Skip to main content
Top
Published in: Surgical Endoscopy 2/2016

01-02-2016

Electromagnetic organ tracking allows for real-time compensation of tissue shift in image-guided laparoscopic rectal surgery: results of a phantom study

Authors: M. Wagner, M. Gondan, C. Zöllner, J. J. Wünscher, F. Nickel, L. Albala, A. Groch, S. Suwelack, S. Speidel, L. Maier-Hein, B. P. Müller-Stich, H. G. Kenngott

Published in: Surgical Endoscopy | Issue 2/2016

Login to get access

Abstract

Background

Laparoscopic resection is a minimally invasive treatment option for rectal cancer but requires highly experienced surgeons. Computer-aided technologies could help to improve safety and efficiency by visualizing risk structures during the procedure. The prerequisite for such an image guidance system is reliable intraoperative information on iatrogenic tissue shift. This could be achieved by intraoperative imaging, which is rarely available. Thus, the aim of the present study was to develop and validate a method for real-time deformation compensation using preoperative imaging and intraoperative electromagnetic tracking (EMT) of the rectum.

Methods

Three models were compared and evaluated for the compensation of tissue deformation. For model A, no compensation was performed. Model B moved the corresponding points rigidly to the motion of the EMT sensor. Model C used five nested linear regressions with increasing level of complexity to compute the deformation (C1–C5). For evaluation, 14 targets and an EMT organ sensor were fit into a silicone-molded rectum of the OpenHELP phantom. Following a computed tomography, the image guidance was initiated and the rectum was deformed in the same way as during surgery in a total of 14 experimental runs. The target registration error (TRE) was measured for all targets in different positions of the rectum.

Results

The mean TRE without correction (model A) was 32.8 ± 20.8 mm, with only 19.6 % of the measurements below 10 mm (80.4 % above 10 mm). With correction, the mean TRE could be reduced using the rigid correction (model B) to 6.8 ± 4.8 mm with 78.7 % of the measurements being <10 mm. Using the most complex linear regression correction (model C5), the error could be reduced to 2.9 ± 1.4 mm with 99.8 % being below 10 mm.

