Skip to main content
Top
Published in: Acta Neurochirurgica 2/2018

Open Access 01-02-2018 | Original Article - Functional

Borders of STN determined by MRI versus the electrophysiological STN. A comparison using intraoperative CT

Authors: Sander Bus, Pepijn van den Munckhof, Maarten Bot, Gian Pal, Bichun Ouyang, Sepehr Sani, Leo Verhagen Metman

Published in: Acta Neurochirurgica | Issue 2/2018

Login to get access

Abstract

Background

It is unclear which magnetic resonance imaging (MRI) sequence most accurately corresponds with the electrophysiological subthalamic nucleus (STN) obtained during microelectrode recording (MER, MER-STN). CT/MRI fusion allows for comparison between MER-STN and the STN visualized on preoperative MRI (MRI-STN).

Objective

To compare dorsal and ventral STN borders as seen on 3-Tesla T2-weighted (T2) and susceptibility weighted images (SWI) with electrophysiological STN borders in deep brain stimulation (DBS) for Parkinson’s disease (PD).

Methods

Intraoperative CT (iCT) was performed after each MER track. iCT images were merged with preoperative images using planning software. Dorsal and ventral borders of each track were determined and compared to MRI-STN borders. Differences between borders were calculated.

Results

A total of 125 tracks were evaluated in 45 patients. MER-STN started and ended more dorsally than respective dorsal and ventral MRI-STN borders. For dorsal borders, differences were 1.9 ± 1.4 mm (T2) and 2.5 ± 1.8 mm (SWI). For ventral borders, differences were 1.9 ± 1.6 mm (T2) and 2.1 ± 1.8 mm (SWI).

