Skip to main content
Top
Published in: Medical Microbiology and Immunology 2/2011

01-05-2011 | Original Investigation

Characterisation of the epitope for a herpes simplex virus glycoprotein B-specific monoclonal antibody with high protective capacity

Authors: Martin P. Däumer, Beate Schneider, Doris M. Giesen, Sheriff Aziz, Rolf Kaiser, Bernd Kupfer, Karl E. Schneweis, Jens Schneider-Mergener, Ulrich Reineke, Bertfried Matz, Anna M. Eis-Hübinger

Published in: Medical Microbiology and Immunology | Issue 2/2011

Login to get access

Abstract

Monoclonal antibody (MAb) 2c, specific for glycoprotein B of herpes simplex virus (HSV), had been shown to mediate clearance of infection from the mucous membranes of mice, thereby completely inhibiting mucocutaneous inflammation and lethality, even in mice depleted of both CD4+ and CD8+ cells. Additionally, ganglionic infection was highly restricted. In vitro, MAb 2c exhibits a potent complement-independent neutralising activity against HSV type 1 and 2, completely inhibits the viral cell-to-cell spread as well as the syncytium formation induced by syncytial HSV strains (Eis-Hübinger et al. in Intervirology 32:351–360, 1991; Eis-Hübinger et al. in J Gen Virol 74:379–385, 1993). Here, we describe the mapping of the epitope for MAb 2c. The antibody was found to recognise a discontinuous epitope comprised of the HSV type 1 glycoprotein B residues 299 to 305 and one or more additional discontinuous regions that can be mimicked by the sequence FEDF. Identification of the epitope was confirmed by loss of antibody binding to mutated glycoprotein B with replacement of the epitopic key residues, expressed in COS-1 cells. Similarly, MAb 2c was not able to neutralise HSV mutants with altered key residues, and MAb 2c was ineffective in mice inoculated with such mutants. Interestingly, identification and fine-mapping of the discontinuous epitope was not achieved by binding studies with truncated glycoprotein B variants expressed in COS cells but by peptide scanning with synthetic overlapping peptides and peptide key motif analysis. Reactivity of MAb 2c was immensely increased towards a peptide composed of the glycoprotein B residues 299 to 305, a glycine linker, and a C-terminal FEDF motif. If it could be demonstrated that antibodies of the specificity and bioactivity of MAb 2c can be induced by the epitope or a peptide mimicking the epitope, strategies for active immunisation might be conceivable.
Literature
1.
go back to reference Eis-Hübinger AM, Mohr K, Schneweis KE (1991) Different mechanisms of protection by monoclonal and polyclonal antibodies during the course of herpes simplex virus infection. Intervirology 32:351–360PubMed Eis-Hübinger AM, Mohr K, Schneweis KE (1991) Different mechanisms of protection by monoclonal and polyclonal antibodies during the course of herpes simplex virus infection. Intervirology 32:351–360PubMed
2.
go back to reference Eis-Hübinger AM, Schmidt DS, Schneweis KE (1993) Anti-glycoprotein B monoclonal antibody protects T cell-depleted mice against herpes simplex virus infection by inhibition of virus replication at the inoculated mucous membranes. J Gen Virol 74:379–385PubMedCrossRef Eis-Hübinger AM, Schmidt DS, Schneweis KE (1993) Anti-glycoprotein B monoclonal antibody protects T cell-depleted mice against herpes simplex virus infection by inhibition of virus replication at the inoculated mucous membranes. J Gen Virol 74:379–385PubMedCrossRef
4.
go back to reference Roizman B, Knipe DM, Whitley RJ (2007) Herpes simplex viruses. In: Knipe DM, Howley (eds) Fields virology, 5th edn. Lippincott, Philadelphia, pp 2501–2601 Roizman B, Knipe DM, Whitley RJ (2007) Herpes simplex viruses. In: Knipe DM, Howley (eds) Fields virology, 5th edn. Lippincott, Philadelphia, pp 2501–2601
6.
