Skip to main content
Top
Published in: Journal of Neural Transmission 7/2016

01-07-2016 | Translational Neurosciences - Review Article

Our first decade of experience in deep brain stimulation of the brainstem: elucidating the mechanism of action of stimulation of the ventrolateral pontine tegmentum

Authors: Paolo Mazzone, Osvaldo Vilela Filho, Fabio Viselli, Angelo Insola, Stefano Sposato, Flora Vitale, Eugenio Scarnati

Published in: Journal of Neural Transmission | Issue 7/2016

Login to get access

Abstract

The region of the pedunculopontine tegmental nucleus (PPTg) has been proposed as a novel target for deep brain stimulation (DBS) to treat levodopa resistant symptoms in motor disorders. Recently, the anatomical organization of the brainstem has been revised and four new distinct structures have been represented in the ventrolateral pontine tegmentum area in which the PPTg was previously identified. Given this anatomical reassessment, and considering the increasing of our experience, in this paper we revisit the value of DBS applied to that area. The reappraisal of clinical outcomes in the light of this revisitation may also help to understand the consequences of DBS applied to structures located in the ventrolateral pontine tegmentum, apart from the PPTg. The implantation of 39 leads in 32 patients suffering from Parkinson’s disease (PD, 27 patients) and progressive supranuclear palsy (PSP, four patients) allowed us to reach two major conclusions. The first is that the results of the advancement of our technique in brainstem DBS matches the revision of brainstem anatomy. The second is that anatomical and functional aspects of our findings may help to explain how DBS acts when applied in the brainstem and to identify the differences when it is applied either in the brainstem or in the subthalamic nucleus. Finally, in this paper we discuss how the loss of neurons in brainstem nuclei occurring in both PD and PSP, the results of intraoperative recording of somatosensory evoked potentials, and the improvement of postural control during DBS point toward the potential role of ascending sensory pathways and/or other structures in mediating the effects of DBS applied in the ventrolateral pontine tegmentum region.
Literature
go back to reference Alam M, Schwabe K, Krauss JK (2011) The pedunculopontine nucleus area: critical evaluation of interspecies differences relevant for its use as a target for deep brain stimulation. Brain 134:11–23CrossRefPubMed Alam M, Schwabe K, Krauss JK (2011) The pedunculopontine nucleus area: critical evaluation of interspecies differences relevant for its use as a target for deep brain stimulation. Brain 134:11–23CrossRefPubMed
go back to reference Albin RL, Young AB, Penney JB (1995) The functional anatomy of disorders of the basal ganglia. Trends Neurosci 18:63–64CrossRefPubMed Albin RL, Young AB, Penney JB (1995) The functional anatomy of disorders of the basal ganglia. Trends Neurosci 18:63–64CrossRefPubMed
go back to reference Aravamuthan BR, Angelaki DE (2012) Vestibular responses in the macaque pedunculopontine nucleus and central mesencephalic reticular formation. Neuroscience 223:183–199CrossRefPubMedPubMedCentral Aravamuthan BR, Angelaki DE (2012) Vestibular responses in the macaque pedunculopontine nucleus and central mesencephalic reticular formation. Neuroscience 223:183–199CrossRefPubMedPubMedCentral
go back to reference Aravamuthan BR, Muthusamy KA, Stein JF, Aziz TZ, Johansen-Berg H (2007) Topography of cortical and subcortical connections of the human pedunculopontine and subthalamic nuclei. Neuroimage 37:694–705CrossRefPubMed Aravamuthan BR, Muthusamy KA, Stein JF, Aziz TZ, Johansen-Berg H (2007) Topography of cortical and subcortical connections of the human pedunculopontine and subthalamic nuclei. Neuroimage 37:694–705CrossRefPubMed
go back to reference Aravamuthan BR, Stein JF, Aziz TZ (2008) The anatomy and localization of the pedunculopontine nucleus determined using probabilistic diffusion tractography [corrected]. Br J Neurosurg 22(Suppl 1):S25–S32CrossRefPubMed Aravamuthan BR, Stein JF, Aziz TZ (2008) The anatomy and localization of the pedunculopontine nucleus determined using probabilistic diffusion tractography [corrected]. Br J Neurosurg 22(Suppl 1):S25–S32CrossRefPubMed
go back to reference Bartolic A, Pirtosek Z, Rozman J, Ribaric S (2005) Postural stability of Parkinson’s disease patients is improved by decreasing rigidity. Eur J Neurol 12:156–159CrossRefPubMed Bartolic A, Pirtosek Z, Rozman J, Ribaric S (2005) Postural stability of Parkinson’s disease patients is improved by decreasing rigidity. Eur J Neurol 12:156–159CrossRefPubMed
go back to reference Bejjani BP, Gervais D, Arnulf I, Papadopoulos S, Demeret S, Bonnet AM, Cornu P, Damier P, Agid Y (2000) Axial parkinsonian symptoms can be improved: the role of levodopa and bilateral subthalamic stimulation. J Neurol Neurosurg Psychiatry 68:595–600CrossRefPubMedPubMedCentral Bejjani BP, Gervais D, Arnulf I, Papadopoulos S, Demeret S, Bonnet AM, Cornu P, Damier P, Agid Y (2000) Axial parkinsonian symptoms can be improved: the role of levodopa and bilateral subthalamic stimulation. J Neurol Neurosurg Psychiatry 68:595–600CrossRefPubMedPubMedCentral
