Guo H, He Y, Zhou Y, Zheng BJ, Jiang S (2009) Recombinant receptor-binding domain of SARS-CoV spike protein expressed in mammalian, insect and E. coli elicits potent neutralizing antibody and protective immunity. Virology 393:144–150PubMedCrossRef
16.
go back to reference Ishi K, Hasegawa H, Nagata N, Ami Y, Fukushi S, Taguchi F, Tsunetsugu-Yokota Y (2009) Neutralizing antibody against severe acute respiratory syndrome (SARS)-coronavirus spike is highly effective for the protection of mice in the murine SARS model. Microbiol Immunol 53:75–82CrossRef Ishi K, Hasegawa H, Nagata N, Ami Y, Fukushi S, Taguchi F, Tsunetsugu-Yokota Y (2009) Neutralizing antibody against severe acute respiratory syndrome (SARS)-coronavirus spike is highly effective for the protection of mice in the murine SARS model. Microbiol Immunol 53:75–82CrossRef
17.
go back to reference Johnson MA, Pooley C, Ignjatovic J, Tyack SG (2003) A recombinant fowl adenovirus expression the S1 gene of infectious bronchitis virus protects against challenge with infectious bronchitis virus. Vaccine 21:2730–2736PubMedCrossRef Johnson MA, Pooley C, Ignjatovic J, Tyack SG (2003) A recombinant fowl adenovirus expression the S1 gene of infectious bronchitis virus protects against challenge with infectious bronchitis virus. Vaccine 21:2730–2736PubMedCrossRef
18.
go back to reference Delmas B, Laude H (1990) Assembly of coronavirus spike protein into trimers and its role in epitope expression. J Virol 64:5367–5375PubMed Delmas B, Laude H (1990) Assembly of coronavirus spike protein into trimers and its role in epitope expression. J Virol 64:5367–5375PubMed
19.
go back to reference Spiga O, Bernini A, Ciutti A, Chiellini S, Menciassi N, Finetti F, Causarono V, Anselmi F, Prischi F, Niccolai N (2003) Molecular modeling of S1 and S2 subunits of SARS coronavirus spike glycoprotein. BBRC 310:78–83PubMed Spiga O, Bernini A, Ciutti A, Chiellini S, Menciassi N, Finetti F, Causarono V, Anselmi F, Prischi F, Niccolai N (2003) Molecular modeling of S1 and S2 subunits of SARS coronavirus spike glycoprotein. BBRC 310:78–83PubMed
20.
go back to reference Godet M, Grosclaude J, Delmas B, Laude H (1994) Major receptor-binding and neutralization determinants are located within the same domain of the transmissible gastroenteritis virus (coronavirus) spike protein. J Virol 68:8008–8016PubMed Godet M, Grosclaude J, Delmas B, Laude H (1994) Major receptor-binding and neutralization determinants are located within the same domain of the transmissible gastroenteritis virus (coronavirus) spike protein. J Virol 68:8008–8016PubMed
21.
go back to reference Tresnan DB, Holmes KV (1998) Feline aminopeptidase N is a receptor for all group I coronaviruses. Adv Exp Med Biol 440:69–75PubMedCrossRef Tresnan DB, Holmes KV (1998) Feline aminopeptidase N is a receptor for all group I coronaviruses. Adv Exp Med Biol 440:69–75PubMedCrossRef
22.
go back to reference Ohtsuka N, Taguchi F (1997) Mouse susceptibility to mouse hepatitis virus infection is linked to viral receptor genotype. J Virol 71:8860–8863PubMed Ohtsuka N, Taguchi F (1997) Mouse susceptibility to mouse hepatitis virus infection is linked to viral receptor genotype. J Virol 71:8860–8863PubMed
23.
go back to reference Zhao J, Wang W, Yuan Z, Jia R, Zhao Z, Xu X, Lv P, Zhang Y, Jiang C, Gao XM (2007) A study on antigenicity and receptor-binding ability of fragment 450–650 of the spike protein of SARS coronavirus. Virology 359:362–370PubMedCrossRef Zhao J, Wang W, Yuan Z, Jia R, Zhao Z, Xu X, Lv P, Zhang Y, Jiang C, Gao XM (2007) A study on antigenicity and receptor-binding ability of fragment 450–650 of the spike protein of SARS coronavirus. Virology 359:362–370PubMedCrossRef
24.
