Skip to main content
Top
Published in: European Spine Journal 9/2016

01-09-2016 | Original Article

Distinguishing characteristics of stem cells derived from different anatomical regions of human degenerated intervertebral discs

Authors: Hai Wang, Yue Zhou, Tong-Wei Chu, Chang-Qing Li, Jian Wang, Zheng-Feng Zhang, Bo Huang

Published in: European Spine Journal | Issue 9/2016

Login to get access

Abstract

Introduction

Several types of stem cells have been successfully demonstrated to exist in the human degenerated intervertebral disc (IVD), which is composed of annulus fibrosus (AF), nucleus pulposus (NP) and cartilage endplate (CEP). However, the differences in the biological characteristics among these and bone marrow derived mesenchymal stem cells (BM-MSCs) remain unclear.

Materials and methods

To investigate this issue, cells were harvested from human AF, NP, CEP, and bone marrow, respectively; passage 2 cells were selected using the agarose suspension culture system to obtain stem cell clones. Following expansion in vitro, stem cells from different anatomical regions were compared regarding the morphology, proliferation ability, immunophenotypic expression, and multi-lineage differentiation capacity. In addition, stem cell-alginate bead compositions were constructed for the comparison of DNA and sGAG content.

Results

There were subtle differences regarding cell morphology, but no significant differences in proliferation ability among the four types of stem cells. For the immunophenotypic analysis, all stem cells basically fulfilled the criteria for mesenchymal stem cells (MSCs), which have been published by the International Society for Cellular Therapy (ISCT), with a significant difference in CD105 expression. A comparison of the osteogenic capacities indicated: cartilage endplate-derived stem cells (CESCs) > annulus fibrosus-derived stem cells (AFSCs) > BM-MSCs > nucleus pulposus-derived stem cells (NPSCs). The chondrogenesis difference was similar to osteogenesis. For adipogenesis: BM-MSCs >NPSCs >CESCs >AFSCs. In the stem cell/alginate composition, the CESCs consistently showed the superior chondrogenic potential among all those cell types.