go back to reference Bergman H, Wichmann T, Karmon B, DeLong MR (1994) The primate subthalamic nucleus. II. Neuronal activity in the MPTP model of parkinsonism. J Neurophysiol 72:507–520PubMed Bergman H, Wichmann T, Karmon B, DeLong MR (1994) The primate subthalamic nucleus. II. Neuronal activity in the MPTP model of parkinsonism. J Neurophysiol 72:507–520PubMed
go back to reference Beuter A, Hernandez R, Rigal R, Modolo J, Blanchet PJ (2008) Postural sway and effect of levodopa in early Parkinson’s disease. Can J Neurol Sci 35:65–68CrossRefPubMed Beuter A, Hernandez R, Rigal R, Modolo J, Blanchet PJ (2008) Postural sway and effect of levodopa in early Parkinson’s disease. Can J Neurol Sci 35:65–68CrossRefPubMed
go back to reference Blaszczyk JW, Orawiec R (2011) Assessment of postural control in patients with Parkinson’s disease: sway ratio analysis. Hum Mov Sci 30:396–404CrossRefPubMed Blaszczyk JW, Orawiec R (2011) Assessment of postural control in patients with Parkinson’s disease: sway ratio analysis. Hum Mov Sci 30:396–404CrossRefPubMed
go back to reference Bonnet AM, Loria Y, Saint-Hilaire MH, Lhermitte F, Agid Y (1987) Does long-term aggravation of Parkinson’s disease result from nondopaminergic lesions? Neurology 37:1539–1542CrossRefPubMed Bonnet AM, Loria Y, Saint-Hilaire MH, Lhermitte F, Agid Y (1987) Does long-term aggravation of Parkinson’s disease result from nondopaminergic lesions? Neurology 37:1539–1542CrossRefPubMed
go back to reference Braak H, Del Tredici K (2008) Cortico-basal ganglia-cortical circuitry in Parkinson’s disease reconsidered. Exp Neurol 212:226–229CrossRefPubMed Braak H, Del Tredici K (2008) Cortico-basal ganglia-cortical circuitry in Parkinson’s disease reconsidered. Exp Neurol 212:226–229CrossRefPubMed
go back to reference Braak H, Ghebremedhin E, Rub U, Bratzke H, Del TK (2004) Stages in the development of Parkinson’s disease-related pathology. Cell Tissue Res 318:121–134CrossRefPubMed Braak H, Ghebremedhin E, Rub U, Bratzke H, Del TK (2004) Stages in the development of Parkinson’s disease-related pathology. Cell Tissue Res 318:121–134CrossRefPubMed
go back to reference Caliandro P, Insola A, Scarnati E, Padua L, Russo G, Granieri E, Mazzone P (2011) Effects of unilateral pedunculopontine stimulation on electromyographic activation patterns during gait in individual patients with Parkinson’s disease. J Neural Transm 118:1477–1486CrossRefPubMed Caliandro P, Insola A, Scarnati E, Padua L, Russo G, Granieri E, Mazzone P (2011) Effects of unilateral pedunculopontine stimulation on electromyographic activation patterns during gait in individual patients with Parkinson’s disease. J Neural Transm 118:1477–1486CrossRefPubMed
go back to reference Dautan D, Huerta-Ocampo I, Witten IB, Deisseroth K, Bolam JP, Gerdjikov T, Mena-Segovia J (2014) A major external source of cholinergic innervation of the striatum and nucleus accumbens originates in the brainstem. J Neurosci 34:4509–4518CrossRefPubMedPubMedCentral Dautan D, Huerta-Ocampo I, Witten IB, Deisseroth K, Bolam JP, Gerdjikov T, Mena-Segovia J (2014) A major external source of cholinergic innervation of the striatum and nucleus accumbens originates in the brainstem. J Neurosci 34:4509–4518CrossRefPubMedPubMedCentral
go back to reference DeLong MR (1990) Primate models of movement disorders of basal ganglia origin. Trends Neurosci 13:281–285CrossRefPubMed DeLong MR (1990) Primate models of movement disorders of basal ganglia origin. Trends Neurosci 13:281–285CrossRefPubMed
go back to reference Deniau JM, Degos B, Bosch C, Maurice N (2010) Deep brain stimulation mechanisms: beyond the concept of local functional inhibition. Eur J Neurosci 32:1080–1091CrossRefPubMed Deniau JM, Degos B, Bosch C, Maurice N (2010) Deep brain stimulation mechanisms: beyond the concept of local functional inhibition. Eur J Neurosci 32:1080–1091CrossRefPubMed
go back to reference Edley SM, Graybiel AM (1983) The afferent and efferent connections of the feline nucleus tegmenti pedunculopontinus, pars compacta. J Comp Neurol 217:187–215CrossRefPubMed Edley SM, Graybiel AM (1983) The afferent and efferent connections of the feline nucleus tegmenti pedunculopontinus, pars compacta. J Comp Neurol 217:187–215CrossRefPubMed
go back to reference Ferraye MU, Debu B, Fraix V, Goetz L, Ardouin C, Yelnik J, Henry-Lagrange C, Seigneuret E, Piallat B, Krack P, Le Bas JF, Benabid AL, Chabardes S, Pollak P (2010) Effects of pedunculopontine nucleus area stimulation on gait disorders in Parkinson’s disease. Brain 133:205–214CrossRefPubMed Ferraye MU, Debu B, Fraix V, Goetz L, Ardouin C, Yelnik J, Henry-Lagrange C, Seigneuret E, Piallat B, Krack P, Le Bas JF, Benabid AL, Chabardes S, Pollak P (2010) Effects of pedunculopontine nucleus area stimulation on gait disorders in Parkinson’s disease. Brain 133:205–214CrossRefPubMed
go back to reference Futami T, Takakusaki K, Kitai ST (1995) Glutamatergic and cholinergic inputs from the pedunculopontine tegmental nucleus to dopamine neurons in the substantia nigra pars compacta. Neurosci Res 21:331–342CrossRefPubMed Futami T, Takakusaki K, Kitai ST (1995) Glutamatergic and cholinergic inputs from the pedunculopontine tegmental nucleus to dopamine neurons in the substantia nigra pars compacta. Neurosci Res 21:331–342CrossRefPubMed
go back to reference Garcia-Rill E (2015) Waking and the reticular activating system in health and disease. Elsevier-Academic Press, Amsterdam Garcia-Rill E (2015) Waking and the reticular activating system in health and disease. Elsevier-Academic Press, Amsterdam