go back to reference Bosch BJ, van der Zee R, de Haan CA, Rottier PJ (2003) The coronavirus spike protein is a class I virus fusion protein: structural and functional characterization of the fusion core complex. J Virol 77:8801–8811PubMedCrossRef Bosch BJ, van der Zee R, de Haan CA, Rottier PJ (2003) The coronavirus spike protein is a class I virus fusion protein: structural and functional characterization of the fusion core complex. J Virol 77:8801–8811PubMedCrossRef
25.
go back to reference Madu IG, Roth SL, Belouzard S, Whittaker GR (2009) Characterization of highly conserved domain within the severe acute respiratory syndrome coronavirus spike protein S2 domain with characteristics of a viral fusion peptide. J Virol 83:7411–7421PubMedCrossRef Madu IG, Roth SL, Belouzard S, Whittaker GR (2009) Characterization of highly conserved domain within the severe acute respiratory syndrome coronavirus spike protein S2 domain with characteristics of a viral fusion peptide. J Virol 83:7411–7421PubMedCrossRef
26.
go back to reference He Y, Zhou Y, Wu H, Luo B, Chen J, Li W, Jiang S (2004) Identification of immunodominant sites on the spike protein of severe acute respiratory syndrome (SARS) coronavirus: implication for developing SARS diagnostics and vaccines. J Immunol 173:4050–4057PubMed He Y, Zhou Y, Wu H, Luo B, Chen J, Li W, Jiang S (2004) Identification of immunodominant sites on the spike protein of severe acute respiratory syndrome (SARS) coronavirus: implication for developing SARS diagnostics and vaccines. J Immunol 173:4050–4057PubMed
27.
go back to reference Hu H, Li L, Kao RY et al (2005) Screening and identification of linear B-cell epitopes and entry-blocking peptide of severe acute respiratory syndrome (SARS)-associated coronavirus using synthesized overlapping peptide library. J Comb Chem 7:648–656PubMedCrossRef Hu H, Li L, Kao RY et al (2005) Screening and identification of linear B-cell epitopes and entry-blocking peptide of severe acute respiratory syndrome (SARS)-associated coronavirus using synthesized overlapping peptide library. J Comb Chem 7:648–656PubMedCrossRef
28.
go back to reference Zhou T, Wang H (2004) An exposed domain in the severe acute respiratory syndrome coronavirus spike protein induces neutralizing antibodies. J Virol 78:7217–7226PubMedCrossRef Zhou T, Wang H (2004) An exposed domain in the severe acute respiratory syndrome coronavirus spike protein induces neutralizing antibodies. J Virol 78:7217–7226PubMedCrossRef
29.
go back to reference Ignjatovic J, Sapats S (2005) Identification of previously unknown antigenic epitopes on S and N proteins of avian infectious bronchitis virus. Arch Virol 150:1813–1831PubMedCrossRef Ignjatovic J, Sapats S (2005) Identification of previously unknown antigenic epitopes on S and N proteins of avian infectious bronchitis virus. Arch Virol 150:1813–1831PubMedCrossRef
30.
go back to reference Kubo H, Yamada YK, Taguchi F (1994) Localization of neutralizing epitopes and the receptor-binding site within the amino-terminal 330 amino acids of the murine coronavirus spike protein. J Virol 68:5403–5410PubMed Kubo H, Yamada YK, Taguchi F (1994) Localization of neutralizing epitopes and the receptor-binding site within the amino-terminal 330 amino acids of the murine coronavirus spike protein. J Virol 68:5403–5410PubMed
31.
go back to reference Moore KM, Jackwood MW, Hilt DA (1997) Identification of amino acids involved in a serotype and neutralization specific epitope within the s1 subunit of avian infectious bronchitis virus. Arch Virol 142:2249–2256PubMedCrossRef Moore KM, Jackwood MW, Hilt DA (1997) Identification of amino acids involved in a serotype and neutralization specific epitope within the s1 subunit of avian infectious bronchitis virus. Arch Virol 142:2249–2256PubMedCrossRef
32.