Conclusions

Our data indicated that all the four types of stem cells shared some similar biological properties (regarding shape, proliferation ability and immunophenotypic expression). CESCs, which had the strongest osteogenic and chondrogenic potentials, may serve as excellent seed cells for NP/cartilage or bone tissue engineering.
Literature
1.
go back to reference Humzah MD, Soames RW (1988) Human intervertebral disc: structure and function. Anat Rec 220:337–356CrossRefPubMed Humzah MD, Soames RW (1988) Human intervertebral disc: structure and function. Anat Rec 220:337–356CrossRefPubMed
2.
go back to reference Culav EM, Clark CH, Merrilees MJ (1999) Connective tissues: matrix composition and its relevance to physical therapy. Phys Ther 79:308–319PubMed Culav EM, Clark CH, Merrilees MJ (1999) Connective tissues: matrix composition and its relevance to physical therapy. Phys Ther 79:308–319PubMed
3.
go back to reference Schollmeier G, Lahr-Eigen R, Lewandrowski KU (2000) Observations on fiber-forming collagens in the anulus fibrosus. Spine (Phila Pa 1976) 25:2736–2741CrossRef Schollmeier G, Lahr-Eigen R, Lewandrowski KU (2000) Observations on fiber-forming collagens in the anulus fibrosus. Spine (Phila Pa 1976) 25:2736–2741CrossRef
4.
go back to reference Antoniou J, Goudsouzian NM, Heathfield TF, Winterbottom N, Steffen T, Poole AR (1996) The human lumbar endplate. Evidence of changes in biosynthesis and denaturation of the extracellular matrix with growth, maturation, aging, and degeneration. Spine (Phila Pa 1976) 21:1153–1161CrossRef Antoniou J, Goudsouzian NM, Heathfield TF, Winterbottom N, Steffen T, Poole AR (1996) The human lumbar endplate. Evidence of changes in biosynthesis and denaturation of the extracellular matrix with growth, maturation, aging, and degeneration. Spine (Phila Pa 1976) 21:1153–1161CrossRef
5.
go back to reference Wognum S, Huyghe JM, Baaijens FP (2006) Influence of osmotic pressure changes on the opening of existing cracks in 2 intervertebral disc models. Spine 31:1783–1788CrossRefPubMed Wognum S, Huyghe JM, Baaijens FP (2006) Influence of osmotic pressure changes on the opening of existing cracks in 2 intervertebral disc models. Spine 31:1783–1788CrossRefPubMed
7.
go back to reference Raj PP (2008) Intervertebral disc: anatomy-physiology-pathophysiology-treatment. Pain Practice 8:18–44CrossRefPubMed Raj PP (2008) Intervertebral disc: anatomy-physiology-pathophysiology-treatment. Pain Practice 8:18–44CrossRefPubMed
8.
go back to reference Goupille P, Jayson MI, Valat JP, Freemont AJ (1998) Matrix metalloproteinases: the clue to intervertebral disc degeneration? Spine (Phila Pa 1976) 23:1612–1626CrossRef Goupille P, Jayson MI, Valat JP, Freemont AJ (1998) Matrix metalloproteinases: the clue to intervertebral disc degeneration? Spine (Phila Pa 1976) 23:1612–1626CrossRef
9.
go back to reference Antoniou J, Steffen T, Nelson F, Winterbottom N, Hollander AP, Poole RA (1996) The human lumbar intervertebral disc: evidence for changes in the biosynthesis and denaturation of the extracellular matrix with growth, maturation, ageing, and degeneration. J Clin Invest 98:996–1003CrossRefPubMedPubMedCentral Antoniou J, Steffen T, Nelson F, Winterbottom N, Hollander AP, Poole RA (1996) The human lumbar intervertebral disc: evidence for changes in the biosynthesis and denaturation of the extracellular matrix with growth, maturation, ageing, and degeneration. J Clin Invest 98:996–1003CrossRefPubMedPubMedCentral
10.
11.
go back to reference da Silva MR, Domingues CJ, Pinto RP, Neves N, Matos RM, Tulha JM (2009) New perspectives on degenerative disease treatment. Acta Reumatol Port 34:327–335PubMed da Silva MR, Domingues CJ, Pinto RP, Neves N, Matos RM, Tulha JM (2009) New perspectives on degenerative disease treatment. Acta Reumatol Port 34:327–335PubMed
