Skip to main content
Top
Published in: European Radiology 1/2011

01-01-2011 | Magnetic Resonance

Optimal MRI methods for direct stereotactic targeting of the subthalamic nucleus and globus pallidus

Authors: Ruth L. O’Gorman, Karin Shmueli, Keyoumars Ashkan, Michael Samuel, David J. Lythgoe, Asal Shahidiani, Stephen J. Wastling, Michelle Footman, Richard P. Selway, Jozef Jarosz

Published in: European Radiology | Issue 1/2011

Login to get access

Abstract

Objective

Reliable identification of the subthalamic nucleus (STN) and globus pallidus interna (GPi) is critical for deep brain stimulation (DBS) of these structures. The purpose of this study was to compare the visibility of the STN and GPi with various MRI techniques and to assess the suitability of each technique for direct stereotactic targeting.

Methods

MR images were acquired from nine volunteers with T2- and proton density-weighted (PD-W) fast spin echo, susceptibility-weighted imaging (SWI), phase-sensitive inversion recovery and quantitative T1, T2 and T2* mapping sequences. Contrast-to-noise ratios (CNR) for the STN and GPi were calculated for all sequences. Targeting errors on SWI were evaluated on magnetic susceptibility maps. The sequences demonstrating the best conspicuity of DBS target structures (SWI and T2*) were then applied to ten patients with movement disorders, and the CNRs for these techniques were assessed.

Results

SWI offers the highest CNR for the STN, but standard PD-W images provide the best CNR for the pallidum. Susceptibility maps indicated that the GPi margins may be shifted slightly on SWI, although no shifts were seen for the STN.