go back to reference Garcia-Rill E, Skinner RD, Miyazato H, Homma Y (2001) Pedunculopontine stimulation induces prolonged activation of pontine reticular neurons. Neuroscience 104:455–465CrossRefPubMed Garcia-Rill E, Skinner RD, Miyazato H, Homma Y (2001) Pedunculopontine stimulation induces prolonged activation of pontine reticular neurons. Neuroscience 104:455–465CrossRefPubMed
go back to reference Grofova I, Keane S (1991) Descending brainstem projections of the pedunculopontine tegmental nucleus in the rat. Anat Embryol (Berl) 184:275–290CrossRef Grofova I, Keane S (1991) Descending brainstem projections of the pedunculopontine tegmental nucleus in the rat. Anat Embryol (Berl) 184:275–290CrossRef
go back to reference Hazrati LN, Parent A (1992) Projection from the deep cerebellar nuclei to the pedunculopontine nucleus in the squirrel monkey. Brain Res 585:267–271CrossRefPubMed Hazrati LN, Parent A (1992) Projection from the deep cerebellar nuclei to the pedunculopontine nucleus in the squirrel monkey. Brain Res 585:267–271CrossRefPubMed
go back to reference Hirsch EC, Graybiel AM, Duyckaerts C, Javoy-Agid F (1987) Neuronal loss in the pedunculopontine tegmental nucleus in Parkinson disease and in progressive supranuclear palsy. Proc Natl Acad Sci USA 84:5976–5980CrossRefPubMedPubMedCentral Hirsch EC, Graybiel AM, Duyckaerts C, Javoy-Agid F (1987) Neuronal loss in the pedunculopontine tegmental nucleus in Parkinson disease and in progressive supranuclear palsy. Proc Natl Acad Sci USA 84:5976–5980CrossRefPubMedPubMedCentral
go back to reference Hong S, Hikosaka O (2014) Pedunculopontine tegmental nucleus neurons provide reward, sensorimotor, and alerting signals to midbrain dopamine neurons. Neuroscience 282C:139–155CrossRef Hong S, Hikosaka O (2014) Pedunculopontine tegmental nucleus neurons provide reward, sensorimotor, and alerting signals to midbrain dopamine neurons. Neuroscience 282C:139–155CrossRef
go back to reference Insola A, Valeriani M, Mazzone P (2012) Targeting the pedunculopontine nucleus: a new neurophysiological method based on somatosensory evoked potentials to calculate the distance of the deep brain stimulation lead from the Obex. Neurosurgery 71:96–103PubMed Insola A, Valeriani M, Mazzone P (2012) Targeting the pedunculopontine nucleus: a new neurophysiological method based on somatosensory evoked potentials to calculate the distance of the deep brain stimulation lead from the Obex. Neurosurgery 71:96–103PubMed
go back to reference Insola A, Padua L, Mazzone P, Scarnati E, Valeriani M (2014) Low and high-frequency somatosensory evoked potentials recorded from the human pedunculopontine nucleus. Clin Neurophysiol 125:1859–1869CrossRefPubMed Insola A, Padua L, Mazzone P, Scarnati E, Valeriani M (2014) Low and high-frequency somatosensory evoked potentials recorded from the human pedunculopontine nucleus. Clin Neurophysiol 125:1859–1869CrossRefPubMed
go back to reference Jackson A, Crossman AR (1983) Nucleus tegmenti pedunculopontinus: efferent connections with special reference to the basal ganglia, studied in the rat by anterograde and retrograde transport of horseradish peroxidase. Neuroscience 10:725–765CrossRefPubMed Jackson A, Crossman AR (1983) Nucleus tegmenti pedunculopontinus: efferent connections with special reference to the basal ganglia, studied in the rat by anterograde and retrograde transport of horseradish peroxidase. Neuroscience 10:725–765CrossRefPubMed
go back to reference Jellinger K (1988) The pedunculopontine nucleus in Parkinson’s disease, progressive supranuclear palsy and Alzheimer’s disease. J Neurol Neurosurg Psychiatry 51:540–543CrossRefPubMedPubMedCentral Jellinger K (1988) The pedunculopontine nucleus in Parkinson’s disease, progressive supranuclear palsy and Alzheimer’s disease. J Neurol Neurosurg Psychiatry 51:540–543CrossRefPubMedPubMedCentral
go back to reference Jenkinson N, Nandi D, Miall RC, Stein JF, Aziz TZ (2004) Pedunculopontine nucleus stimulation improves akinesia in a Parkinsonian monkey. Neuroreport 15:2621–2624CrossRefPubMed Jenkinson N, Nandi D, Miall RC, Stein JF, Aziz TZ (2004) Pedunculopontine nucleus stimulation improves akinesia in a Parkinsonian monkey. Neuroreport 15:2621–2624CrossRefPubMed
go back to reference Karachi C, Andre A, Bertasi E, Bardinet E, Lehericy S, Bernard FA (2012) Functional parcellation of the lateral mesencephalus. J Neurosci 32:9396–9401CrossRefPubMed Karachi C, Andre A, Bertasi E, Bardinet E, Lehericy S, Bernard FA (2012) Functional parcellation of the lateral mesencephalus. J Neurosci 32:9396–9401CrossRefPubMed
go back to reference Khan S, Javed S, Mooney L, White P, Plaha P, Whone A, Gill SS (2012) Clinical outcomes from bilateral versus unilateral stimulation of the pedunculopontine nucleus with and without concomitant caudal zona incerta region stimulation in Parkinson’s disease. Br J Neurosurg 26:722–725CrossRefPubMed Khan S, Javed S, Mooney L, White P, Plaha P, Whone A, Gill SS (2012) Clinical outcomes from bilateral versus unilateral stimulation of the pedunculopontine nucleus with and without concomitant caudal zona incerta region stimulation in Parkinson’s disease. Br J Neurosurg 26:722–725CrossRefPubMed