12.
go back to reference Satomura K, Krebsbach P, Bianco P, Gehron Robey P (2000) Osteogenic imprinting upstream of marrow stromal cell differentiation. J Cell Biochem 78:391–403CrossRefPubMed Satomura K, Krebsbach P, Bianco P, Gehron Robey P (2000) Osteogenic imprinting upstream of marrow stromal cell differentiation. J Cell Biochem 78:391–403CrossRefPubMed
13.
go back to reference Charbord P, Livne E, Gross G, Haupl T, Neves NM, Marie P (2011) Human bone marrow mesenchymal stem cells: a systematic reappraisal via the genostem experience. Stem Cell Rev 7:32–42CrossRefPubMedPubMedCentral Charbord P, Livne E, Gross G, Haupl T, Neves NM, Marie P (2011) Human bone marrow mesenchymal stem cells: a systematic reappraisal via the genostem experience. Stem Cell Rev 7:32–42CrossRefPubMedPubMedCentral
14.
go back to reference Risbud MV, Guttapalli A, Tsai TT, Lee JY, Danielson KG, Vaccaro AR (2007) Evidence for skeletal progenitor cells in the degenerate human intervertebral disc. Spine (Phila Pa 1976) 32:2537–2544CrossRef Risbud MV, Guttapalli A, Tsai TT, Lee JY, Danielson KG, Vaccaro AR (2007) Evidence for skeletal progenitor cells in the degenerate human intervertebral disc. Spine (Phila Pa 1976) 32:2537–2544CrossRef
15.
go back to reference Blanco JF, Graciani IF, Sanchez-Guijo FM, Muntion S, Hernandez-Campo P, Santamaria C (2010) Isolation and characterization of mesenchymal stromal cells from human degenerated nucleus pulposus: comparison with bone marrow mesenchymal stromal cells from the same subjects. Spine (Phila Pa 1976) 35:2259–2265CrossRef Blanco JF, Graciani IF, Sanchez-Guijo FM, Muntion S, Hernandez-Campo P, Santamaria C (2010) Isolation and characterization of mesenchymal stromal cells from human degenerated nucleus pulposus: comparison with bone marrow mesenchymal stromal cells from the same subjects. Spine (Phila Pa 1976) 35:2259–2265CrossRef
16.
go back to reference Feng G, Yang X, Shang H, Marks IW, Shen FH, Katz A (2010) Multipotential differentiation of human anulus fibrosus cells: an in vitro study. J Bone Joint Surg Am 92:675–685CrossRefPubMed Feng G, Yang X, Shang H, Marks IW, Shen FH, Katz A (2010) Multipotential differentiation of human anulus fibrosus cells: an in vitro study. J Bone Joint Surg Am 92:675–685CrossRefPubMed
17.
go back to reference Huang B, Liu LT, Li CQ, Zhuang Y, Luo G, Hu SY (2012) Study to determine the presence of progenitor cells in the degenerated human cartilage endplates. Eur Spine J 21:613–622CrossRefPubMed Huang B, Liu LT, Li CQ, Zhuang Y, Luo G, Hu SY (2012) Study to determine the presence of progenitor cells in the degenerated human cartilage endplates. Eur Spine J 21:613–622CrossRefPubMed
18.
go back to reference Liu LT, Huang B, Li CQ, Zhuang Y, Wang J, Zhou Y (2011) Characteristics of stem cells derived from the degenerated human intervertebral disc cartilage endplate. PLoS One 6:e26285CrossRefPubMedPubMedCentral Liu LT, Huang B, Li CQ, Zhuang Y, Wang J, Zhou Y (2011) Characteristics of stem cells derived from the degenerated human intervertebral disc cartilage endplate. PLoS One 6:e26285CrossRefPubMedPubMedCentral
19.
go back to reference Henriksson H, Thornemo M, Karlsson C, Hagg O, Junevik K, Lindahl A (2009) Identification of cell proliferation zones, progenitor cells and a potential stem cell niche in the intervertebral disc region: a study in four species. Spine (Phila Pa 1976) 34:2278–2287CrossRef Henriksson H, Thornemo M, Karlsson C, Hagg O, Junevik K, Lindahl A (2009) Identification of cell proliferation zones, progenitor cells and a potential stem cell niche in the intervertebral disc region: a study in four species. Spine (Phila Pa 1976) 34:2278–2287CrossRef
20.