go back to reference Yoo D, Deregt D (2001) A single amino acid change within antigenic domain II of the spike protein of bovine coronavirus confers resistance to virus neutralization. Clin Diagn Lab Immunol 8:297–302PubMed Yoo D, Deregt D (2001) A single amino acid change within antigenic domain II of the spike protein of bovine coronavirus confers resistance to virus neutralization. Clin Diagn Lab Immunol 8:297–302PubMed
33.
go back to reference Keng CT, Zhang A, Shen S, Lip KM, Fielding BC, Tan TH, Chou CF, Loh CB, Wang S, Fu J, Yang X, Lim SG, Hong W, Tan YJ (2005) Amino acids 1055 to 1192 in the S2 region of severe acute respiratory syndrome coronavirus S protein induce neutralizing antibodies: implications for the development of vaccines and antiviral agents. J Virol 79:3289–3296PubMedCrossRef Keng CT, Zhang A, Shen S, Lip KM, Fielding BC, Tan TH, Chou CF, Loh CB, Wang S, Fu J, Yang X, Lim SG, Hong W, Tan YJ (2005) Amino acids 1055 to 1192 in the S2 region of severe acute respiratory syndrome coronavirus S protein induce neutralizing antibodies: implications for the development of vaccines and antiviral agents. J Virol 79:3289–3296PubMedCrossRef
34.
go back to reference Zhang H, Wang G, Li J, Nie Y, Shi X, Lian G, Wang W, Yin X, Zhao Y, Qu X, Ding M, Deng H (2004) Identification of an antigenic determinant on the S2 domain of the severe acute respiratory syndrome coronavirus spike glycoprotein capable of inducing neutralizing antibodies. J Virol 78:6938–6945PubMedCrossRef Zhang H, Wang G, Li J, Nie Y, Shi X, Lian G, Wang W, Yin X, Zhao Y, Qu X, Ding M, Deng H (2004) Identification of an antigenic determinant on the S2 domain of the severe acute respiratory syndrome coronavirus spike glycoprotein capable of inducing neutralizing antibodies. J Virol 78:6938–6945PubMedCrossRef
35.
go back to reference Sun D, Feng L, Shi H, Chen J, Cui X, Chen H, Liu S, Tong Y, Wang Y, Tong G (2008) Identification of two novel B cell epitopes on porcine epidemic diarrhea virus spike protein. Vet Microbiol 131:73–81PubMedCrossRef Sun D, Feng L, Shi H, Chen J, Cui X, Chen H, Liu S, Tong Y, Wang Y, Tong G (2008) Identification of two novel B cell epitopes on porcine epidemic diarrhea virus spike protein. Vet Microbiol 131:73–81PubMedCrossRef
36.
go back to reference Yu MW, Scott JK, Fournier A, Talbot PJ (2000) Characterization of murine coronavirus neutralization epitopes with phage-displayed peptides. Virology 271:182–196PubMedCrossRef Yu MW, Scott JK, Fournier A, Talbot PJ (2000) Characterization of murine coronavirus neutralization epitopes with phage-displayed peptides. Virology 271:182–196PubMedCrossRef
37.
go back to reference Zhong L, Haynes L, Struble EB, Tamin A, Virata-Theimer ML, Zhang P (2009) Antibody-mediated synergy and interference in the neutralization of SARS-CoV at an epitope cluster on the spike protein. Biochem Biophys Res Commun 390:1056–1060PubMedCrossRef Zhong L, Haynes L, Struble EB, Tamin A, Virata-Theimer ML, Zhang P (2009) Antibody-mediated synergy and interference in the neutralization of SARS-CoV at an epitope cluster on the spike protein. Biochem Biophys Res Commun 390:1056–1060PubMedCrossRef
38.