go back to reference Corey L, Wald A (2009) Maternal and neonatal herpes simplex virus infections. N Engl J Med 361:1376–1385PubMedCrossRef Corey L, Wald A (2009) Maternal and neonatal herpes simplex virus infections. N Engl J Med 361:1376–1385PubMedCrossRef
7.
go back to reference Pass RF, Whitley RJ, Whelchel JD, Diethelm AG, Reynolds DW, Alford CA (1979) Identification of patients with increased risk of infection with herpes simplex virus after renal transplantation. J Infect Dis 140:487–492PubMedCrossRef Pass RF, Whitley RJ, Whelchel JD, Diethelm AG, Reynolds DW, Alford CA (1979) Identification of patients with increased risk of infection with herpes simplex virus after renal transplantation. J Infect Dis 140:487–492PubMedCrossRef
8.
go back to reference Siegal FP, Lopez C, Hammer GS, Brown AE, Kornfeld SJ, Gold J, Hassett J, Hirschman SZ, Cunningham-Rundles C, Adelsberg BR, Parham DM, Siegal M, Cunningham-Rundles S, Armstrong D (1981) Severe acquired immunodeficiency in male homosexuals, manifested by chronic perianal ulcerative herpes simplex lesions. N Engl J Med 305:1439–1444PubMedCrossRef Siegal FP, Lopez C, Hammer GS, Brown AE, Kornfeld SJ, Gold J, Hassett J, Hirschman SZ, Cunningham-Rundles C, Adelsberg BR, Parham DM, Siegal M, Cunningham-Rundles S, Armstrong D (1981) Severe acquired immunodeficiency in male homosexuals, manifested by chronic perianal ulcerative herpes simplex lesions. N Engl J Med 305:1439–1444PubMedCrossRef
9.
go back to reference Bartlett JG (2004) Recent developments in the management of herpes simplex virus infection in HIV-infected persons. Clin Infect Dis 39:S237–S239PubMedCrossRef Bartlett JG (2004) Recent developments in the management of herpes simplex virus infection in HIV-infected persons. Clin Infect Dis 39:S237–S239PubMedCrossRef
10.
go back to reference Cunningham AL, Diefenbach RJ, Miranda-Saksena M, Bosnjak L, Kim M, Jones C, Douglas MW (2006) The cycle of human herpes simplex virus infection: virus transport and immune control. J Infect Dis 194:S11–S18PubMedCrossRef Cunningham AL, Diefenbach RJ, Miranda-Saksena M, Bosnjak L, Kim M, Jones C, Douglas MW (2006) The cycle of human herpes simplex virus infection: virus transport and immune control. J Infect Dis 194:S11–S18PubMedCrossRef
11.
go back to reference Cernik C, Gallina K, Brodell RT (2008) The treatment of herpes simplex infections: an evidence-based review. Arch Intern Med 168:1137–1144PubMedCrossRef Cernik C, Gallina K, Brodell RT (2008) The treatment of herpes simplex infections: an evidence-based review. Arch Intern Med 168:1137–1144PubMedCrossRef
12.
go back to reference Wilson SS, Fakioglu E, Herold BC (2009) Novel approaches in fighting herpes simplex virus infections. Expert Rev Anti Infect Ther 7:559–568PubMedCrossRef Wilson SS, Fakioglu E, Herold BC (2009) Novel approaches in fighting herpes simplex virus infections. Expert Rev Anti Infect Ther 7:559–568PubMedCrossRef
13.
go back to reference Dasgupta G, Chentoufi AA, Nesburn AB, Wechsler SL, BenMohamed L (2009) New concepts in herpes simplex virus vaccine development: notes from the battlefield. Expert Rev Vaccines 8:1023–1035PubMedCrossRef Dasgupta G, Chentoufi AA, Nesburn AB, Wechsler SL, BenMohamed L (2009) New concepts in herpes simplex virus vaccine development: notes from the battlefield. Expert Rev Vaccines 8:1023–1035PubMedCrossRef
14.