go back to reference Brisby H, Papadimitriou N, Brantsing C, Bergh P, Lindahl A, Barreto Henriksson H (2013) The presence of local mesenchymal progenitor cells in human degenerated intervertebral discs and possibilities to influence these in vitro: a descriptive study in humans. Stem Cells Dev 22:804–814CrossRefPubMed Brisby H, Papadimitriou N, Brantsing C, Bergh P, Lindahl A, Barreto Henriksson H (2013) The presence of local mesenchymal progenitor cells in human degenerated intervertebral discs and possibilities to influence these in vitro: a descriptive study in humans. Stem Cells Dev 22:804–814CrossRefPubMed
21.
go back to reference Turner S, Balain B, Caterson B, Morgan C, Roberts S (2014) Viability, growth kinetics and stem cell markers of single and clustered cells in human intervertebral discs: implications for regenerative therapies. Eur Spine J 23:2462–2472CrossRefPubMed Turner S, Balain B, Caterson B, Morgan C, Roberts S (2014) Viability, growth kinetics and stem cell markers of single and clustered cells in human intervertebral discs: implications for regenerative therapies. Eur Spine J 23:2462–2472CrossRefPubMed
22.
go back to reference Bilic G, Zeisberger SM, Mallik AS, Zimmermann R, Zisch AH (2008) Comparative characterization of cultured human term amnion epithelial and mesenchymal stromal cells for application in cell therapy. Cell Transpl 17:955–968CrossRef Bilic G, Zeisberger SM, Mallik AS, Zimmermann R, Zisch AH (2008) Comparative characterization of cultured human term amnion epithelial and mesenchymal stromal cells for application in cell therapy. Cell Transpl 17:955–968CrossRef
23.
go back to reference Lubis AM, Sandhow L, Lubis VK, Noor A, Gumay F, Merlina M (2011) Isolation and cultivation of mesenchymal stem cells from iliac crest bone marrow for further cartilage defect management. Acta Med Indones 43:178–184PubMed Lubis AM, Sandhow L, Lubis VK, Noor A, Gumay F, Merlina M (2011) Isolation and cultivation of mesenchymal stem cells from iliac crest bone marrow for further cartilage defect management. Acta Med Indones 43:178–184PubMed
24.
go back to reference Thornemo M, Tallheden T, Sjogren Jansson E, Larsson A, Lovstedt K, Nannmark U (2005) Clonal populations of chondrocytes with progenitor properties identified within human articular cartilage. Cells Tissues Organs 180:141–150CrossRefPubMed Thornemo M, Tallheden T, Sjogren Jansson E, Larsson A, Lovstedt K, Nannmark U (2005) Clonal populations of chondrocytes with progenitor properties identified within human articular cartilage. Cells Tissues Organs 180:141–150CrossRefPubMed
25.
go back to reference Mochizuki T, Muneta T, Sakaguchi Y, Nimura A, Yokoyama A, Koga H (2006) Higher chondrogenic potential of fibrous synovium- and adipose synovium-derived cells compared with subcutaneous fat-derived cells: distinguishing properties of mesenchymal stem cells in humans. Arthritis Rheum 54:843–853CrossRefPubMed Mochizuki T, Muneta T, Sakaguchi Y, Nimura A, Yokoyama A, Koga H (2006) Higher chondrogenic potential of fibrous synovium- and adipose synovium-derived cells compared with subcutaneous fat-derived cells: distinguishing properties of mesenchymal stem cells in humans. Arthritis Rheum 54:843–853CrossRefPubMed
26.
go back to reference Jackson WM, Aragon AB, Bulken-Hoover JD, Nesti LJ, Tuan RS (2009) Putative heterotopic ossification progenitor cells derived from traumatized muscle. J Orthop Res 27:1645–1651CrossRefPubMedPubMedCentral Jackson WM, Aragon AB, Bulken-Hoover JD, Nesti LJ, Tuan RS (2009) Putative heterotopic ossification progenitor cells derived from traumatized muscle. J Orthop Res 27:1645–1651CrossRefPubMedPubMedCentral
27.