go back to reference Kida K, Hohdatsu T, Fuji K, Koyama H (1999) Selection of antigenic variants of the S glycoprotein of feline infectious peritonitis virus and analysis of antigenic sites involved in neutralization. J Vet Med Sci 61:935–938PubMedCrossRef Kida K, Hohdatsu T, Fuji K, Koyama H (1999) Selection of antigenic variants of the S glycoprotein of feline infectious peritonitis virus and analysis of antigenic sites involved in neutralization. J Vet Med Sci 61:935–938PubMedCrossRef
39.
go back to reference Mituki YY, Ohnishi K, Takgi H, Oshima M, Yamamoto T, Mizukoshi F, Terahara K, Kobayashi K, Yamamoto N, Yamaoka S, Tsunetsugu-Yokota Y (2008) A single amino acid substitution in the S1 and S2spike protein domains determines the neutralization escape phenotype of SARS-CoV. Microbes Infect 10:908–915CrossRef Mituki YY, Ohnishi K, Takgi H, Oshima M, Yamamoto T, Mizukoshi F, Terahara K, Kobayashi K, Yamamoto N, Yamaoka S, Tsunetsugu-Yokota Y (2008) A single amino acid substitution in the S1 and S2spike protein domains determines the neutralization escape phenotype of SARS-CoV. Microbes Infect 10:908–915CrossRef
40.
go back to reference Niesters HG, Bleumink-Pluym NM, Osterhaus AD, Horzinek MC, van der Zeijst BA (1987) Epitopes on the peplomer protein of infectious bronchitis virus strain M41 as defined by monoclonal antibodies. Virology 161:511–519PubMedCrossRef Niesters HG, Bleumink-Pluym NM, Osterhaus AD, Horzinek MC, van der Zeijst BA (1987) Epitopes on the peplomer protein of infectious bronchitis virus strain M41 as defined by monoclonal antibodies. Virology 161:511–519PubMedCrossRef
41.
go back to reference Lu L, Manopo I, Leung BP, Chng HH, Ling AE, Chee LL, Ooi EE, Chan S-W, Kwang J (2004) Immunological characterization of the spike protein of the severe acute respiratory syndrome coronavirus. J Clin Microbiol 42:1570–1576PubMedCrossRef Lu L, Manopo I, Leung BP, Chng HH, Ling AE, Chee LL, Ooi EE, Chan S-W, Kwang J (2004) Immunological characterization of the spike protein of the severe acute respiratory syndrome coronavirus. J Clin Microbiol 42:1570–1576PubMedCrossRef
42.
go back to reference Chen H, Schifferli DM (2003) Construction, characterization, and immunogenicity of an attenuated Salmonella enterica serovar typhimurium pgtE vaccine expressing fimbriae with integrated viral epitopes from the spiC promoter. Infect Immun 71:4664–4673PubMedCrossRef Chen H, Schifferli DM (2003) Construction, characterization, and immunogenicity of an attenuated Salmonella enterica serovar typhimurium pgtE vaccine expressing fimbriae with integrated viral epitopes from the spiC promoter. Infect Immun 71:4664–4673PubMedCrossRef
43.
go back to reference Callebaut P, Enjuanes L, Pensaert M (1996) An adenovirus recombinant expressing fimbriae with integrated viral epitopes from the spic promoter. Infect Immun 71:309–313 Callebaut P, Enjuanes L, Pensaert M (1996) An adenovirus recombinant expressing fimbriae with integrated viral epitopes from the spic promoter. Infect Immun 71:309–313
44.
go back to reference Wesseling JG, Godeke GJ, Schijns VE, Prevec L, Graham FL, Horzinek MC, Rottier PJ (1993) Mouse hepatitis virus spike and nucleocapsid proteins expressed by adenovirus vectors protect mice against a lethal infection. J Gen Virol 74:2061–2069PubMedCrossRef Wesseling JG, Godeke GJ, Schijns VE, Prevec L, Graham FL, Horzinek MC, Rottier PJ (1993) Mouse hepatitis virus spike and nucleocapsid proteins expressed by adenovirus vectors protect mice against a lethal infection. J Gen Virol 74:2061–2069PubMedCrossRef
45.
