Skip to main content
Top
Published in: Acta Neurochirurgica 2/2013

01-02-2013 | Clinical Article - Functional

The influence of intraoperative microelectrode recordings and clinical testing on the location of final stimulation sites in deep brain stimulation for Parkinson’s disease

Authors: Juergen Ralf Schlaier, Christine Habermeyer, Annette Janzen, Claudia Fellner, Andreas Hochreiter, Martin Proescholdt, Alexander Brawanski, Max Lange

Published in: Acta Neurochirurgica | Issue 2/2013

Login to get access

Abstract

Background

The goal of our study was to investigate the influence of intraoperative microelectrode recordings and clinical testing on the location of the final stimulation site in deep brain stimulation in Parkinson’s disease.

Methods

In 22 patients with Parkinson’s disease we compared magnetic resonance imaging (MRI)-based and atlas-based targets with the adjusted stimulation sites after intraoperative, multitrack microelectrode recording (MER) and intraoperative and postoperative clinical testing. The investigation included 176 target/stimulation sites in 44 subthalamic nuclei (STNs), which were related to a standardised three-dimensional, MRI-defined STN.

Results

Atlas-based targets were positioned more superior and more medial than the MRI-based targets, which were located in the centre of the MRI-STN. The optimal stimulation sites, found intraoperatively after MER and clinical testing, were located more lateral and slightly more superior than both planned targets. In the majority of the cases the location of the active contact was the most superior and most lateral of all target sites. The differences in the distributions of those four targets reached statistical significance. However, final active contacts were distributed throughout the MRI-defined STN and its immediate surroundings.