Conclusions

Discrepancies were found comparing borders on T2 and SWI to the electrophysiological STN. The largest border differences were found using SWI. Border differences were considerably larger than errors associated with iCT and fusion techniques. A cautious approach should be taken when relying solely on MR imaging for delineation of both clinically relevant STN borders.
Literature
1.
go back to reference Anheim M, Batir A, Fraix V, Silem M, Chabardès S, Seigneuret E et al (2008) Improvement in Parkinson disease by subthalamic nucleus stimulation based on electrode placement: effects of reimplantation. Arch Neurol 65(5):612–616CrossRefPubMed Anheim M, Batir A, Fraix V, Silem M, Chabardès S, Seigneuret E et al (2008) Improvement in Parkinson disease by subthalamic nucleus stimulation based on electrode placement: effects of reimplantation. Arch Neurol 65(5):612–616CrossRefPubMed
2.
go back to reference Barnaure I, Pollak P, Momjian S, Horvath J, Lovblad KO, Boëx C et al (2015) Evaluation of electrode position in deep brain stimulation by image fusion (MRI and CT). Neuroradiology 57(9):903–908CrossRefPubMed Barnaure I, Pollak P, Momjian S, Horvath J, Lovblad KO, Boëx C et al (2015) Evaluation of electrode position in deep brain stimulation by image fusion (MRI and CT). Neuroradiology 57(9):903–908CrossRefPubMed
3.
go back to reference Bejjani BP, Damier P, Arnulf I, Thivard L, Bonnet AM, Dormont D, Cornu P, Pidoux B, Samson YAY (1999) Transient acute depression induced by high-frequency deep-brain stimulation. N Engl J Med 340(19):1476–1480CrossRefPubMed Bejjani BP, Damier P, Arnulf I, Thivard L, Bonnet AM, Dormont D, Cornu P, Pidoux B, Samson YAY (1999) Transient acute depression induced by high-frequency deep-brain stimulation. N Engl J Med 340(19):1476–1480CrossRefPubMed
4.
go back to reference Benabid AL, Chabardes S, Mitrofanis J, Pollak P (2009) Deep brain stimulation of the subthalamic nucleus for the treatment of Parkinson’s disease. The Lancet Neurology 8(1):67–81CrossRefPubMed Benabid AL, Chabardes S, Mitrofanis J, Pollak P (2009) Deep brain stimulation of the subthalamic nucleus for the treatment of Parkinson’s disease. The Lancet Neurology 8(1):67–81CrossRefPubMed
5.
go back to reference Bot M, Bour L, De Bie R, Contarino MF, Schuurman R, de Bie R et al (2015) Can we rely on susceptibility-weighted imaging (SWI) for subthalamic nucleus identification in deep brain stimulation surgery? Neurosurgery 78(3):1–7 Bot M, Bour L, De Bie R, Contarino MF, Schuurman R, de Bie R et al (2015) Can we rely on susceptibility-weighted imaging (SWI) for subthalamic nucleus identification in deep brain stimulation surgery? Neurosurgery 78(3):1–7
6.
go back to reference Burchiel KJK, McCartney S, Lee A, Raslan AMA (2013) Accuracy of deep brain stimulation electrode placement using intraoperative computed tomography without microelectrode recording: clinical article. J Neurosurg 119(8):301–306CrossRefPubMed Burchiel KJK, McCartney S, Lee A, Raslan AMA (2013) Accuracy of deep brain stimulation electrode placement using intraoperative computed tomography without microelectrode recording: clinical article. J Neurosurg 119(8):301–306CrossRefPubMed
7.
go back to reference Chandran AS, Bynevelt M, Lind CRP (2016) Magnetic resonance imaging of the subthalamic nucleus for deep brain stimulation. J Neurosurg 124(1):96–105CrossRefPubMed Chandran AS, Bynevelt M, Lind CRP (2016) Magnetic resonance imaging of the subthalamic nucleus for deep brain stimulation. J Neurosurg 124(1):96–105CrossRefPubMed
8.
go back to reference Deuschl G, Schade-Brittinger C, Krack P, Volkmann J, Schafer H, Botzel K et al (2006) A randomized trial of deep-brain stimulation for Parkinson’s disease. N Engl J Med 355(9):896–908CrossRefPubMed Deuschl G, Schade-Brittinger C, Krack P, Volkmann J, Schafer H, Botzel K et al (2006) A randomized trial of deep-brain stimulation for Parkinson’s disease. N Engl J Med 355(9):896–908CrossRefPubMed
9.
go back to reference Dormont D, Ricciardi KG, Tandé D, Parain K, Menuel C, Galanaud D et al (2004) Is the subthalamic nucleus hypointense on T2-weighted images? A correlation study using MR imaging and stereotactic atlas data. Am J Neuroradiol 25(9):1516–1523PubMed Dormont D, Ricciardi KG, Tandé D, Parain K, Menuel C, Galanaud D et al (2004) Is the subthalamic nucleus hypointense on T2-weighted images? A correlation study using MR imaging and stereotactic atlas data. Am J Neuroradiol 25(9):1516–1523PubMed