go back to reference Kobayashi Y, Isa T (2002) Sensory-motor gating and cognitive control by the brainstem cholinergic system. Neural Netw 15:731–741CrossRefPubMed Kobayashi Y, Isa T (2002) Sensory-motor gating and cognitive control by the brainstem cholinergic system. Neural Netw 15:731–741CrossRefPubMed
go back to reference Krauthamer GM, Grunwerg BS, Krein H (1995) Putative cholinergic neurons of the pedunculopontine tegmental nucleus projecting to the superior colliculus consist of sensory responsive and unresponsive populations which are functionally distinct from other mesopontine neurons. Neuroscience 69:507–517CrossRefPubMed Krauthamer GM, Grunwerg BS, Krein H (1995) Putative cholinergic neurons of the pedunculopontine tegmental nucleus projecting to the superior colliculus consist of sensory responsive and unresponsive populations which are functionally distinct from other mesopontine neurons. Neuroscience 69:507–517CrossRefPubMed
go back to reference Lau B, Welter ML, Belaid H, Fernandez VS, Bardinet E, Grabli D, Karachi C (2015) The integrative role of the pedunculopontine nucleus in human gait. Brain 138:1284–1296CrossRefPubMed Lau B, Welter ML, Belaid H, Fernandez VS, Bardinet E, Grabli D, Karachi C (2015) The integrative role of the pedunculopontine nucleus in human gait. Brain 138:1284–1296CrossRefPubMed
go back to reference Lavoie B, Parent A (1994a) Pedunculopontine nucleus in the squirrel monkey: projections to the basal ganglia as revealed by anterograde tract-tracing methods. J Comp Neurol 344:210–231CrossRefPubMed Lavoie B, Parent A (1994a) Pedunculopontine nucleus in the squirrel monkey: projections to the basal ganglia as revealed by anterograde tract-tracing methods. J Comp Neurol 344:210–231CrossRefPubMed
go back to reference Lavoie B, Parent A (1994b) Pedunculopontine nucleus in the squirrel monkey: cholinergic and glutamatergic projections to the substantia nigra. J Comp Neurol 344:232–241CrossRefPubMed Lavoie B, Parent A (1994b) Pedunculopontine nucleus in the squirrel monkey: cholinergic and glutamatergic projections to the substantia nigra. J Comp Neurol 344:232–241CrossRefPubMed
go back to reference Lee HJ, Rye DB, Hallanger AE, Levey AI, Wainer BH (1988) Cholinergic vs. noncholinergic efferents from the mesopontine tegmentum to the extrapyramidal motor system nuclei. J Comp Neurol 275:469–492CrossRefPubMed Lee HJ, Rye DB, Hallanger AE, Levey AI, Wainer BH (1988) Cholinergic vs. noncholinergic efferents from the mesopontine tegmentum to the extrapyramidal motor system nuclei. J Comp Neurol 275:469–492CrossRefPubMed
go back to reference Mancini M, Carlson-Kuhta P, Zampieri C, Nutt JG, Chiari L, Horak FB (2012) Postural sway as a marker of progression in Parkinson’s disease: a pilot longitudinal study. Gait Posture 36:471–476CrossRefPubMedPubMedCentral Mancini M, Carlson-Kuhta P, Zampieri C, Nutt JG, Chiari L, Horak FB (2012) Postural sway as a marker of progression in Parkinson’s disease: a pilot longitudinal study. Gait Posture 36:471–476CrossRefPubMedPubMedCentral
go back to reference Mazzone P, Stanzione P, Lozano A, Sposato S, Scarnati E, Stefani A (2005a) Brain stimulation and movement disorders: Where are we going? In: Meglio M (ed) Proceedings of the 14th meeting of the World Society for Stereotactic and Functional Neurosurgery (WSSFN) Monduzzi, Bologna, Italy Mazzone P, Stanzione P, Lozano A, Sposato S, Scarnati E, Stefani A (2005a) Brain stimulation and movement disorders: Where are we going? In: Meglio M (ed) Proceedings of the 14th meeting of the World Society for Stereotactic and Functional Neurosurgery (WSSFN) Monduzzi, Bologna, Italy
go back to reference Mazzone P, Lozano A, Stanzione P, Galati S, Scarnati E, Peppe A, Stefani A (2005b) Implantation of human pedunculopontine nucleus: a safe and clinically relevant target in Parkinson’s disease. Neuroreport 16:1877–1881CrossRefPubMed Mazzone P, Lozano A, Stanzione P, Galati S, Scarnati E, Peppe A, Stefani A (2005b) Implantation of human pedunculopontine nucleus: a safe and clinically relevant target in Parkinson’s disease. Neuroreport 16:1877–1881CrossRefPubMed
go back to reference Mazzone P, Sposato S, Insola A, Dilazzaro V, Scarnati E (2008) Stereotactic surgery of nucleus tegmenti pedunculopontine. Br J Neurosurg 22(Suppl 1):S33–S40CrossRefPubMed Mazzone P, Sposato S, Insola A, Dilazzaro V, Scarnati E (2008) Stereotactic surgery of nucleus tegmenti pedunculopontine. Br J Neurosurg 22(Suppl 1):S33–S40CrossRefPubMed
go back to reference Mazzone P, Insola A, Sposato S, Scarnati E (2009) The deep brain stimulation of the pedunculopontine tegmental nucleus. Neuromodulation 12:191–204CrossRefPubMed Mazzone P, Insola A, Sposato S, Scarnati E (2009) The deep brain stimulation of the pedunculopontine tegmental nucleus. Neuromodulation 12:191–204CrossRefPubMed
go back to reference Mazzone P, Sposato S, Insola A, Scarnati E (2011) The deep brain stimulation of the pedunculopontine tegmental nucleus: towards a new stereotactic neurosurgery. J Neural Transm 118:1431–1451CrossRefPubMed Mazzone P, Sposato S, Insola A, Scarnati E (2011) The deep brain stimulation of the pedunculopontine tegmental nucleus: towards a new stereotactic neurosurgery. J Neural Transm 118:1431–1451CrossRefPubMed