Conclusions

The adoption of microelectrode recordings and extensive clinical testing allows the adjustment of anatomical targeting even to unexpected stimulation sites in and around the MRI-defined STN.
Literature
1.
go back to reference Deep Brain Stimulation Study Group (2001) Deep-brain stimulation of the subthalamic nucleus or the pars interna of the globus pallidus in Parkinson’s disease. N Engl J Med 345:956–963CrossRef Deep Brain Stimulation Study Group (2001) Deep-brain stimulation of the subthalamic nucleus or the pars interna of the globus pallidus in Parkinson’s disease. N Engl J Med 345:956–963CrossRef
2.
go back to reference Bejjani BP, Dormont D, Pidoux B, Yelnik J, Damier P, Arnulf I, Bonnet AM, Marsault C, Agid Y, Philippon J, Cornu P (2000) Bilateral subthalamic stimulation for Parkinson’s disease by using three-dimensional stereotactic magnetic resonance imaging and electrophysiological guidance. J Neurosurg 92:615–625PubMedCrossRef Bejjani BP, Dormont D, Pidoux B, Yelnik J, Damier P, Arnulf I, Bonnet AM, Marsault C, Agid Y, Philippon J, Cornu P (2000) Bilateral subthalamic stimulation for Parkinson’s disease by using three-dimensional stereotactic magnetic resonance imaging and electrophysiological guidance. J Neurosurg 92:615–625PubMedCrossRef
3.
go back to reference Benabid AL, Koudsie A, Fraix V, Benazzouz A, Chabardes S, LeBas JF, Polak P (2001) High-frequency stimulation of the subthalamic nucleus in advanced Parkinson’s disease: an 8-year experience. J Neurosurg 94:376A Benabid AL, Koudsie A, Fraix V, Benazzouz A, Chabardes S, LeBas JF, Polak P (2001) High-frequency stimulation of the subthalamic nucleus in advanced Parkinson’s disease: an 8-year experience. J Neurosurg 94:376A
4.
go back to reference Benabid AL, Krack PP, Benazzouz A, Limousin P, Koudsie A, Pollak P (2000) Deep brain stimulation of the subthalamic nucleus for Parkinson’s disease: methodologic aspects and clinical criteria. Neurology 55:S40–S44PubMed Benabid AL, Krack PP, Benazzouz A, Limousin P, Koudsie A, Pollak P (2000) Deep brain stimulation of the subthalamic nucleus for Parkinson’s disease: methodologic aspects and clinical criteria. Neurology 55:S40–S44PubMed
5.
go back to reference Binder DK, Rau GM, Starr PA (2005) Risk factors for hemorrhage during microelectrode-guided deep brain stimulator implantation for movement disorders. Neurosurgery 56:722–732, discussion 722–732PubMedCrossRef Binder DK, Rau GM, Starr PA (2005) Risk factors for hemorrhage during microelectrode-guided deep brain stimulator implantation for movement disorders. Neurosurgery 56:722–732, discussion 722–732PubMedCrossRef
6.
go back to reference Caire F, Ouchchane L, Coste J, Gabrillargues J, Derost P, Ulla M, Durif F, Lemaire JJ (2009) Subthalamic nucleus location: relationships between stereotactic AC-PC-based diagrams and MRI anatomy-based contours. Stereotact Funct Neurosurg 87:337–347PubMedCrossRef Caire F, Ouchchane L, Coste J, Gabrillargues J, Derost P, Ulla M, Durif F, Lemaire JJ (2009) Subthalamic nucleus location: relationships between stereotactic AC-PC-based diagrams and MRI anatomy-based contours. Stereotact Funct Neurosurg 87:337–347PubMedCrossRef
7.
go back to reference Danish SF, Jaggi JL, Moyer JT, Finkel L, Baltuch GH (2006) Conventional MRI is inadequate to delineate the relationship between the red nucleus and subthalamic nucleus in Parkinson’s disease. Stereotact Funct Neurosurg 84:12–18PubMedCrossRef Danish SF, Jaggi JL, Moyer JT, Finkel L, Baltuch GH (2006) Conventional MRI is inadequate to delineate the relationship between the red nucleus and subthalamic nucleus in Parkinson’s disease. Stereotact Funct Neurosurg 84:12–18PubMedCrossRef
8.