go back to reference Hattori S, Oxford C, Reddi AH (2007) Identification of superficial zone articular chondrocyte stem/progenitor cells. Biochem Biophys Res Commun 358:99–103CrossRefPubMedPubMedCentral Hattori S, Oxford C, Reddi AH (2007) Identification of superficial zone articular chondrocyte stem/progenitor cells. Biochem Biophys Res Commun 358:99–103CrossRefPubMedPubMedCentral
28.
go back to reference Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147CrossRefPubMed Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147CrossRefPubMed
29.
go back to reference Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25:402–408CrossRefPubMed Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25:402–408CrossRefPubMed
30.
go back to reference Minogue BM, Richardson SM, Zeef LA, Freemont AJ, Hoyland JA (2010) Characterization of the human nucleus pulposus cell phenotype and evaluation of novel marker gene expression to define adult stem cell differentiation. Arthritis Rheum 62:3695–3705CrossRefPubMed Minogue BM, Richardson SM, Zeef LA, Freemont AJ, Hoyland JA (2010) Characterization of the human nucleus pulposus cell phenotype and evaluation of novel marker gene expression to define adult stem cell differentiation. Arthritis Rheum 62:3695–3705CrossRefPubMed
31.
go back to reference Minogue BM, Richardson SM, Zeef LA, Freemont AJ, Hoyland JA (2010) Transcriptional profiling of bovine intervertebral disc cells: implications for identification of normal and degenerate human intervertebral disc cell phenotypes. Arthritis Res Ther 12:R22CrossRefPubMedPubMedCentral Minogue BM, Richardson SM, Zeef LA, Freemont AJ, Hoyland JA (2010) Transcriptional profiling of bovine intervertebral disc cells: implications for identification of normal and degenerate human intervertebral disc cell phenotypes. Arthritis Res Ther 12:R22CrossRefPubMedPubMedCentral
32.
go back to reference Kim YJ, Sah RL, Doong JY, Grodzinsky AJ (1988) Fluorometric assay of DNA in cartilage explants using Hoechst 33258. Anal Biochem 174:168–176CrossRefPubMed Kim YJ, Sah RL, Doong JY, Grodzinsky AJ (1988) Fluorometric assay of DNA in cartilage explants using Hoechst 33258. Anal Biochem 174:168–176CrossRefPubMed
33.
go back to reference Enobakhare BO, Bader DL, Lee DA (1996) Quantification of sulfated glycosaminoglycans in chondrocyte/alginate cultures, by use of 1,9-dimethylmethylene blue. Anal Biochem 243:189–191CrossRefPubMed Enobakhare BO, Bader DL, Lee DA (1996) Quantification of sulfated glycosaminoglycans in chondrocyte/alginate cultures, by use of 1,9-dimethylmethylene blue. Anal Biochem 243:189–191CrossRefPubMed
34.
go back to reference Haudenschild DR, McPherson JM, Tubo R, Binette F (2001) Differential expression of multiple genes during articular chondrocyte redifferentiation. Anat Rec 263:91–98CrossRefPubMed Haudenschild DR, McPherson JM, Tubo R, Binette F (2001) Differential expression of multiple genes during articular chondrocyte redifferentiation. Anat Rec 263:91–98CrossRefPubMed
35.
go back to reference Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8:315–317CrossRefPubMed Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8:315–317CrossRefPubMed
36.
go back to reference Conley BA, Koleva R, Smith JD, Kacer D, Zhang D, Bernabeu C (2004) Endoglin controls cell migration and composition of focal adhesions: function of the cytosolic domain. J Biol Chem 279:27440–27449CrossRefPubMed Conley BA, Koleva R, Smith JD, Kacer D, Zhang D, Bernabeu C (2004) Endoglin controls cell migration and composition of focal adhesions: function of the cytosolic domain. J Biol Chem 279:27440–27449CrossRefPubMed
37.
go back to reference Musina RA, Bekchanova ES, Sukhikh GT (2005) Comparison of mesenchymal stem cells obtained from different human tissues. Bull Exp Biol Med 139:504–509CrossRefPubMed Musina RA, Bekchanova ES, Sukhikh GT (2005) Comparison of mesenchymal stem cells obtained from different human tissues. Bull Exp Biol Med 139:504–509CrossRefPubMed