go back to reference Zakhartchouk AN, Viswanathan S, Mahony JB, Gauldie J, Babiuk LA (2005) Severe acute respiratory syndrome coronavirus nucleocapsid protein expressed by an adenovirus vector is phosphorylated and immunogenic in mice. J Gen Virol 86:211–215PubMedCrossRef Zakhartchouk AN, Viswanathan S, Mahony JB, Gauldie J, Babiuk LA (2005) Severe acute respiratory syndrome coronavirus nucleocapsid protein expressed by an adenovirus vector is phosphorylated and immunogenic in mice. J Gen Virol 86:211–215PubMedCrossRef
46.
go back to reference Hebben M, Duguesne V, Cronier J, Rossi B, Aubert A (2004) Modified vaccinia virus Ankara as a vaccine against feline coronavirus: immunogenicity and efficacy. J Feline Med Surg 6:111–118PubMedCrossRef Hebben M, Duguesne V, Cronier J, Rossi B, Aubert A (2004) Modified vaccinia virus Ankara as a vaccine against feline coronavirus: immunogenicity and efficacy. J Feline Med Surg 6:111–118PubMedCrossRef
47.
go back to reference Wang X, Schnitzlein WM, Tripathy DN, Girshick T, Khan MI (2002) Construction and immunogenicity studies of recombinant fowl poxvirus containing the S1 gene of Massachusetts 41 strain of infectious bronchitis virus. Avian Dis 46:831–838PubMedCrossRef Wang X, Schnitzlein WM, Tripathy DN, Girshick T, Khan MI (2002) Construction and immunogenicity studies of recombinant fowl poxvirus containing the S1 gene of Massachusetts 41 strain of infectious bronchitis virus. Avian Dis 46:831–838PubMedCrossRef
48.
go back to reference Breslin JJ, Smith LG, Guy JS (2001) Baculovirus expression of turkey coronavirus nucleocapsid protein. Avian Dis 45:136–143PubMedCrossRef Breslin JJ, Smith LG, Guy JS (2001) Baculovirus expression of turkey coronavirus nucleocapsid protein. Avian Dis 45:136–143PubMedCrossRef
49.
go back to reference Guy JS, Barnes HJ, Smith LG, Breslin J (1997) Antigenic characterization of a turkey coronavirus identified in poult enteritis- and mortality syndrome-affected turkeys. Avian Dis 41:583–590PubMedCrossRef Guy JS, Barnes HJ, Smith LG, Breslin J (1997) Antigenic characterization of a turkey coronavirus identified in poult enteritis- and mortality syndrome-affected turkeys. Avian Dis 41:583–590PubMedCrossRef
50.
go back to reference Kolaskar AS, Tongaonkar PC (1990) A semi-empirical method for prediction of antigenic determinants on protein antigens. FEBS Lett 276:172–174PubMedCrossRef Kolaskar AS, Tongaonkar PC (1990) A semi-empirical method for prediction of antigenic determinants on protein antigens. FEBS Lett 276:172–174PubMedCrossRef
51.
go back to reference Rice P, Longden I, Bleasby A (2000) EMBOSS: the European Molecular Biology Open Software Suite. Trends Genet 16:276–277PubMedCrossRef Rice P, Longden I, Bleasby A (2000) EMBOSS: the European Molecular Biology Open Software Suite. Trends Genet 16:276–277PubMedCrossRef
52.
go back to reference Loa CC, Wu CC, Lin TL (2006) Comparison of 3′-end encoding regions of turkey coronavirus isolates from Indiana, North Carolina, and Minnesota with chicken infectious bronchitis coronavirus strains. Intervirology 49:230–238PubMedCrossRef Loa CC, Wu CC, Lin TL (2006) Comparison of 3′-end encoding regions of turkey coronavirus isolates from Indiana, North Carolina, and Minnesota with chicken infectious bronchitis coronavirus strains. Intervirology 49:230–238PubMedCrossRef
53.