go back to reference Mazzone P, Padua L, Falisi G, Insola A, Florio TM, Scarnati E (2012) Unilateral deep brain stimulation of the pedunculopontine tegmental nucleus improves oromotor movements in Parkinson’s disease. Brain Stimul 5:634–641CrossRefPubMed Mazzone P, Padua L, Falisi G, Insola A, Florio TM, Scarnati E (2012) Unilateral deep brain stimulation of the pedunculopontine tegmental nucleus improves oromotor movements in Parkinson’s disease. Brain Stimul 5:634–641CrossRefPubMed
go back to reference Mazzone P, Sposato S, Insola A, Scarnati E (2013) The clinical effects of deep brain stimulation of the pedunculopontine tegmental nucleus in movement disorders may not be related to the anatomical target, leads location, and setup of electrical stimulation. Neurosurgery 73:894–906CrossRefPubMed Mazzone P, Sposato S, Insola A, Scarnati E (2013) The clinical effects of deep brain stimulation of the pedunculopontine tegmental nucleus in movement disorders may not be related to the anatomical target, leads location, and setup of electrical stimulation. Neurosurgery 73:894–906CrossRefPubMed
go back to reference Mazzone P, Paoloni M, Mangone M, Santilli V, Insola A, Fini M, Scarnati E (2014) Unilateral deep brain stimulation of the pedunculopontine tegmental nucleus in idiopathic Parkinson’s disease: effects on gait initiation and performance. Gait Posture 40:357–362CrossRefPubMed Mazzone P, Paoloni M, Mangone M, Santilli V, Insola A, Fini M, Scarnati E (2014) Unilateral deep brain stimulation of the pedunculopontine tegmental nucleus in idiopathic Parkinson’s disease: effects on gait initiation and performance. Gait Posture 40:357–362CrossRefPubMed
go back to reference Moro E, Hamani C, Poon YY, Al-Khairallah T, Dostrovsky JO, Hutchison WD, Lozano AM (2010) Unilateral pedunculopontine stimulation improves falls in Parkinson’s disease. Brain 133:215–224CrossRefPubMed Moro E, Hamani C, Poon YY, Al-Khairallah T, Dostrovsky JO, Hutchison WD, Lozano AM (2010) Unilateral pedunculopontine stimulation improves falls in Parkinson’s disease. Brain 133:215–224CrossRefPubMed
go back to reference Muller ML, Albin RL, Kotagal V, Koeppe RA, Scott PJ, Frey KA, Bohnen NI (2013) Thalamic cholinergic innervation and postural sensory integration function in Parkinson’s disease. Brain 136:3282–3289CrossRefPubMedPubMedCentral Muller ML, Albin RL, Kotagal V, Koeppe RA, Scott PJ, Frey KA, Bohnen NI (2013) Thalamic cholinergic innervation and postural sensory integration function in Parkinson’s disease. Brain 136:3282–3289CrossRefPubMedPubMedCentral
go back to reference Muthusamy KA, Aravamuthan BR, Kringelbach ML, Jenkinson N, Voets NL, Johansen-Berg H, Stein JF, Aziz TZ (2007) Connectivity of the human pedunculopontine nucleus region and diffusion tensor imaging in surgical targeting. J Neurosurg 107:814–820CrossRefPubMed Muthusamy KA, Aravamuthan BR, Kringelbach ML, Jenkinson N, Voets NL, Johansen-Berg H, Stein JF, Aziz TZ (2007) Connectivity of the human pedunculopontine nucleus region and diffusion tensor imaging in surgical targeting. J Neurosurg 107:814–820CrossRefPubMed
go back to reference Okada K, Kobayashi Y (2013) Reward prediction-related increases and decreases in tonic neuronal activity of the pedunculopontine tegmental nucleus. Front Integr Neurosci 7:36CrossRefPubMedPubMedCentral Okada K, Kobayashi Y (2013) Reward prediction-related increases and decreases in tonic neuronal activity of the pedunculopontine tegmental nucleus. Front Integr Neurosci 7:36CrossRefPubMedPubMedCentral
go back to reference Okada K, Kobayashi Y (2014) Fixational saccade-related activity of pedunculopontine tegmental nucleus neurons in behaving monkeys. Eur J Neurosci 40:2641–2651CrossRefPubMed Okada K, Kobayashi Y (2014) Fixational saccade-related activity of pedunculopontine tegmental nucleus neurons in behaving monkeys. Eur J Neurosci 40:2641–2651CrossRefPubMed
go back to reference Olszewski J, Baxter D (1954) Cytoarchitecture of the human brainstem. Lippincott, Philadelphia Olszewski J, Baxter D (1954) Cytoarchitecture of the human brainstem. Lippincott, Philadelphia
go back to reference Pahapill PA, Lozano AM (2000) The pedunculopontine nucleus and Parkinson’s disease. Brain 123:1767–1783CrossRefPubMed Pahapill PA, Lozano AM (2000) The pedunculopontine nucleus and Parkinson’s disease. Brain 123:1767–1783CrossRefPubMed
go back to reference Panyakaew P, Anan C, Bhidayasiri R (2015) Visual deprivation elicits subclinical postural inflexibilities in early Parkinson’s disease. J Neurol Sci 349:214–219CrossRefPubMed Panyakaew P, Anan C, Bhidayasiri R (2015) Visual deprivation elicits subclinical postural inflexibilities in early Parkinson’s disease. J Neurol Sci 349:214–219CrossRefPubMed
go back to reference Paxinos G, Huang XF (1995) Atlas of the human brainstem. Academic Press, San Diego Paxinos G, Huang XF (1995) Atlas of the human brainstem. Academic Press, San Diego
go back to reference Paxinos G, Huang X, Sengul G, Watson (2012) Organization of brainstem nuclei. The human nervous system. Elsevier Academic Press, Amsterdam, pp 260–327CrossRef Paxinos G, Huang X, Sengul G, Watson (2012) Organization of brainstem nuclei. The human nervous system. Elsevier Academic Press, Amsterdam, pp 260–327CrossRef