go back to reference Pellett PE, Kousoulas KG, Pereira L, Roizman B (1985) Anatomy of the herpes simplex virus 1 strain F glycoprotein B gene: primary sequence and predicted protein structure of the wild type and of monoclonal antibody-resistant mutants. J Virol 53:243–253PubMed Pellett PE, Kousoulas KG, Pereira L, Roizman B (1985) Anatomy of the herpes simplex virus 1 strain F glycoprotein B gene: primary sequence and predicted protein structure of the wild type and of monoclonal antibody-resistant mutants. J Virol 53:243–253PubMed
15.
go back to reference Pereira L (1994) Function of glycoprotein B homologues of the family herpesviridae. Infect Agents Dis 3:9–28PubMed Pereira L (1994) Function of glycoprotein B homologues of the family herpesviridae. Infect Agents Dis 3:9–28PubMed
16.
go back to reference Reske A, Pollara G, Krummenacher C, Chain BM, Katz DR (2007) Understanding HSV-1 entry glycoproteins. Rev Med Virol 17:205–215PubMedCrossRef Reske A, Pollara G, Krummenacher C, Chain BM, Katz DR (2007) Understanding HSV-1 entry glycoproteins. Rev Med Virol 17:205–215PubMedCrossRef
17.
go back to reference Bzik DJ, Fox BA, DeLuca NA, Person S (1984) Nucleotide sequence of a region of the herpes simplex virus type 1 gB glycoprotein gene: mutations affecting rate of virus entry and cell fusion. Virology 137:185–190PubMedCrossRef Bzik DJ, Fox BA, DeLuca NA, Person S (1984) Nucleotide sequence of a region of the herpes simplex virus type 1 gB glycoprotein gene: mutations affecting rate of virus entry and cell fusion. Virology 137:185–190PubMedCrossRef
18.
go back to reference Cai W, Gu B, Person S (1988) Role of glycoprotein B of herpes simplex virus type 1 in viral entry and cell fusion. J Virol 62:2596–2604PubMed Cai W, Gu B, Person S (1988) Role of glycoprotein B of herpes simplex virus type 1 in viral entry and cell fusion. J Virol 62:2596–2604PubMed
19.
go back to reference Butcher M, Raviprakash K, Ghosh HP (1990) Acid pH-induced fusion of cells by herpes simplex virus glycoproteins gB an gD. J Biol Chem 265:5862–5868PubMed Butcher M, Raviprakash K, Ghosh HP (1990) Acid pH-induced fusion of cells by herpes simplex virus glycoproteins gB an gD. J Biol Chem 265:5862–5868PubMed
20.
go back to reference Bender FC, Whitbeck JC, Ponce de Leon M, Lou H, Eisenberg RJ, Cohen GH (2003) Specific association of glycoprotein B with lipid rafts during herpes simplex virus entry. J Virol 77:9542–9552PubMedCrossRef Bender FC, Whitbeck JC, Ponce de Leon M, Lou H, Eisenberg RJ, Cohen GH (2003) Specific association of glycoprotein B with lipid rafts during herpes simplex virus entry. J Virol 77:9542–9552PubMedCrossRef
21.
go back to reference Heldwein EE, Lou H, Bender FC, Cohen GH, Eisenberg RJ, Harrison SC (2006) Crystal structure of glycoprotein B from herpes simplex virus 1. Science 313:217–220PubMedCrossRef Heldwein EE, Lou H, Bender FC, Cohen GH, Eisenberg RJ, Harrison SC (2006) Crystal structure of glycoprotein B from herpes simplex virus 1. Science 313:217–220PubMedCrossRef
22.
go back to reference Hannah BP, Cairns TM, Bender FC, Whitbeck JC, Lou H, Eisenberg RJ, Cohen GH (2009) Herpes simplex virus glycoprotein B associates with target membranes via its fusion loops. J Virol 83:6825–6836PubMedCrossRef Hannah BP, Cairns TM, Bender FC, Whitbeck JC, Lou H, Eisenberg RJ, Cohen GH (2009) Herpes simplex virus glycoprotein B associates with target membranes via its fusion loops. J Virol 83:6825–6836PubMedCrossRef
23.