10.
go back to reference Ellis TM, Foote KD, Fernandez HH, Sudhyadhom A, Rodriguez RL, Zeilman P et al (2008) Reoperation for suboptimal outcomes after deep brain stimulation surgery. Neurosurgery 63(4):754–760CrossRefPubMed Ellis TM, Foote KD, Fernandez HH, Sudhyadhom A, Rodriguez RL, Zeilman P et al (2008) Reoperation for suboptimal outcomes after deep brain stimulation surgery. Neurosurgery 63(4):754–760CrossRefPubMed
11.
go back to reference Foltynie T, Zrinzo L, Martinez-Torres I, Tripoliti E, Petersen E, Holl E et al (2011) MRI-guided STN DBS in Parkinson’s disease without microelectrode recording: efficacy and safety. J Neurol Neurosurg Psychiatry 82(4):358–363CrossRefPubMed Foltynie T, Zrinzo L, Martinez-Torres I, Tripoliti E, Petersen E, Holl E et al (2011) MRI-guided STN DBS in Parkinson’s disease without microelectrode recording: efficacy and safety. J Neurol Neurosurg Psychiatry 82(4):358–363CrossRefPubMed
13.
go back to reference Gross RE, Krack P, Rodriguez-Oroz MC, Rezai AR, Benabid AL (2006) Electrophysiological mapping for the implantation of deep brain stimulators for Parkinson’s disease and tremor. Mov Disord 21(S14):S259–S283CrossRefPubMed Gross RE, Krack P, Rodriguez-Oroz MC, Rezai AR, Benabid AL (2006) Electrophysiological mapping for the implantation of deep brain stimulators for Parkinson’s disease and tremor. Mov Disord 21(S14):S259–S283CrossRefPubMed
14.
go back to reference Hamani C, Richter EO, Andrade-Souza Y, Hutchison W, Saint-Cyr JA, Lozano AM (2005) Correspondence of microelectrode mapping with magnetic resonance imaging for subthalamic nucleus procedures. Surg Neurol 63(3):249–253CrossRefPubMed Hamani C, Richter EO, Andrade-Souza Y, Hutchison W, Saint-Cyr JA, Lozano AM (2005) Correspondence of microelectrode mapping with magnetic resonance imaging for subthalamic nucleus procedures. Surg Neurol 63(3):249–253CrossRefPubMed
15.
go back to reference Harries AM, Kausar J, Roberts SAG, Mocroft AP, Hodson JA, Pall HS et al (2012) Deep brain stimulation of the subthalamic nucleus for advanced Parkinson disease using general anesthesia: long-term results. J Neurosurg 116(1):107–113CrossRefPubMed Harries AM, Kausar J, Roberts SAG, Mocroft AP, Hodson JA, Pall HS et al (2012) Deep brain stimulation of the subthalamic nucleus for advanced Parkinson disease using general anesthesia: long-term results. J Neurosurg 116(1):107–113CrossRefPubMed
16.
go back to reference Holloway K, Docef A (2013) A quantitative assessment of the accuracy and reliability of O-arm images for deep brain stimulation surgery. Neurosurgery 72(3):47–57PubMed Holloway K, Docef A (2013) A quantitative assessment of the accuracy and reliability of O-arm images for deep brain stimulation surgery. Neurosurgery 72(3):47–57PubMed
17.
go back to reference Khan MF, Mewes K, Gross RE, Škrinjar O (2007) Assessment of brain shift related to deep brain stimulation surgery. Stereotact Funct Neurosurg 86(1):44–53CrossRefPubMed Khan MF, Mewes K, Gross RE, Škrinjar O (2007) Assessment of brain shift related to deep brain stimulation surgery. Stereotact Funct Neurosurg 86(1):44–53CrossRefPubMed
18.
go back to reference Kocabicak E, Aygun DA, Ozaydin I, Jahanshahi A, Tan SKH, Onar M et al (2013) Does probe’s eye subthalamic nucleus length on T2W MRI correspond with microelectrode recording in patients with deep brain stimulation for advanced Parkinson’s disease? Turk Neurosurg. 23(5):658–665PubMed Kocabicak E, Aygun DA, Ozaydin I, Jahanshahi A, Tan SKH, Onar M et al (2013) Does probe’s eye subthalamic nucleus length on T2W MRI correspond with microelectrode recording in patients with deep brain stimulation for advanced Parkinson’s disease? Turk Neurosurg. 23(5):658–665PubMed
19.
go back to reference Kulisevsky J, Berthier ML, Gironell A, Molet J (2001) Mania following deep brain stimulation for Parkinson’s disease. Neurology 59(9):1421–1424CrossRef Kulisevsky J, Berthier ML, Gironell A, Molet J (2001) Mania following deep brain stimulation for Parkinson’s disease. Neurology 59(9):1421–1424CrossRef
20.
go back to reference Liu T, Eskreis-Winkler S, Schweitzer AAD, Chen W, Kaplitt MG, Tsiouris AJ et al (2013) Improved subthalamic nucleus depiction with quantitative susceptibility mapping. Neuroradiology 269(1):216–223 Liu T, Eskreis-Winkler S, Schweitzer AAD, Chen W, Kaplitt MG, Tsiouris AJ et al (2013) Improved subthalamic nucleus depiction with quantitative susceptibility mapping. Neuroradiology 269(1):216–223