go back to reference Pierantozzi M, Palmieri MG, Galati S, Stanzione P, Peppe A, Tropepi D, Brusa L, Pisani A, Moschella V, Marciani MG, Mazzone P, Stefani A (2008) Pedunculopontine nucleus deep brain stimulation changes spinal cord excitability in Parkinson’s disease patients. J Neural Transm 115:731–735CrossRefPubMed Pierantozzi M, Palmieri MG, Galati S, Stanzione P, Peppe A, Tropepi D, Brusa L, Pisani A, Moschella V, Marciani MG, Mazzone P, Stefani A (2008) Pedunculopontine nucleus deep brain stimulation changes spinal cord excitability in Parkinson’s disease patients. J Neural Transm 115:731–735CrossRefPubMed
go back to reference Plaha P, Gill SS (2005) Bilateral deep brain stimulation of the pedunculopontine nucleus for Parkinson’s disease. NeuroReport 16:1883–1887CrossRefPubMed Plaha P, Gill SS (2005) Bilateral deep brain stimulation of the pedunculopontine nucleus for Parkinson’s disease. NeuroReport 16:1883–1887CrossRefPubMed
go back to reference Reese NB, Garcia-Rill E, Skinner RD (1995a) Auditory input to the pedunculopontine nucleus: II. Unit responses. Brain Res Bull 37:265–273CrossRefPubMed Reese NB, Garcia-Rill E, Skinner RD (1995a) Auditory input to the pedunculopontine nucleus: II. Unit responses. Brain Res Bull 37:265–273CrossRefPubMed
go back to reference Reese NB, Garcia-Rill E, Skinner RD (1995b) Auditory input to the pedunculopontine nucleus: I. Evoked potentials. Brain Res Bull 37:257–264CrossRefPubMed Reese NB, Garcia-Rill E, Skinner RD (1995b) Auditory input to the pedunculopontine nucleus: I. Evoked potentials. Brain Res Bull 37:257–264CrossRefPubMed
go back to reference Reese NB, Garcia-Rill E, Skinner RD (1995c) The pedunculopontine nucleus–auditory input, arousal and pathophysiology. Prog Neurobiol 47:105–133CrossRefPubMed Reese NB, Garcia-Rill E, Skinner RD (1995c) The pedunculopontine nucleus–auditory input, arousal and pathophysiology. Prog Neurobiol 47:105–133CrossRefPubMed
go back to reference Rinne JO, Ma SY, Lee MS, Collan Y, Roytta M (2008) Loss of cholinergic neurons in the pedunculopontine nucleus in Parkinson’s disease is related to disability of the patients. Parkinsonism Relat Disord 14:553–557CrossRefPubMed Rinne JO, Ma SY, Lee MS, Collan Y, Roytta M (2008) Loss of cholinergic neurons in the pedunculopontine nucleus in Parkinson’s disease is related to disability of the patients. Parkinsonism Relat Disord 14:553–557CrossRefPubMed
go back to reference Rocchi L, Chiari L, Horak FB (2002) Effects of deep brain stimulation and levodopa on postural sway in Parkinson’s disease. J Neurol Neurosurg Psychiatry 73:267–274CrossRefPubMedPubMedCentral Rocchi L, Chiari L, Horak FB (2002) Effects of deep brain stimulation and levodopa on postural sway in Parkinson’s disease. J Neurol Neurosurg Psychiatry 73:267–274CrossRefPubMedPubMedCentral
go back to reference Ruggiero DA, Anwar M, Golanov EV, Reis DJ (1997) The pedunculopontine tegmental nucleus issues collaterals to the fastigial nucleus and rostral ventrolateral reticular nucleus in the rat. Brain Res 760:272–276CrossRefPubMed Ruggiero DA, Anwar M, Golanov EV, Reis DJ (1997) The pedunculopontine tegmental nucleus issues collaterals to the fastigial nucleus and rostral ventrolateral reticular nucleus in the rat. Brain Res 760:272–276CrossRefPubMed
go back to reference Rye DB, Saper CB, Lee HJ, Wainer BH (1987) Pedunculopontine tegmental nucleus of the rat: cytoarchitecture, cytochemistry, and some extrapyramidal connections of the mesopontine tegmentum. J Comp Neurol 259:483–528CrossRefPubMed Rye DB, Saper CB, Lee HJ, Wainer BH (1987) Pedunculopontine tegmental nucleus of the rat: cytoarchitecture, cytochemistry, and some extrapyramidal connections of the mesopontine tegmentum. J Comp Neurol 259:483–528CrossRefPubMed
go back to reference Rye DB, Lee HJ, Saper CB, Wainer BH (1988) Medullary and spinal efferents of the pedunculopontine tegmental nucleus and adjacent mesopontine tegmentum in the rat. J Comp Neurol 269:315–341CrossRefPubMed Rye DB, Lee HJ, Saper CB, Wainer BH (1988) Medullary and spinal efferents of the pedunculopontine tegmental nucleus and adjacent mesopontine tegmentum in the rat. J Comp Neurol 269:315–341CrossRefPubMed
go back to reference Scarnati E, Florio T, Capozzo A, Confalone G, Mazzone P (2011) The pedunculopontine tegmental nucleus: implications for a role in modulating spinal cord motoneuron excitability. J Neural Transm 118:1409–1421CrossRefPubMed Scarnati E, Florio T, Capozzo A, Confalone G, Mazzone P (2011) The pedunculopontine tegmental nucleus: implications for a role in modulating spinal cord motoneuron excitability. J Neural Transm 118:1409–1421CrossRefPubMed
go back to reference Schaltenbrand G, Wahren W (1977) Atlas for stereotaxy of the human brain. Thieme, New York Schaltenbrand G, Wahren W (1977) Atlas for stereotaxy of the human brain. Thieme, New York
go back to reference Schrader C, Seehaus F, Capelle HH, Windhagen A, Windhagen H, Krauss JK (2013) Effects of pedunculopontine area and pallidal DBS on gait ignition in Parkinson’s disease. Brain Stimul Schrader C, Seehaus F, Capelle HH, Windhagen A, Windhagen H, Krauss JK (2013) Effects of pedunculopontine area and pallidal DBS on gait ignition in Parkinson’s disease. Brain Stimul
go back to reference Sherman D, Fuller PM, Marcus J, Yu J, Zhang P, Chamberlin NL, Saper CB, Lu J (2015) Anatomical location of the mesencephalic locomotor region and its possible role in locomotion, posture, cataplexy, and parkinsonism. Front Neurol 6:140CrossRefPubMedPubMedCentral Sherman D, Fuller PM, Marcus J, Yu J, Zhang P, Chamberlin NL, Saper CB, Lu J (2015) Anatomical location of the mesencephalic locomotor region and its possible role in locomotion, posture, cataplexy, and parkinsonism. Front Neurol 6:140CrossRefPubMedPubMedCentral