go back to reference Wright CC, Wisner TW, Hannah BP, Eisenberg RJ, Cohen GH, Johnson DC (2009) Fusion between perinuclear virions and the outer nuclear membrane requires the fusogenic activity of herpes simplex virus gB. J Virol 83:11847–11856PubMedCrossRef Wright CC, Wisner TW, Hannah BP, Eisenberg RJ, Cohen GH, Johnson DC (2009) Fusion between perinuclear virions and the outer nuclear membrane requires the fusogenic activity of herpes simplex virus gB. J Virol 83:11847–11856PubMedCrossRef
24.
go back to reference Atanasiu D, Whitbeck JC, Ponce de Leon M, Lou H, Hannah BP, Cohen GH, Eisenberg RJ (2010) Bimolecular complementation defines functional regions of herpes simplex virus gB that are involved with gH/gL as a necessary step leading to cell fusion. J Virol 84:3825–3834 Atanasiu D, Whitbeck JC, Ponce de Leon M, Lou H, Hannah BP, Cohen GH, Eisenberg RJ (2010) Bimolecular complementation defines functional regions of herpes simplex virus gB that are involved with gH/gL as a necessary step leading to cell fusion. J Virol 84:3825–3834
25.
go back to reference Ejercito PM, Kieff ED, Roizman B (1968) Characterization of herpes simplex virus strains differing in their effects on social behaviour of infected cells. J Gen Virol 2:357–364PubMedCrossRef Ejercito PM, Kieff ED, Roizman B (1968) Characterization of herpes simplex virus strains differing in their effects on social behaviour of infected cells. J Gen Virol 2:357–364PubMedCrossRef
26.
go back to reference Holland TC, Marlin SD, Levine M, Glorioso J (1983) Antigenic variants of herpes simplex virus selected with glycoprotein-specific monoclonal antibodies. J Virol 45:672–682PubMed Holland TC, Marlin SD, Levine M, Glorioso J (1983) Antigenic variants of herpes simplex virus selected with glycoprotein-specific monoclonal antibodies. J Virol 45:672–682PubMed
27.
go back to reference Kousoulas KG, Pellett PE, Pereira L, Roizman B (1984) Mutations affecting conformation or sequence of neutralizing epitopes identified by reactivity of viable plaques segregate from syn and ts domains of HSV-1(F) gB gene. Virology 135:379–394PubMedCrossRef Kousoulas KG, Pellett PE, Pereira L, Roizman B (1984) Mutations affecting conformation or sequence of neutralizing epitopes identified by reactivity of viable plaques segregate from syn and ts domains of HSV-1(F) gB gene. Virology 135:379–394PubMedCrossRef
28.
go back to reference Kousoulas KG, Huo B, Pereira L (1988) Antibody-resistant mutations in cross-reactive and type-specific epitopes of herpes simplex virus 1 glycoprotein B map in separate domains. Virology 166:423–431PubMedCrossRef Kousoulas KG, Huo B, Pereira L (1988) Antibody-resistant mutations in cross-reactive and type-specific epitopes of herpes simplex virus 1 glycoprotein B map in separate domains. Virology 166:423–431PubMedCrossRef
29.
go back to reference Highlander SL, Dorney DJ, Gage PJ, Holland TC, Cai W, Person S, Levine M, Glorioso JC (1989) Identification of mar mutations in herpes simplex virus type 1 glycoprotein B which alter antigenic structure and function in virus penetration. J Virol 63:730–738PubMed Highlander SL, Dorney DJ, Gage PJ, Holland TC, Cai W, Person S, Levine M, Glorioso JC (1989) Identification of mar mutations in herpes simplex virus type 1 glycoprotein B which alter antigenic structure and function in virus penetration. J Virol 63:730–738PubMed
30.
go back to reference Pereira L, Ali M, Kousoulas K, Huo B, Banks T (1989) Domain structure of herpes simplex virus 1 glycoprotein B: neutralizing epitopes map in regions of continuous and discontinuous residues. Virology 172:11–24PubMedCrossRef Pereira L, Ali M, Kousoulas K, Huo B, Banks T (1989) Domain structure of herpes simplex virus 1 glycoprotein B: neutralizing epitopes map in regions of continuous and discontinuous residues. Virology 172:11–24PubMedCrossRef
31.