21.
go back to reference Machado A, Rezai AR, Kopell BH, Gross RE, Sharan AD, Benabid AL (2006) Deep brain stimulation for Parkinson’s disease: surgical technique and perioperative management. Mov Disord 21(S14):S247–S258CrossRefPubMed Machado A, Rezai AR, Kopell BH, Gross RE, Sharan AD, Benabid AL (2006) Deep brain stimulation for Parkinson’s disease: surgical technique and perioperative management. Mov Disord 21(S14):S247–S258CrossRefPubMed
22.
go back to reference McEvoy J, Ughratdar I, Schwarz S, Basu S (2015) Electrophysiological validation of STN-SNr boundary depicted by susceptibility-weighted MRI. Acta Neurochir 157(12):2129–2134CrossRefPubMed McEvoy J, Ughratdar I, Schwarz S, Basu S (2015) Electrophysiological validation of STN-SNr boundary depicted by susceptibility-weighted MRI. Acta Neurochir 157(12):2129–2134CrossRefPubMed
23.
go back to reference Mirzadeh Z, Chapple K, Lambert M, Dhall R, Ponce FA (2014) Validation of CT-MRI fusion for intraoperative assessment of stereotactic accuracy in DBS surgery. Mov Disord 29(14):1788–1795CrossRefPubMed Mirzadeh Z, Chapple K, Lambert M, Dhall R, Ponce FA (2014) Validation of CT-MRI fusion for intraoperative assessment of stereotactic accuracy in DBS surgery. Mov Disord 29(14):1788–1795CrossRefPubMed
24.
go back to reference Miyagi Y, Shima F, Sasaki T (2007) Brain shift: an error factor during implantation of deep brain stimulation electrodes. J Neurosurg 107(5):989–997CrossRefPubMed Miyagi Y, Shima F, Sasaki T (2007) Brain shift: an error factor during implantation of deep brain stimulation electrodes. J Neurosurg 107(5):989–997CrossRefPubMed
25.
go back to reference O’Gorman RL, Shmueli K, Ashkan K, Samuel M, Lythgoe DJ, Shahidiani A et al (2011) Optimal MRI methods for direct stereotactic targeting of the subthalamic nucleus and globus pallidus. Eur Radiol 21(1):130–136CrossRefPubMed O’Gorman RL, Shmueli K, Ashkan K, Samuel M, Lythgoe DJ, Shahidiani A et al (2011) Optimal MRI methods for direct stereotactic targeting of the subthalamic nucleus and globus pallidus. Eur Radiol 21(1):130–136CrossRefPubMed
26.
go back to reference Odekerken VJJ, van Laar T, Staal MJ, Mosch A, Hoffmann CFE, Nijssen PCG et al (2013) Subthalamic nucleus versus globus pallidus bilateral deep brain stimulation for advanced Parkinson’s disease (NSTAPS study): a randomised controlled trial. Lancet Neurol 12(1):37–44CrossRefPubMed Odekerken VJJ, van Laar T, Staal MJ, Mosch A, Hoffmann CFE, Nijssen PCG et al (2013) Subthalamic nucleus versus globus pallidus bilateral deep brain stimulation for advanced Parkinson’s disease (NSTAPS study): a randomised controlled trial. Lancet Neurol 12(1):37–44CrossRefPubMed
27.
go back to reference Okun MS, Tagliati M, Pourfar M, Fernandez HH, Rodriguez RL, Alterman RL et al (2005) Management of referred deep brain stimulation failures. Arch Neurol 62:1250–1255CrossRefPubMed Okun MS, Tagliati M, Pourfar M, Fernandez HH, Rodriguez RL, Alterman RL et al (2005) Management of referred deep brain stimulation failures. Arch Neurol 62:1250–1255CrossRefPubMed
28.
go back to reference Parent A, Hazrati LN (1995) Functional anatomy of the basal ganglia. II. The place of subthalamic nucleus and external pallidium in basal ganglia circuitry. Brain Res Rev 20(1):128–154CrossRefPubMed Parent A, Hazrati LN (1995) Functional anatomy of the basal ganglia. II. The place of subthalamic nucleus and external pallidium in basal ganglia circuitry. Brain Res Rev 20(1):128–154CrossRefPubMed
29.
go back to reference Polanski WH, Martin KD, Engellandt K, von Kummer R, Klingelhoefer L, Fauser M et al (2015) Accuracy of subthalamic nucleus targeting by T2, FLAIR and SWI-3-Tesla MRI confirmed by microelectrode recordings. Acta Neurochir 157(3):479–486CrossRefPubMed Polanski WH, Martin KD, Engellandt K, von Kummer R, Klingelhoefer L, Fauser M et al (2015) Accuracy of subthalamic nucleus targeting by T2, FLAIR and SWI-3-Tesla MRI confirmed by microelectrode recordings. Acta Neurochir 157(3):479–486CrossRefPubMed
30.
go back to reference Raucher-chéné D, Charrel C, Doe A, Maindreville D, Limosin F (2008) Manic episode with psychotic symptoms in a patient with Parkinson’s disease treated by subthalamic nucleus stimulation: improvement on switching the target. J Neurol Sci 273:116–117CrossRefPubMed Raucher-chéné D, Charrel C, Doe A, Maindreville D, Limosin F (2008) Manic episode with psychotic symptoms in a patient with Parkinson’s disease treated by subthalamic nucleus stimulation: improvement on switching the target. J Neurol Sci 273:116–117CrossRefPubMed