go back to reference Skinner RD, Garcia-Rill E (1984) The mesencephalic locomotor region (MLR) in the rat. Brain Res 323:385–389CrossRefPubMed Skinner RD, Garcia-Rill E (1984) The mesencephalic locomotor region (MLR) in the rat. Brain Res 323:385–389CrossRefPubMed
go back to reference Skinner RD, Kinjo N, Henderson V, Garcia-Rill E (1990) Locomotor projections from the pedunculopontine nucleus to the spinal cord. Neuroreport 1:183–186CrossRefPubMed Skinner RD, Kinjo N, Henderson V, Garcia-Rill E (1990) Locomotor projections from the pedunculopontine nucleus to the spinal cord. Neuroreport 1:183–186CrossRefPubMed
go back to reference Stefani A, Lozano AM, Peppe A, Stanzione P, Galati S, Tropepi D, Pierantozzi M, Brusa L, Scarnati E, Mazzone P (2007) Bilateral deep brain stimulation of the pedunculopontine and subthalamic nuclei in severe Parkinson’s disease. Brain 130:1596–1607CrossRefPubMed Stefani A, Lozano AM, Peppe A, Stanzione P, Galati S, Tropepi D, Pierantozzi M, Brusa L, Scarnati E, Mazzone P (2007) Bilateral deep brain stimulation of the pedunculopontine and subthalamic nuclei in severe Parkinson’s disease. Brain 130:1596–1607CrossRefPubMed
go back to reference Sugimoto T, Hattori T (1984) Organization and efferent projections of nucleus tegmenti pedunculopontinus pars compacta with special reference to its cholinergic aspects. Neuroscience 11:931–946CrossRefPubMed Sugimoto T, Hattori T (1984) Organization and efferent projections of nucleus tegmenti pedunculopontinus pars compacta with special reference to its cholinergic aspects. Neuroscience 11:931–946CrossRefPubMed
go back to reference Sutton AC, O’Connor KA, Pilitsis JG, Shin DS (2015) Stimulation of the subthalamic nucleus engages the cerebellum for motor function in parkinsonian rats. Brain Struct Funct 220:3595–3609CrossRefPubMed Sutton AC, O’Connor KA, Pilitsis JG, Shin DS (2015) Stimulation of the subthalamic nucleus engages the cerebellum for motor function in parkinsonian rats. Brain Struct Funct 220:3595–3609CrossRefPubMed
go back to reference Takakusaki K, Habaguchi T, Ohtinata-Sugimoto J, Saitoh K, Sakamoto T (2003) Basal ganglia efferents to the brainstem centers controlling postural muscle tone and locomotion: a new concept for understanding motor disorders in basal ganglia dysfunction. Neuroscience 119:293–308CrossRefPubMed Takakusaki K, Habaguchi T, Ohtinata-Sugimoto J, Saitoh K, Sakamoto T (2003) Basal ganglia efferents to the brainstem centers controlling postural muscle tone and locomotion: a new concept for understanding motor disorders in basal ganglia dysfunction. Neuroscience 119:293–308CrossRefPubMed
go back to reference Takakusaki K, Habaguchi T, Saitoh K, Kohyama J (2004) Changes in the excitability of hindlimb motoneurons during muscular atonia induced by stimulating the pedunculopontine tegmental nucleus in cats. Neuroscience 124:467–480CrossRefPubMed Takakusaki K, Habaguchi T, Saitoh K, Kohyama J (2004) Changes in the excitability of hindlimb motoneurons during muscular atonia induced by stimulating the pedunculopontine tegmental nucleus in cats. Neuroscience 124:467–480CrossRefPubMed
go back to reference Talairach J, David M, Tornoux P, Korredor H, Kvasina T (1957) Atlas d’anatomie stereotaxique des noyaux gris centraux. Masson, Paris Talairach J, David M, Tornoux P, Korredor H, Kvasina T (1957) Atlas d’anatomie stereotaxique des noyaux gris centraux. Masson, Paris
go back to reference Tattersall TL, Stratton PG, Coyne TJ, Cook R, Silberstein P, Silburn PA, Windels F, Sah P (2014) Imagined gait modulates neuronal network dynamics in the human pedunculopontine nucleus. Nat Neurosci 17:449–454CrossRefPubMed Tattersall TL, Stratton PG, Coyne TJ, Cook R, Silberstein P, Silburn PA, Windels F, Sah P (2014) Imagined gait modulates neuronal network dynamics in the human pedunculopontine nucleus. Nat Neurosci 17:449–454CrossRefPubMed
go back to reference Thevathasan W, Coyne TJ, Hyam JA, Kerr G, Jenkinson N, Aziz TZ, Silburn PA (2011) Pedunculopontine nucleus stimulation improves gait freezing in Parkinson disease. Neurosurgery 69:1248–1253CrossRefPubMed Thevathasan W, Coyne TJ, Hyam JA, Kerr G, Jenkinson N, Aziz TZ, Silburn PA (2011) Pedunculopontine nucleus stimulation improves gait freezing in Parkinson disease. Neurosurgery 69:1248–1253CrossRefPubMed
go back to reference Thevathasan W, Cole MH, Graepel CL, Hyam JA, Jenkinson N, Brittain JS, Coyne TJ, Silburn PA, Aziz TZ, Kerr G, Brown P (2012) A spatiotemporal analysis of gait freezing and the impact of pedunculopontine nucleus stimulation. Brain 135:1446–1454CrossRefPubMedPubMedCentral Thevathasan W, Cole MH, Graepel CL, Hyam JA, Jenkinson N, Brittain JS, Coyne TJ, Silburn PA, Aziz TZ, Kerr G, Brown P (2012) A spatiotemporal analysis of gait freezing and the impact of pedunculopontine nucleus stimulation. Brain 135:1446–1454CrossRefPubMedPubMedCentral
go back to reference Tjernstrom F, Bjorklund M, Malmstrom EM (2014) Romberg ratio in quiet stance posturography-test to retest reliability. Gait Posture Tjernstrom F, Bjorklund M, Malmstrom EM (2014) Romberg ratio in quiet stance posturography-test to retest reliability. Gait Posture