go back to reference Deuschl G, Schade-Brittinger C, Krack P, Volkmann J, Schafer H, Botzel K, Daniels C, Deutschlander A, Dillmann U, Eisner W, Gruber D, Hamel W, Herzog J, Hilker R, Klebe S, Kloss M, Koy J, Krause M, Kupsch A, Lorenz D, Lorenzl S, Mehdorn HM, Moringlane JR, Oertel W, Pinsker MO, Reichmann H, Reuss A, Schneider GH, Schnitzler A, Steude U, Sturm V, Timmermann L, Tronnier V, Trottenberg T, Wojtecki L, Wolf E, Poewe W, Voges J (2006) A randomized trial of deep-brain stimulation for Parkinson’s disease. N Engl J Med 355:896–908PubMedCrossRef Deuschl G, Schade-Brittinger C, Krack P, Volkmann J, Schafer H, Botzel K, Daniels C, Deutschlander A, Dillmann U, Eisner W, Gruber D, Hamel W, Herzog J, Hilker R, Klebe S, Kloss M, Koy J, Krause M, Kupsch A, Lorenz D, Lorenzl S, Mehdorn HM, Moringlane JR, Oertel W, Pinsker MO, Reichmann H, Reuss A, Schneider GH, Schnitzler A, Steude U, Sturm V, Timmermann L, Tronnier V, Trottenberg T, Wojtecki L, Wolf E, Poewe W, Voges J (2006) A randomized trial of deep-brain stimulation for Parkinson’s disease. N Engl J Med 355:896–908PubMedCrossRef
9.
go back to reference Dormont D, Ricciardi KG, Tande D, Parain K, Menuel C, Galanaud D, Navarro S, Cornu P, Agid Y, Yelnik J (2004) Is the subthalamic nucleus hypointense on T2-weighted images? A correlation study using MR imaging and stereotactic atlas data. AJNR Am J Neuroradiol 25:1516–1523PubMed Dormont D, Ricciardi KG, Tande D, Parain K, Menuel C, Galanaud D, Navarro S, Cornu P, Agid Y, Yelnik J (2004) Is the subthalamic nucleus hypointense on T2-weighted images? A correlation study using MR imaging and stereotactic atlas data. AJNR Am J Neuroradiol 25:1516–1523PubMed
10.
go back to reference Follett KA, Weaver FM, Stern M, Hur K, Harris CL, Luo P, Marks WJ Jr, Rothlind J, Sagher O, Moy C, Pahwa R, Burchiel K, Hogarth P, Lai EC, Duda JE, Holloway K, Samii A, Horn S, Bronstein JM, Stoner G, Starr PA, Simpson R, Baltuch G, De Salles A, Huang GD, Reda DJ (2010) Pallidal versus subthalamic deep-brain stimulation for Parkinson’s disease. N Engl J Med 362:2077–2091PubMedCrossRef Follett KA, Weaver FM, Stern M, Hur K, Harris CL, Luo P, Marks WJ Jr, Rothlind J, Sagher O, Moy C, Pahwa R, Burchiel K, Hogarth P, Lai EC, Duda JE, Holloway K, Samii A, Horn S, Bronstein JM, Stoner G, Starr PA, Simpson R, Baltuch G, De Salles A, Huang GD, Reda DJ (2010) Pallidal versus subthalamic deep-brain stimulation for Parkinson’s disease. N Engl J Med 362:2077–2091PubMedCrossRef
11.
go back to reference Foltynie T, Zrinzo L, Martinez-Torres I, Tripoliti E, Petersen E, Holl E, Aviles-Olmos I, Jahanshahi M, Hariz M, Limousin P (2011) MRI-guided STN DBS in Parkinson’s disease without microelectrode recording: efficacy and safety. J Neurol Neurosurg Psychiatry 82:358–363PubMedCrossRef Foltynie T, Zrinzo L, Martinez-Torres I, Tripoliti E, Petersen E, Holl E, Aviles-Olmos I, Jahanshahi M, Hariz M, Limousin P (2011) MRI-guided STN DBS in Parkinson’s disease without microelectrode recording: efficacy and safety. J Neurol Neurosurg Psychiatry 82:358–363PubMedCrossRef
12.
go back to reference Gorgulho A, De Salles AA, Frighetto L, Behnke E (2005) Incidence of hemorrhage associated with electrophysiological studies performed using macroelectrodes and microelectrodes in functional neurosurgery. J Neurosurg 102:888–896PubMedCrossRef Gorgulho A, De Salles AA, Frighetto L, Behnke E (2005) Incidence of hemorrhage associated with electrophysiological studies performed using macroelectrodes and microelectrodes in functional neurosurgery. J Neurosurg 102:888–896PubMedCrossRef
13.
go back to reference Guehl D, Edwards R, Cuny E, Burbaud P, Rougier A, Modolo J, Beuter A (2007) Statistical determination of the optimal subthalamic nucleus stimulation site in patients with Parkinson disease. J Neurosurg 106:101–110PubMedCrossRef Guehl D, Edwards R, Cuny E, Burbaud P, Rougier A, Modolo J, Beuter A (2007) Statistical determination of the optimal subthalamic nucleus stimulation site in patients with Parkinson disease. J Neurosurg 106:101–110PubMedCrossRef
14.
go back to reference Hamani C, Saint-Cyr JA, Fraser J, Kaplitt M, Lozano AM (2004) The subthalamic nucleus in the context of movement disorders. Brain 127:4–20PubMedCrossRef Hamani C, Saint-Cyr JA, Fraser J, Kaplitt M, Lozano AM (2004) The subthalamic nucleus in the context of movement disorders. Brain 127:4–20PubMedCrossRef
15.