go back to reference Jackwood MW, Boynton TO, Hilt DA, McKinley ET, Kissinger JC, Paterson AH, Robertson J, Lemke C, McCall AW, Williams SM, Jackwood JW, Byrd LA (2009) Emergence of a group 3 coronavirus through recombination. Virology 398:98–108CrossRef Jackwood MW, Boynton TO, Hilt DA, McKinley ET, Kissinger JC, Paterson AH, Robertson J, Lemke C, McCall AW, Williams SM, Jackwood JW, Byrd LA (2009) Emergence of a group 3 coronavirus through recombination. Virology 398:98–108CrossRef
54.
go back to reference Lenstra JA, Kusters JG, Koch G, van der Zeijst BAM (1989) Antigenicity of the peplomer protein of infectious bronchitis virus. Mol Immunol 25:7–15CrossRef Lenstra JA, Kusters JG, Koch G, van der Zeijst BAM (1989) Antigenicity of the peplomer protein of infectious bronchitis virus. Mol Immunol 25:7–15CrossRef
55.
go back to reference Tan B, Wang H, Shang L, Yang T (2009) Coadministration of chicken GM-CSF with a DNA vaccine expressing infectious bronchitis virus (IBV) S1 glycoprotein enhances the specific immune response and protects against IBV infection. Arch Virol 154:1117–1124PubMedCrossRef Tan B, Wang H, Shang L, Yang T (2009) Coadministration of chicken GM-CSF with a DNA vaccine expressing infectious bronchitis virus (IBV) S1 glycoprotein enhances the specific immune response and protects against IBV infection. Arch Virol 154:1117–1124PubMedCrossRef
56.
go back to reference Yang ZY, Kong WP, Huang Y, Roberts A, Murphy BR, Subbarao K, Nabel GJ (2004) A DNA vaccine induces SARS coronavirus neutralization and protective immunity in mice. Nature 428:561–564PubMedCrossRef Yang ZY, Kong WP, Huang Y, Roberts A, Murphy BR, Subbarao K, Nabel GJ (2004) A DNA vaccine induces SARS coronavirus neutralization and protective immunity in mice. Nature 428:561–564PubMedCrossRef
57.
go back to reference Woo PC, Lau SK, Tsoi HW, Chen ZW, Wong BH, Zhang L, Chan JKH, Wong L, He W, Ma C, Chan K, Ho DD, Yuen K (2005) SARS coronavirus spike polypeptide DNA vaccine priming with recombinant spike polypeptide from Escherichia coli as booster induces high titer of neutralizing antibody against SARS coronavirus. Vaccine 23:4959–4968PubMedCrossRef Woo PC, Lau SK, Tsoi HW, Chen ZW, Wong BH, Zhang L, Chan JKH, Wong L, He W, Ma C, Chan K, Ho DD, Yuen K (2005) SARS coronavirus spike polypeptide DNA vaccine priming with recombinant spike polypeptide from Escherichia coli as booster induces high titer of neutralizing antibody against SARS coronavirus. Vaccine 23:4959–4968PubMedCrossRef
58.
go back to reference Laddy DJ, Weiner DB (2006) From plasmids to protection: a review of DNA vaccines against infectious diseases. Int Rev Immunol 25:99–123PubMedCrossRef Laddy DJ, Weiner DB (2006) From plasmids to protection: a review of DNA vaccines against infectious diseases. Int Rev Immunol 25:99–123PubMedCrossRef
59.
go back to reference Coban C, Koyama S, Takeshita F, Akira S, Ishii KJ (2008) Molecular and cellular mechanisms of DNA vaccines. Hum Vaccines 4:453–456CrossRef Coban C, Koyama S, Takeshita F, Akira S, Ishii KJ (2008) Molecular and cellular mechanisms of DNA vaccines. Hum Vaccines 4:453–456CrossRef
Metadata
Title
Identification and characterization of a neutralizing-epitope-containing spike protein fragment in turkey coronavirus
Authors
Yi-Ning Chen
Ching Ching Wu
Tsang Long Lin
Publication date
01-09-2011
Publisher
Springer Vienna
Published in
Archives of Virology / Issue 9/2011
Print ISSN: 0304-8608
Electronic ISSN: 1432-8798
DOI
https://doi.org/10.1007/s00705-011-1020-1

Other articles of this Issue 9/2011

Archives of Virology 9/2011 Go to the issue