Conclusion

SWI may improve the visibility of the STN on pre-operative MRI, potentially improving the accuracy of direct stereotactic targeting.
Literature
1.
go back to reference Tisch S, Zrinzo L, Limousin P et al (2007) Effect of electrode contact location on clinical efficacy of pallidal deep brain stimulation in primary generalised dystonia. J Neurol Neurosurg Psychiatry 78:1314–1319CrossRefPubMed Tisch S, Zrinzo L, Limousin P et al (2007) Effect of electrode contact location on clinical efficacy of pallidal deep brain stimulation in primary generalised dystonia. J Neurol Neurosurg Psychiatry 78:1314–1319CrossRefPubMed
2.
go back to reference Papavassiliou E, Rau G, Heath S et al (2008) Thalamic deep brain stimulation for essential tremor: Relation of lead location to outcome (Reprinted from Neurosurgery, vol 54, pg 1120-1130, 2004). Neurosurgery 62:884–893CrossRefPubMed Papavassiliou E, Rau G, Heath S et al (2008) Thalamic deep brain stimulation for essential tremor: Relation of lead location to outcome (Reprinted from Neurosurgery, vol 54, pg 1120-1130, 2004). Neurosurgery 62:884–893CrossRefPubMed
3.
go back to reference Cuny E, Guehl D, Burbaud P et al (2002) Lack of agreement between direct magnetic resonance imaging and statistical determination of a subthalamic target: the role of electrophysiological guidance. J Neurosurg 97:591–597CrossRefPubMed Cuny E, Guehl D, Burbaud P et al (2002) Lack of agreement between direct magnetic resonance imaging and statistical determination of a subthalamic target: the role of electrophysiological guidance. J Neurosurg 97:591–597CrossRefPubMed
4.
go back to reference Ashkan K, Blomstedt P, Zrinzo L et al (2007) Variability of the subthalamic nucleus: The case for direct MRI guided targeting. Br J Neurosurg 21:197–200CrossRefPubMed Ashkan K, Blomstedt P, Zrinzo L et al (2007) Variability of the subthalamic nucleus: The case for direct MRI guided targeting. Br J Neurosurg 21:197–200CrossRefPubMed
5.
go back to reference Hirabayashi H, Tengvar M, Hariz MI (2002) Stereotactic Imaging of the pallidal target. Mov Disord 17:S130–S134CrossRefPubMed Hirabayashi H, Tengvar M, Hariz MI (2002) Stereotactic Imaging of the pallidal target. Mov Disord 17:S130–S134CrossRefPubMed
6.
go back to reference Hariz MI, Krack P, Melvill R et al (2003) A quick and universal method for stereotactic visualization of the subthalamic nucleus before and after implantation of deep brain stimulation electrodes. Stereotact Funct Neurosurg 80:96–101CrossRefPubMed Hariz MI, Krack P, Melvill R et al (2003) A quick and universal method for stereotactic visualization of the subthalamic nucleus before and after implantation of deep brain stimulation electrodes. Stereotact Funct Neurosurg 80:96–101CrossRefPubMed
7.
go back to reference Starr PA, Vitek JL, DeLong M et al (1999) Magnetic resonance imaging-based stereotactic localization of the globus pallidus and subthalamic nucleus. Neurosurgery 44:303–313CrossRefPubMed Starr PA, Vitek JL, DeLong M et al (1999) Magnetic resonance imaging-based stereotactic localization of the globus pallidus and subthalamic nucleus. Neurosurgery 44:303–313CrossRefPubMed
8.
go back to reference Reich CA, Hudgins PA, Sheppard SK et al (2000) A high-resolution fast spin-echo inversion-recovery sequence for preoperative localization of the internal globus pallidus. Am J Neuroradiol 21:928–931PubMed Reich CA, Hudgins PA, Sheppard SK et al (2000) A high-resolution fast spin-echo inversion-recovery sequence for preoperative localization of the internal globus pallidus. Am J Neuroradiol 21:928–931PubMed
9.
go back to reference Ishimori T, Nakano S, Mori Y et al (2007) Preoperative identification of subthalamic nucleus for deep brain stimulation using three-dimensional phase sensitive inversion recovery technique. Magn Reson Med Sci 6:225–229CrossRefPubMed Ishimori T, Nakano S, Mori Y et al (2007) Preoperative identification of subthalamic nucleus for deep brain stimulation using three-dimensional phase sensitive inversion recovery technique. Magn Reson Med Sci 6:225–229CrossRefPubMed
10.