go back to reference Hariz MI (2002) Safety and risk of microelectrode recording in surgery for movement disorders. Stereotact Funct Neurosurg 78:146–157PubMedCrossRef Hariz MI (2002) Safety and risk of microelectrode recording in surgery for movement disorders. Stereotact Funct Neurosurg 78:146–157PubMedCrossRef
16.
go back to reference Lopiano L, Rizzone M, Perozzo P, Tavella A, Torre E, Lanotte M, Bergamasco B (2001) Deep brain stimulation of the subthalamic nucleus: selection of patients and clinical results. Neurol Sci 22:67–68PubMedCrossRef Lopiano L, Rizzone M, Perozzo P, Tavella A, Torre E, Lanotte M, Bergamasco B (2001) Deep brain stimulation of the subthalamic nucleus: selection of patients and clinical results. Neurol Sci 22:67–68PubMedCrossRef
17.
go back to reference Maldonado IL, Roujeau T, Cif L, Gonzalez V, El-Fertit H, Vasques X, Bonafe A, Coubes P (2009) Magnetic resonance-based deep brain stimulation technique: a series of 478 consecutive implanted electrodes with no perioperative intracerebral hemorrhage. Neurosurgery 65:196–201, discussion 201–192PubMedCrossRef Maldonado IL, Roujeau T, Cif L, Gonzalez V, El-Fertit H, Vasques X, Bonafe A, Coubes P (2009) Magnetic resonance-based deep brain stimulation technique: a series of 478 consecutive implanted electrodes with no perioperative intracerebral hemorrhage. Neurosurgery 65:196–201, discussion 201–192PubMedCrossRef
18.
go back to reference Okun MS, Vitek JL (2004) Lesion therapy for Parkinson’s disease and other movement disorders: update and controversies. Mov Disord 19:375–389PubMedCrossRef Okun MS, Vitek JL (2004) Lesion therapy for Parkinson’s disease and other movement disorders: update and controversies. Mov Disord 19:375–389PubMedCrossRef
19.
go back to reference Parent A, Hazrati LN (1995) Functional anatomy of the basal ganglia. II. The place of subthalamic nucleus and external pallidum in basal ganglia circuitry. Brain Res Brain Res Rev 20:128–154PubMedCrossRef Parent A, Hazrati LN (1995) Functional anatomy of the basal ganglia. II. The place of subthalamic nucleus and external pallidum in basal ganglia circuitry. Brain Res Brain Res Rev 20:128–154PubMedCrossRef
20.
go back to reference Patel NK, Khan S, Gill SS (2008) Comparison of atlas- and magnetic-resonance-imaging-based stereotactic targeting of the subthalamic nucleus in the surgical treatment of Parkinson’s disease. Stereotact Funct Neurosurg 86:153–161PubMedCrossRef Patel NK, Khan S, Gill SS (2008) Comparison of atlas- and magnetic-resonance-imaging-based stereotactic targeting of the subthalamic nucleus in the surgical treatment of Parkinson’s disease. Stereotact Funct Neurosurg 86:153–161PubMedCrossRef
21.
go back to reference Richter EO, Hoque T, Halliday W, Lozano AM, Saint-Cyr JA (2004) Determining the position and size of the subthalamic nucleus based on magnetic resonance imaging results in patients with advanced Parkinson disease. J Neurosurg 100:541–546PubMedCrossRef Richter EO, Hoque T, Halliday W, Lozano AM, Saint-Cyr JA (2004) Determining the position and size of the subthalamic nucleus based on magnetic resonance imaging results in patients with advanced Parkinson disease. J Neurosurg 100:541–546PubMedCrossRef
22.
go back to reference Schlaier J, Schoedel P, Lange M, Winkler J, Warnat J, Dorenbeck U, Brawanski A (2005) Reliability of atlas-derived coordinates in deep brain stimulation. Acta Neurochir (Wien) 147:1175–1180, discussion 1180CrossRef Schlaier J, Schoedel P, Lange M, Winkler J, Warnat J, Dorenbeck U, Brawanski A (2005) Reliability of atlas-derived coordinates in deep brain stimulation. Acta Neurochir (Wien) 147:1175–1180, discussion 1180CrossRef
23.
go back to reference Schlaier JR, Habermeyer C, Warnat J, Lange M, Janzen A, Hochreiter A, Proescholdt M, Brawanski A, Fellner C (2011) Discrepancies between the MRI- and the electrophysiologically defined subthalamic nucleus. Acta Neurochir (Wien) 153:2307-2318CrossRef Schlaier JR, Habermeyer C, Warnat J, Lange M, Janzen A, Hochreiter A, Proescholdt M, Brawanski A, Fellner C (2011) Discrepancies between the MRI- and the electrophysiologically defined subthalamic nucleus. Acta Neurochir (Wien) 153:2307-2318CrossRef