Conclusion

In laparoscopic rectal surgery, the combination of electromagnetic organ tracking and preoperative imaging is a promising approach to compensating for intraoperative tissue shift in real-time.
Appendix
Available only for authorised users
Literature
6.
go back to reference Wysocka B, Kassam Z, Lockwood G, Brierley J, Dawson LA, Buckley CA, Jaffray D, Cummings B, Kim J, Wong R, Ringash J (2010) Interfraction and respiratory organ motion during conformal radiotherapy in gastric cancer. Int J Radiat Oncol Biol Phys 77:53–59. doi:10.1016/j.ijrobp.2009.04.046 CrossRefPubMed Wysocka B, Kassam Z, Lockwood G, Brierley J, Dawson LA, Buckley CA, Jaffray D, Cummings B, Kim J, Wong R, Ringash J (2010) Interfraction and respiratory organ motion during conformal radiotherapy in gastric cancer. Int J Radiat Oncol Biol Phys 77:53–59. doi:10.​1016/​j.​ijrobp.​2009.​04.​046 CrossRefPubMed
8.
go back to reference Kenngott HG, Wagner M, Gondan M, Nickel F, Nolden M, Fetzer A, Weitz J, Fischer L, Speidel S, Meinzer H-P, Böckler D, Büchler MW, Müller-Stich BP (2014) Real-time image guidance in laparoscopic liver surgery: first clinical experience with a guidance system based on intraoperative CT imaging. Surg Endosc 28:933–940. doi:10.1007/s00464-013-3249-0 CrossRefPubMed Kenngott HG, Wagner M, Gondan M, Nickel F, Nolden M, Fetzer A, Weitz J, Fischer L, Speidel S, Meinzer H-P, Böckler D, Büchler MW, Müller-Stich BP (2014) Real-time image guidance in laparoscopic liver surgery: first clinical experience with a guidance system based on intraoperative CT imaging. Surg Endosc 28:933–940. doi:10.​1007/​s00464-013-3249-0 CrossRefPubMed
9.
go back to reference Kenngott HG, Neuhaus J, Müller-Stich BP, Wolf I, Vetter M, Meinzer H-P, Köninger J, Büchler MW, Gutt CN (2008) Development of a navigation system for minimally invasive esophagectomy. Surg Endosc 22:1858–1865. doi:10.1007/s00464-007-9723-9 CrossRefPubMed Kenngott HG, Neuhaus J, Müller-Stich BP, Wolf I, Vetter M, Meinzer H-P, Köninger J, Büchler MW, Gutt CN (2008) Development of a navigation system for minimally invasive esophagectomy. Surg Endosc 22:1858–1865. doi:10.​1007/​s00464-007-9723-9 CrossRefPubMed
10.
go back to reference Nolden M, Zelzer S, Seitel A, Wald D, Müller M, Franz AM, Maleike D, Fangerau M, Baumhauer M, Maier-Hein L, Maier-Hein KH, Meinzer H-P, Wolf I (2013) The Medical Imaging Interaction Toolkit: challenges and advances : 10 years of open-source development. Int J Comput Assist Radiol Surg 8:607–620. doi:10.1007/s11548-013-0840-8 CrossRefPubMed Nolden M, Zelzer S, Seitel A, Wald D, Müller M, Franz AM, Maleike D, Fangerau M, Baumhauer M, Maier-Hein L, Maier-Hein KH, Meinzer H-P, Wolf I (2013) The Medical Imaging Interaction Toolkit: challenges and advances : 10 years of open-source development. Int J Comput Assist Radiol Surg 8:607–620. doi:10.​1007/​s11548-013-0840-8 CrossRefPubMed
11.
go back to reference Kenngott HG, Wünscher JJ, Wagner M, Preukschas A, Wekerle AL, Neher P, Suwelack S, Speidel S, Nickel F, Oladokun D, Maier-Hein L, Dillmann R, Meinzer HP, Müller-Stich BP (2015) OpenHELP (Heidelberg laparoscopy phantom): development of an open-source surgical evaluation and training tool. Surg Endosc. doi:10.1007/s00464-015-4094-0 Kenngott HG, Wünscher JJ, Wagner M, Preukschas A, Wekerle AL, Neher P, Suwelack S, Speidel S, Nickel F, Oladokun D, Maier-Hein L, Dillmann R, Meinzer HP, Müller-Stich BP (2015) OpenHELP (Heidelberg laparoscopy phantom): development of an open-source surgical evaluation and training tool. Surg Endosc. doi:10.​1007/​s00464-015-4094-0
12.
15.
go back to reference R Core Team (2012) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna R Core Team (2012) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna
16.
go back to reference Peterhans M, Oliveira T, Banz V, Candinas D, Weber S (2012) Computer-assisted liver surgery: clinical applications and technological trends. Crit Rev Biomed Eng 40:199–220CrossRefPubMed Peterhans M, Oliveira T, Banz V, Candinas D, Weber S (2012) Computer-assisted liver surgery: clinical applications and technological trends. Crit Rev Biomed Eng 40:199–220CrossRefPubMed
18.
go back to reference Crum WR, Hartkens T, Hill DLG (2004) Non-rigid image registration: theory and practice. Br J Radiol 77(Spec No 2):S140–S153CrossRefPubMed Crum WR, Hartkens T, Hill DLG (2004) Non-rigid image registration: theory and practice. Br J Radiol 77(Spec No 2):S140–S153CrossRefPubMed
19.
go back to reference Nakamoto M, Nakada K, Sato Y, Konishi K, Hashizume M, Tamura S (2008) Intraoperative magnetic tracker calibration using a magneto-optic hybrid tracker for 3-D ultrasound-based navigation in laparoscopic surgery. IEEE Trans Med Imaging 27:255–270. doi:10.1109/TMI.2007.911003 CrossRefPubMed Nakamoto M, Nakada K, Sato Y, Konishi K, Hashizume M, Tamura S (2008) Intraoperative magnetic tracker calibration using a magneto-optic hybrid tracker for 3-D ultrasound-based navigation in laparoscopic surgery. IEEE Trans Med Imaging 27:255–270. doi:10.​1109/​TMI.​2007.​911003 CrossRefPubMed