go back to reference Pinsker MO, Volkmann J, Falk D et al (2008) Electrode implantation for deep brain stimulation in dystonia: A fast spin-echo inversion-recovery sequence technique for direct stereotactic targeting of the GPi. Zentralbl Neurochir 69:71–75CrossRefPubMed Pinsker MO, Volkmann J, Falk D et al (2008) Electrode implantation for deep brain stimulation in dystonia: A fast spin-echo inversion-recovery sequence technique for direct stereotactic targeting of the GPi. Zentralbl Neurochir 69:71–75CrossRefPubMed
11.
go back to reference Guo T, Finnis KW, Deoni SCL et al (2006) Comparison of different targeting methods for subthalamic nucleus deep brain stimulation. Medical Image Computing and Computer-Assisted Intervention—Miccai 2006, Pt 1 4190:768-775 Guo T, Finnis KW, Deoni SCL et al (2006) Comparison of different targeting methods for subthalamic nucleus deep brain stimulation. Medical Image Computing and Computer-Assisted Intervention—Miccai 2006, Pt 1 4190:768-775
12.
go back to reference Elolf E, Bockermann V, Gringel T et al (2007) Improved visibility of the subthalamic nucleus on high-resolution stereotactic MR imaging by added susceptibility (T2*) contrast using multiple gradient echoes. Am J Neuroradiol 28:1093–1094CrossRefPubMed Elolf E, Bockermann V, Gringel T et al (2007) Improved visibility of the subthalamic nucleus on high-resolution stereotactic MR imaging by added susceptibility (T2*) contrast using multiple gradient echoes. Am J Neuroradiol 28:1093–1094CrossRefPubMed
13.
go back to reference Haacke EM, Xu YB, Cheng YCN et al (2004) Susceptibility weighted imaging (SWI). Magn Reson Med 52:612–618CrossRefPubMed Haacke EM, Xu YB, Cheng YCN et al (2004) Susceptibility weighted imaging (SWI). Magn Reson Med 52:612–618CrossRefPubMed
14.
go back to reference Vertinsky AT, Coenen VA, Lang DJ et al (2009) Localization of the subthalamic nucleus: Optimization with susceptibility-weighted phase MR imaging. Am J Neuroradiol Epub PMID: 19509077 Vertinsky AT, Coenen VA, Lang DJ et al (2009) Localization of the subthalamic nucleus: Optimization with susceptibility-weighted phase MR imaging. Am J Neuroradiol Epub PMID: 19509077
15.
go back to reference O’Gorman RL, Wastling SJ, Lythgoe DJ et al (2009) Quantitative comparison of MRI methods for pre-surgical localisation of the subthalamic nucleus. Mov Disord 24(suppl 1):S204 O’Gorman RL, Wastling SJ, Lythgoe DJ et al (2009) Quantitative comparison of MRI methods for pre-surgical localisation of the subthalamic nucleus. Mov Disord 24(suppl 1):S204
16.
go back to reference O’Gorman RL, Footman M, Lythgoe DJ et al (2009) Quantitative comparison of MRI methods for pre-surgical localisation of the globus pallidus. Mov Disord 24(suppl 1):S205 O’Gorman RL, Footman M, Lythgoe DJ et al (2009) Quantitative comparison of MRI methods for pre-surgical localisation of the globus pallidus. Mov Disord 24(suppl 1):S205
17.
go back to reference Shmueli K, van Gelderen P, Yao B et al (2009) The dependence of tissue phase contrast on orientation can be overcome by quantitative susceptibility mapping. Proceedings of the Annual Meeting of the International Society of Magnetic Resonance Medicine. Honolulu, Hawaii, p 466 Shmueli K, van Gelderen P, Yao B et al (2009) The dependence of tissue phase contrast on orientation can be overcome by quantitative susceptibility mapping. Proceedings of the Annual Meeting of the International Society of Magnetic Resonance Medicine. Honolulu, Hawaii, p 466
18.
go back to reference Shmueli K, de Zwart JA, van Gelderen P et al (2009) Magnetic susceptibility mapping of brain tissue in vivo using MRI phase data. Magn Reson Med 62:1510–1522CrossRefPubMed Shmueli K, de Zwart JA, van Gelderen P et al (2009) Magnetic susceptibility mapping of brain tissue in vivo using MRI phase data. Magn Reson Med 62:1510–1522CrossRefPubMed
19.
go back to reference Deoni SCL, Rutt BK, Peters TM (2003) Rapid combined T-1 and T-2 mapping using gradient recalled acquisition in the steady state. Magn Reson Med 49:515–526CrossRefPubMed Deoni SCL, Rutt BK, Peters TM (2003) Rapid combined T-1 and T-2 mapping using gradient recalled acquisition in the steady state. Magn Reson Med 49:515–526CrossRefPubMed