38.
go back to reference Sakaguchi Y, Sekiya I, Yagishita K, Muneta T (2005) Comparison of human stem cells derived from various mesenchymal tissues: superiority of synovium as a cell source. Arthritis Rheum 52:2521–2529CrossRefPubMed Sakaguchi Y, Sekiya I, Yagishita K, Muneta T (2005) Comparison of human stem cells derived from various mesenchymal tissues: superiority of synovium as a cell source. Arthritis Rheum 52:2521–2529CrossRefPubMed
39.
go back to reference Sekiya I, Vuoristo JT, Larson BL, Prockop DJ (2002) In vitro cartilage formation by human adult stem cells from bone marrow stroma defines the sequence of cellular and molecular events during chondrogenesis. Proc Natl Acad Sci U S A 99:4397–4402CrossRefPubMedPubMedCentral Sekiya I, Vuoristo JT, Larson BL, Prockop DJ (2002) In vitro cartilage formation by human adult stem cells from bone marrow stroma defines the sequence of cellular and molecular events during chondrogenesis. Proc Natl Acad Sci U S A 99:4397–4402CrossRefPubMedPubMedCentral
40.
go back to reference Wilson M, Koopman P (2002) Matching SOX: partner proteins and co-factors of the SOX family of transcriptional regulators. Curr Opin Genet Dev 12:441–446CrossRefPubMed Wilson M, Koopman P (2002) Matching SOX: partner proteins and co-factors of the SOX family of transcriptional regulators. Curr Opin Genet Dev 12:441–446CrossRefPubMed
41.
go back to reference Lefebvre V, Huang W, Harley VR, Goodfellow PN, de Crombrugghe B (1997) SOX9 is a potent activator of the chondrocyte-specific enhancer of the pro alpha1 (II) collagen gene. Mol Cell Biol 17:2336–2346CrossRefPubMedPubMedCentral Lefebvre V, Huang W, Harley VR, Goodfellow PN, de Crombrugghe B (1997) SOX9 is a potent activator of the chondrocyte-specific enhancer of the pro alpha1 (II) collagen gene. Mol Cell Biol 17:2336–2346CrossRefPubMedPubMedCentral
42.
go back to reference de Crombrugghe B, Lefebvre V, Behringer RR, Bi W, Murakami S, Huang W (2000) Transcriptional mechanisms of chondrocyte differentiation. Matrix Biol 19:389–394CrossRefPubMed de Crombrugghe B, Lefebvre V, Behringer RR, Bi W, Murakami S, Huang W (2000) Transcriptional mechanisms of chondrocyte differentiation. Matrix Biol 19:389–394CrossRefPubMed
43.
go back to reference Wang H, Zhou Y, Huang B, Liu LT, Liu MH, Wang J (2014) Utilization of stem cells in alginate for nucleus pulposus tissue engineering. Tissue Eng Part A 20:908–920CrossRefPubMed Wang H, Zhou Y, Huang B, Liu LT, Liu MH, Wang J (2014) Utilization of stem cells in alginate for nucleus pulposus tissue engineering. Tissue Eng Part A 20:908–920CrossRefPubMed
44.
go back to reference Dawson E, Bernbeck J (1998) The surgical treatment of low back pain. Phys Med Rehabil Clin N Am 9:489–495PubMed Dawson E, Bernbeck J (1998) The surgical treatment of low back pain. Phys Med Rehabil Clin N Am 9:489–495PubMed
45.
go back to reference De Ugarte DA, Morizono K, Elbarbary A, Alfonso Z, Zuk PA, Zhu M (2003) Comparison of multi-lineage cells from human adipose tissue and bone marrow. Cells Tissues Organs 174:101–109CrossRefPubMed De Ugarte DA, Morizono K, Elbarbary A, Alfonso Z, Zuk PA, Zhu M (2003) Comparison of multi-lineage cells from human adipose tissue and bone marrow. Cells Tissues Organs 174:101–109CrossRefPubMed
Metadata
Title
Distinguishing characteristics of stem cells derived from different anatomical regions of human degenerated intervertebral discs
Authors
Hai Wang
Yue Zhou
Tong-Wei Chu
Chang-Qing Li
Jian Wang
Zheng-Feng Zhang
Bo Huang
Publication date
01-09-2016
Publisher
Springer Berlin Heidelberg
Published in
European Spine Journal / Issue 9/2016
Print ISSN: 0940-6719
Electronic ISSN: 1432-0932
DOI
https://doi.org/10.1007/s00586-016-4522-4

Other articles of this Issue 9/2016

European Spine Journal 9/2016 Go to the issue