go back to reference Vitale F, Mattei C, Capozzo A, Pietrantoni I, Mazzone P, Scarnati E (2016) Cholinergic excitation from the pedunculopontine tegmental nucleus to the dentate nucleus in the rat. Neuroscience 317:12–22CrossRefPubMed Vitale F, Mattei C, Capozzo A, Pietrantoni I, Mazzone P, Scarnati E (2016) Cholinergic excitation from the pedunculopontine tegmental nucleus to the dentate nucleus in the rat. Neuroscience 317:12–22CrossRefPubMed
go back to reference Wang HL, Morales M (2009) Pedunculopontine and laterodorsal tegmental nuclei contain distinct populations of cholinergic, glutamatergic and GABAergic neurons in the rat. Eur J Neurosci 29:340–358CrossRefPubMed Wang HL, Morales M (2009) Pedunculopontine and laterodorsal tegmental nuclei contain distinct populations of cholinergic, glutamatergic and GABAergic neurons in the rat. Eur J Neurosci 29:340–358CrossRefPubMed
go back to reference Weinberger M, Hamani C, Hutchison WD, Moro E, Lozano AM, Dostrovsky JO (2008) Pedunculopontine nucleus microelectrode recordings in movement disorder patients. Exp Brain Res 188:165–174CrossRefPubMed Weinberger M, Hamani C, Hutchison WD, Moro E, Lozano AM, Dostrovsky JO (2008) Pedunculopontine nucleus microelectrode recordings in movement disorder patients. Exp Brain Res 188:165–174CrossRefPubMed
go back to reference Welter ML, Demain A, Ewenczyk C, Czernecki V, Lau B, El HA, Belaid H, Yelnik J, Francois C, Bardinet E, Karachi C, Grabli D (2015) PPNa-DBS for gait and balance disorders in Parkinson’s disease: a double-blind, randomised study. J Neurol Welter ML, Demain A, Ewenczyk C, Czernecki V, Lau B, El HA, Belaid H, Yelnik J, Francois C, Bardinet E, Karachi C, Grabli D (2015) PPNa-DBS for gait and balance disorders in Parkinson’s disease: a double-blind, randomised study. J Neurol
go back to reference Wichmann T, DeLong MR (2001) Basal ganglia circuits in movement and movement disorders. In: Kultas-Ilinsky K, Ilinsky IA (eds) Basal ganglia and thalamus in health and movement disorders. KluverAcademic/Plenum Publishers, New York, pp 11–25CrossRef Wichmann T, DeLong MR (2001) Basal ganglia circuits in movement and movement disorders. In: Kultas-Ilinsky K, Ilinsky IA (eds) Basal ganglia and thalamus in health and movement disorders. KluverAcademic/Plenum Publishers, New York, pp 11–25CrossRef
go back to reference Wichmann T, Bergman H, DeLong MR (1994) The primate subthalamic nucleus. III. Changes in motor behavior and neuronal activity in the internal pallidum induced by subthalamic inactivation in the MPTP model of parkinsonism. J Neurophysiol 72:521–530PubMed Wichmann T, Bergman H, DeLong MR (1994) The primate subthalamic nucleus. III. Changes in motor behavior and neuronal activity in the internal pallidum induced by subthalamic inactivation in the MPTP model of parkinsonism. J Neurophysiol 72:521–530PubMed
go back to reference Winn P (2008) Experimental studies of pedunculopontine functions: are they motor, sensory or integrative? Parkinsonism Relat Disord 14(Suppl 2):S194–S198CrossRefPubMed Winn P (2008) Experimental studies of pedunculopontine functions: are they motor, sensory or integrative? Parkinsonism Relat Disord 14(Suppl 2):S194–S198CrossRefPubMed
go back to reference Young RF, Tronnier V, Rinaldi PC (1992) Chronic stimulation of the Kolliker-Fuse nucleus region for relief of intractable pain in humans. J Neurosurg 76:979–985CrossRefPubMed Young RF, Tronnier V, Rinaldi PC (1992) Chronic stimulation of the Kolliker-Fuse nucleus region for relief of intractable pain in humans. J Neurosurg 76:979–985CrossRefPubMed
go back to reference Zrinzo L, Zrinzo LV, Tisch S, Limousin PD, Yousry TA, Afshar F, Hariz MI (2008) Stereotactic localization of the human pedunculopontine nucleus: atlas-based coordinates and validation of a magnetic resonance imaging protocol for direct localization. Brain 131:1588–1598CrossRefPubMed Zrinzo L, Zrinzo LV, Tisch S, Limousin PD, Yousry TA, Afshar F, Hariz MI (2008) Stereotactic localization of the human pedunculopontine nucleus: atlas-based coordinates and validation of a magnetic resonance imaging protocol for direct localization. Brain 131:1588–1598CrossRefPubMed
go back to reference Zweig RM, Jankel WR, Hedreen JC, Mayeux R, Price DL (1989) The pedunculopontine nucleus in Parkinson’s disease. Ann Neurol 26:41–46CrossRefPubMed Zweig RM, Jankel WR, Hedreen JC, Mayeux R, Price DL (1989) The pedunculopontine nucleus in Parkinson’s disease. Ann Neurol 26:41–46CrossRefPubMed
Metadata
Title
Our first decade of experience in deep brain stimulation of the brainstem: elucidating the mechanism of action of stimulation of the ventrolateral pontine tegmentum
Authors
Paolo Mazzone
Osvaldo Vilela Filho
Fabio Viselli
Angelo Insola
Stefano Sposato
Flora Vitale
Eugenio Scarnati
Publication date
01-07-2016
Publisher
Springer Vienna
Published in
Journal of Neural Transmission / Issue 7/2016
Print ISSN: 0300-9564
Electronic ISSN: 1435-1463
DOI
https://doi.org/10.1007/s00702-016-1518-5

Other articles of this Issue 7/2016

Journal of Neural Transmission 7/2016 Go to the issue

Neurology and Preclinical Neurological Studies - Original Article

The primate pedunculopontine nucleus region: towards a dual role in locomotion and waking state

Neurology and Preclinical Neurological Studies - Review Article

DBS in Tourette syndrome: where are we standing now?

Neurology and Preclinical Neurological Studies - Review Article

Reward functions of the basal ganglia