20.
go back to reference McRobbie DW (1997) A three-dimensional volumetric test object for geometry evaluation in magnetic resonance imaging. Med Phys 24:737–742CrossRefPubMed McRobbie DW (1997) A three-dimensional volumetric test object for geometry evaluation in magnetic resonance imaging. Med Phys 24:737–742CrossRefPubMed
21.
go back to reference Richter EO, Hoque T, Halliday W et al (2004) Determining the position and size of the subthalamic nucleus based on magnetic resonance imaging results in patients with advanced Parkinson disease. J Neurosurg 100:541–546CrossRefPubMed Richter EO, Hoque T, Halliday W et al (2004) Determining the position and size of the subthalamic nucleus based on magnetic resonance imaging results in patients with advanced Parkinson disease. J Neurosurg 100:541–546CrossRefPubMed
22.
go back to reference Littlechild P, Varma TRK, Eldridge PR et al (2003) Variability in position of the subthalamic nucleus targeted by magnetic resonance imaging and microelectrode recordings as compared to atlas co-ordinates. Stereotact Funct Neurosurg 80:82–87CrossRefPubMed Littlechild P, Varma TRK, Eldridge PR et al (2003) Variability in position of the subthalamic nucleus targeted by magnetic resonance imaging and microelectrode recordings as compared to atlas co-ordinates. Stereotact Funct Neurosurg 80:82–87CrossRefPubMed
23.
go back to reference Yao B, Li TQ, van Gelderen P et al (2009) Susceptibility contrast in high field MRI of human brain as a function of tissue iron content. Neuroimage 44:1259–1266CrossRefPubMed Yao B, Li TQ, van Gelderen P et al (2009) Susceptibility contrast in high field MRI of human brain as a function of tissue iron content. Neuroimage 44:1259–1266CrossRefPubMed
24.
go back to reference Rutledge JN, Hilal SK, Silver AJ et al (1987) Study of movement disorders and brain iron by MR. Am J Roentgenol 149:365–379 Rutledge JN, Hilal SK, Silver AJ et al (1987) Study of movement disorders and brain iron by MR. Am J Roentgenol 149:365–379
25.
go back to reference Hallgren B, Sourander P (1958) The Effect of age on the non-haemin iron in the human brain. J Neurochem 3:41–51CrossRefPubMed Hallgren B, Sourander P (1958) The Effect of age on the non-haemin iron in the human brain. J Neurochem 3:41–51CrossRefPubMed
26.
go back to reference Griffiths PD, Dobson BR, Jones GR et al (1999) Iron in the basal ganglia in Parkinson’s disease—An in vitro study using extended X-ray absorption fine structure and cryo-electron microscopy. Brain 122:667–673CrossRefPubMed Griffiths PD, Dobson BR, Jones GR et al (1999) Iron in the basal ganglia in Parkinson’s disease—An in vitro study using extended X-ray absorption fine structure and cryo-electron microscopy. Brain 122:667–673CrossRefPubMed
27.
go back to reference Riederer P, Dirr A, Goetz M et al (1992) Distribution of iron in different brain regions and subcellular compartments in Parkinson’s disease. Ann Neurol 32:S101–S104CrossRefPubMed Riederer P, Dirr A, Goetz M et al (1992) Distribution of iron in different brain regions and subcellular compartments in Parkinson’s disease. Ann Neurol 32:S101–S104CrossRefPubMed
28.
go back to reference Dormont D, Ricciardi KG, Tande D et al (2004) Is the subthalamic nucleus hypointense on T2-weighted images? A correlation study using MR imaging and stereotactic atlas data. Am J Neuroradiol 25:1516–1523PubMed Dormont D, Ricciardi KG, Tande D et al (2004) Is the subthalamic nucleus hypointense on T2-weighted images? A correlation study using MR imaging and stereotactic atlas data. Am J Neuroradiol 25:1516–1523PubMed
Metadata
Title
Optimal MRI methods for direct stereotactic targeting of the subthalamic nucleus and globus pallidus
Authors
Ruth L. O’Gorman
Karin Shmueli
Keyoumars Ashkan
Michael Samuel
David J. Lythgoe
Asal Shahidiani
Stephen J. Wastling
Michelle Footman
Richard P. Selway
Jozef Jarosz
Publication date
01-01-2011
Publisher
Springer-Verlag
Published in
European Radiology / Issue 1/2011
Print ISSN: 0938-7994
Electronic ISSN: 1432-1084
DOI
https://doi.org/10.1007/s00330-010-1885-5

Other articles of this Issue 1/2011

European Radiology 1/2011 Go to the issue