24.
go back to reference Starr PA, Christine CW, Theodosopoulos PV, Lindsey N, Byrd D, Mosley A, Marks WJ Jr (2002) Implantation of deep brain stimulators into the subthalamic nucleus: technical approach and magnetic resonance imaging-verified lead locations. J Neurosurg 97:370–387PubMedCrossRef Starr PA, Christine CW, Theodosopoulos PV, Lindsey N, Byrd D, Mosley A, Marks WJ Jr (2002) Implantation of deep brain stimulators into the subthalamic nucleus: technical approach and magnetic resonance imaging-verified lead locations. J Neurosurg 97:370–387PubMedCrossRef
25.
go back to reference Starr PA, Martin AJ, Ostrem JL, Talke P, Levesque N, Larson PS (2010) Subthalamic nucleus deep brain stimulator placement using high-field interventional magnetic resonance imaging and a skull-mounted aiming device: technique and application accuracy. J Neurosurg 112:479–490PubMedCrossRef Starr PA, Martin AJ, Ostrem JL, Talke P, Levesque N, Larson PS (2010) Subthalamic nucleus deep brain stimulator placement using high-field interventional magnetic resonance imaging and a skull-mounted aiming device: technique and application accuracy. J Neurosurg 112:479–490PubMedCrossRef
26.
go back to reference Voges J, Hilker R, Botzel K, Kiening KL, Kloss M, Kupsch A, Schnitzler A, Schneider GH, Steude U, Deuschl G, Pinsker MO (2007) Thirty days complication rate following surgery performed for deep-brain-stimulation. Mov Disord 22:1486–1489PubMedCrossRef Voges J, Hilker R, Botzel K, Kiening KL, Kloss M, Kupsch A, Schnitzler A, Schneider GH, Steude U, Deuschl G, Pinsker MO (2007) Thirty days complication rate following surgery performed for deep-brain-stimulation. Mov Disord 22:1486–1489PubMedCrossRef
27.
go back to reference Voges J, Volkmann J, Allert N, Lehrke R, Koulousakis A, Freund HJ, Sturm V (2002) Bilateral high-frequency stimulation in the subthalamic nucleus for the treatment of Parkinson disease: correlation of therapeutic effect with anatomical electrode position. J Neurosurg 96:269–279PubMedCrossRef Voges J, Volkmann J, Allert N, Lehrke R, Koulousakis A, Freund HJ, Sturm V (2002) Bilateral high-frequency stimulation in the subthalamic nucleus for the treatment of Parkinson disease: correlation of therapeutic effect with anatomical electrode position. J Neurosurg 96:269–279PubMedCrossRef
28.
go back to reference Wodarg F, Herzog J, Reese R, Falk D, Pinsker MO, Steigerwald F, Jansen O, Deuschl G, Mehdorn HM, Volkmann J (2012) Stimulation site within the MRI-defined STN predicts postoperative motor outcome. Mov Disord 27:874–879PubMedCrossRef Wodarg F, Herzog J, Reese R, Falk D, Pinsker MO, Steigerwald F, Jansen O, Deuschl G, Mehdorn HM, Volkmann J (2012) Stimulation site within the MRI-defined STN predicts postoperative motor outcome. Mov Disord 27:874–879PubMedCrossRef
29.
go back to reference Zhu XL, Hamel W, Schrader B, Weinert D, Hedderich J, Herzog J, Volkmann J, Deuschl G, Muller D, Mehdorn HM (2002) Magnetic resonance imaging-based morphometry and landmark correlation of basal ganglia nuclei. Acta Neurochir (Wien) 144:959–969, discussion 968–959CrossRef Zhu XL, Hamel W, Schrader B, Weinert D, Hedderich J, Herzog J, Volkmann J, Deuschl G, Muller D, Mehdorn HM (2002) Magnetic resonance imaging-based morphometry and landmark correlation of basal ganglia nuclei. Acta Neurochir (Wien) 144:959–969, discussion 968–959CrossRef
Metadata
Title
The influence of intraoperative microelectrode recordings and clinical testing on the location of final stimulation sites in deep brain stimulation for Parkinson’s disease
Authors
Juergen Ralf Schlaier
Christine Habermeyer
Annette Janzen
Claudia Fellner
Andreas Hochreiter
Martin Proescholdt
Alexander Brawanski
Max Lange
Publication date
01-02-2013
Publisher
Springer Vienna
Published in
Acta Neurochirurgica / Issue 2/2013
Print ISSN: 0001-6268
Electronic ISSN: 0942-0940
DOI
https://doi.org/10.1007/s00701-012-1592-x

Other articles of this Issue 2/2013

Acta Neurochirurgica 2/2013 Go to the issue

Technical Note - Neurosurgical Techniques

Hollow screws: a diagnostic tool for intracranial empyema