31.
go back to reference Rauscher A, Sedlacik J, Barth M, Haacke EM, Reichenbach JR (2005) Nonnvasive assessment of vascular architecture and function during modulated blood oxygenation using susceptibility weighted magnetic resonance imaging. Magn Reson Med 54(1):87–95CrossRefPubMed Rauscher A, Sedlacik J, Barth M, Haacke EM, Reichenbach JR (2005) Nonnvasive assessment of vascular architecture and function during modulated blood oxygenation using susceptibility weighted magnetic resonance imaging. Magn Reson Med 54(1):87–95CrossRefPubMed
32.
go back to reference Savio SJ, Harrison L, Luukkaala T, Heinonen T, Dastidar P, Soimakallio S et al (2009) Effect of slice thickness on texture analysis of multiple sclerosis. IFMBE Proc BioMed Central Ltd 25(4):568–571CrossRef Savio SJ, Harrison L, Luukkaala T, Heinonen T, Dastidar P, Soimakallio S et al (2009) Effect of slice thickness on texture analysis of multiple sclerosis. IFMBE Proc BioMed Central Ltd 25(4):568–571CrossRef
33.
go back to reference Schlaier JR, Habermeyer C, Janzen A, Fellner C, Hochreiter A, Proescholdt M et al (2013) The influence of intraoperative microelectrode recordings and clinical testing on the location of final stimulation sites in deep brain stimulation for Parkinson’s disease. Acta Neurochir 155(2):357–366CrossRefPubMed Schlaier JR, Habermeyer C, Janzen A, Fellner C, Hochreiter A, Proescholdt M et al (2013) The influence of intraoperative microelectrode recordings and clinical testing on the location of final stimulation sites in deep brain stimulation for Parkinson’s disease. Acta Neurochir 155(2):357–366CrossRefPubMed
34.
go back to reference Schuepbach WMM, Rau J, Knudsen K, Volkmann J, Krack P, Timmermann L et al (2013) Neurostimulation for Parkinson’s disease with early motor complications. N Engl J Med 368(7):610–622CrossRefPubMed Schuepbach WMM, Rau J, Knudsen K, Volkmann J, Krack P, Timmermann L et al (2013) Neurostimulation for Parkinson’s disease with early motor complications. N Engl J Med 368(7):610–622CrossRefPubMed
35.
go back to reference Shahlaie K, Larson PS, Starr PA (2011) Intraoperative computed tomography for deep brain stimulation surgery: technique and accuracy assessment. Neurosurgery 68(SUPPL. 1):114–124PubMed Shahlaie K, Larson PS, Starr PA (2011) Intraoperative computed tomography for deep brain stimulation surgery: technique and accuracy assessment. Neurosurgery 68(SUPPL. 1):114–124PubMed
36.
go back to reference Smith AP, Bakay RAE (2011) Frameless deep brain stimulation using intraoperative O-arm technology. Clinical article. J Neurosurg 115(2):301–309CrossRefPubMed Smith AP, Bakay RAE (2011) Frameless deep brain stimulation using intraoperative O-arm technology. Clinical article. J Neurosurg 115(2):301–309CrossRefPubMed
37.
go back to reference Starr PA, Markun LC, Larson PS, Volz MM, Martin AJ, Ostrem JL (2014) Interventional MRI-guided deep brain stimulation in pediatric dystonia: first experience with the ClearPoint system. J Neurosurg Pediatr 14(4):400–408CrossRefPubMed Starr PA, Markun LC, Larson PS, Volz MM, Martin AJ, Ostrem JL (2014) Interventional MRI-guided deep brain stimulation in pediatric dystonia: first experience with the ClearPoint system. J Neurosurg Pediatr 14(4):400–408CrossRefPubMed
38.
go back to reference Tonge M, Kocabicak E, Ackermans L, Kuijf M, Temel Y (2016) Final electrode position in subthalamic nucleus deep brain stimulation surgery: a comparison of indirect and direct targeting methods. Turk Neurosurg 26(6):900–903PubMed Tonge M, Kocabicak E, Ackermans L, Kuijf M, Temel Y (2016) Final electrode position in subthalamic nucleus deep brain stimulation surgery: a comparison of indirect and direct targeting methods. Turk Neurosurg 26(6):900–903PubMed
Metadata
Title
Borders of STN determined by MRI versus the electrophysiological STN. A comparison using intraoperative CT
Authors
Sander Bus
Pepijn van den Munckhof
Maarten Bot
Gian Pal
Bichun Ouyang
Sepehr Sani
Leo Verhagen Metman
Publication date
01-02-2018
Publisher
Springer Vienna
Published in
Acta Neurochirurgica / Issue 2/2018
Print ISSN: 0001-6268
Electronic ISSN: 0942-0940
DOI
https://doi.org/10.1007/s00701-017-3432-5

Other articles of this Issue 2/2018

Acta Neurochirurgica 2/2018 Go to the issue