21.
go back to reference Feuerstein M, Reichl T, Vogel J, Traub J, Navab N (2009) Magneto-optical tracking of flexible laparoscopic ultrasound: model-based online detection and correction of magnetic tracking errors. IEEE Trans Med Imaging 28:951–967. doi:10.1109/TMI.2008.2008954 CrossRefPubMed Feuerstein M, Reichl T, Vogel J, Traub J, Navab N (2009) Magneto-optical tracking of flexible laparoscopic ultrasound: model-based online detection and correction of magnetic tracking errors. IEEE Trans Med Imaging 28:951–967. doi:10.​1109/​TMI.​2008.​2008954 CrossRefPubMed
23.
go back to reference Nakamoto M, Ukimura O, Gill IS, Mahadevan A, Miki T, Hashizume M, Sato Y (2008) Realtime organ tracking for endoscopic augmented reality visualization using miniature wireless magnetic tracker. In: Proceedings of the 4th international workshop on medical imaging and augmented reality. Springer, Berlin, Heidelberg, pp 359–366 Nakamoto M, Ukimura O, Gill IS, Mahadevan A, Miki T, Hashizume M, Sato Y (2008) Realtime organ tracking for endoscopic augmented reality visualization using miniature wireless magnetic tracker. In: Proceedings of the 4th international workshop on medical imaging and augmented reality. Springer, Berlin, Heidelberg, pp 359–366
24.
go back to reference Maier-Hein L, Tekbas A, Seitel A, Pianka F, Müller SA, Satzl S, Schawo S, Radeleff B, Tetzlaff R, Franz AM, Müller-Stich BP, Wolf I, Kauczor H-U, Schmied BM, Meinzer H-P (2008) In vivo accuracy assessment of a needle-based navigation system for CT-guided radiofrequency ablation of the liver. Med Phys 35:5385–5396CrossRefPubMed Maier-Hein L, Tekbas A, Seitel A, Pianka F, Müller SA, Satzl S, Schawo S, Radeleff B, Tetzlaff R, Franz AM, Müller-Stich BP, Wolf I, Kauczor H-U, Schmied BM, Meinzer H-P (2008) In vivo accuracy assessment of a needle-based navigation system for CT-guided radiofrequency ablation of the liver. Med Phys 35:5385–5396CrossRefPubMed
25.
go back to reference Beller S, Eulenstein S, Lange T, Hünerbein M, Schlag PM (2009) Upgrade of an optical navigation system with a permanent electromagnetic position control: a first step towards “navigated control” for liver surgery. J Hepatobiliary Pancreat Surg 16:165–170. doi:10.1007/s00534-008-0040-z CrossRefPubMed Beller S, Eulenstein S, Lange T, Hünerbein M, Schlag PM (2009) Upgrade of an optical navigation system with a permanent electromagnetic position control: a first step towards “navigated control” for liver surgery. J Hepatobiliary Pancreat Surg 16:165–170. doi:10.​1007/​s00534-008-0040-z CrossRefPubMed
28.
go back to reference Shekhar R, Dandekar O, Bhat V, Philip M, Lei P, Godinez C, Sutton E, George I, Kavic S, Mezrich R, Park A (2010) Live augmented reality: a new visualization method for laparoscopic surgery using continuous volumetric computed tomography. Surg Endosc 24:1976–1985. doi:10.1007/s00464-010-0890-8 CrossRefPubMed Shekhar R, Dandekar O, Bhat V, Philip M, Lei P, Godinez C, Sutton E, George I, Kavic S, Mezrich R, Park A (2010) Live augmented reality: a new visualization method for laparoscopic surgery using continuous volumetric computed tomography. Surg Endosc 24:1976–1985. doi:10.​1007/​s00464-010-0890-8 CrossRefPubMed
29.
go back to reference Nickel F, Kenngott HG, Neuhaus J, Sommer CM, Gehrig T, Kolb A, Gondan M, Radeleff BA, Schaible A, Meinzer H-P, Gutt CN, Müller-Stich B-P (2013) Navigation system for minimally invasive esophagectomy: experimental study in a porcine model. Surg Endosc 27:3663–3670. doi:10.1007/s00464-013-2941-4 CrossRefPubMed Nickel F, Kenngott HG, Neuhaus J, Sommer CM, Gehrig T, Kolb A, Gondan M, Radeleff BA, Schaible A, Meinzer H-P, Gutt CN, Müller-Stich B-P (2013) Navigation system for minimally invasive esophagectomy: experimental study in a porcine model. Surg Endosc 27:3663–3670. doi:10.​1007/​s00464-013-2941-4 CrossRefPubMed
30.
go back to reference Maier-Hein L, Franz AM, Birkfellner W, Hummel J, Gergel I, Wegner I, Meinzer H-P (2012) Standardized assessment of new electromagnetic field generators in an interventional radiology setting. Med Phys 39:3424–3434. doi:10.1118/1.4712222 CrossRefPubMed Maier-Hein L, Franz AM, Birkfellner W, Hummel J, Gergel I, Wegner I, Meinzer H-P (2012) Standardized assessment of new electromagnetic field generators in an interventional radiology setting. Med Phys 39:3424–3434. doi:10.​1118/​1.​4712222 CrossRefPubMed
Metadata
Title
Electromagnetic organ tracking allows for real-time compensation of tissue shift in image-guided laparoscopic rectal surgery: results of a phantom study
Authors
M. Wagner
M. Gondan
C. Zöllner
J. J. Wünscher
F. Nickel
L. Albala
A. Groch
S. Suwelack
S. Speidel
L. Maier-Hein
B. P. Müller-Stich
H. G. Kenngott
Publication date
01-02-2016
Publisher
Springer US
Published in
Surgical Endoscopy / Issue 2/2016
Print ISSN: 0930-2794
Electronic ISSN: 1432-2218
DOI
https://doi.org/10.1007/s00464-015-4231-9

Other articles of this Issue 2/2016

Surgical Endoscopy 2/2016 Go to the issue