go back to reference Qadri I, Gimeno C, Navarro D, Pereira L (1991) Mutations in conformation-dependent domains of herpes simplex virus 1 glycoprotein B affect the antigenic properties, dimerization, and transport of the molecule. Virology 180:135–152PubMedCrossRef Qadri I, Gimeno C, Navarro D, Pereira L (1991) Mutations in conformation-dependent domains of herpes simplex virus 1 glycoprotein B affect the antigenic properties, dimerization, and transport of the molecule. Virology 180:135–152PubMedCrossRef
32.
go back to reference Navarro D, Paz P, Pereira L (1992) Domains of herpes simplex virus I glycoprotein B that function in virus penetration, cell-to-cell spread, and cell fusion. Virology 186:99–112PubMedCrossRef Navarro D, Paz P, Pereira L (1992) Domains of herpes simplex virus I glycoprotein B that function in virus penetration, cell-to-cell spread, and cell fusion. Virology 186:99–112PubMedCrossRef
33.
go back to reference McGeoch DJ, Dalrymple MA, Davison AJ, Dolan A, Frame MC, McNab D, Perry LJ, Scott JE, Taylor P (1988) The complete DNA sequence of the long unique region in the genome of herpes simplex virus type 1. J Gen Virol 69:1531–1574PubMedCrossRef McGeoch DJ, Dalrymple MA, Davison AJ, Dolan A, Frame MC, McNab D, Perry LJ, Scott JE, Taylor P (1988) The complete DNA sequence of the long unique region in the genome of herpes simplex virus type 1. J Gen Virol 69:1531–1574PubMedCrossRef
34.
go back to reference Sambrook J, Fritsch EF, Maniatis T (eds) (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, NY Sambrook J, Fritsch EF, Maniatis T (eds) (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, NY
35.
go back to reference Graham FL, van der Eb AJ (1973) A new technique for the assay of infectivity of human adenovirus 5 DNA. Virology 52:456–467PubMedCrossRef Graham FL, van der Eb AJ (1973) A new technique for the assay of infectivity of human adenovirus 5 DNA. Virology 52:456–467PubMedCrossRef
36.
go back to reference Stow ND, Wilkie NM (1976) An improved technique for obtaining enhanced infectivity with herpes simplex virus type 1 DNA. J Gen Virol 33:447–458PubMedCrossRef Stow ND, Wilkie NM (1976) An improved technique for obtaining enhanced infectivity with herpes simplex virus type 1 DNA. J Gen Virol 33:447–458PubMedCrossRef
37.
go back to reference Frank R (1992) Spot synthesis: an easy technique for the positionally addressable, parallel chemical synthesis on a membrane support. Tetrahedron 48:9217–9232CrossRef Frank R (1992) Spot synthesis: an easy technique for the positionally addressable, parallel chemical synthesis on a membrane support. Tetrahedron 48:9217–9232CrossRef
38.
go back to reference Kramer A, Schneider-Mergener J (1998) Synthesis and screening of peptide libraries on continuous cellulose membrane supports. Methods Mol Biol 87:25–39PubMed Kramer A, Schneider-Mergener J (1998) Synthesis and screening of peptide libraries on continuous cellulose membrane supports. Methods Mol Biol 87:25–39PubMed
39.
go back to reference Geysen HM, Rodda SJ, Mason TJ, Tribbick G, Schoofs PG (1987) Strategies for epitope analysis using peptide synthesis. J Immunol Methods 102:259–274PubMedCrossRef Geysen HM, Rodda SJ, Mason TJ, Tribbick G, Schoofs PG (1987) Strategies for epitope analysis using peptide synthesis. J Immunol Methods 102:259–274PubMedCrossRef
40.
go back to reference Reineke U (2009) Antibody epitope mapping using de novo generated synthetic peptide libraries. Methods Mol Biol 524:203–211PubMedCrossRef Reineke U (2009) Antibody epitope mapping using de novo generated synthetic peptide libraries. Methods Mol Biol 524:203–211PubMedCrossRef
41.
go back to reference Pinilla C, Appel JR, Houghten RA (1993) Functional importance of amino acid residues making up peptide antigenic determinants. Mol Immunol 30:577–585PubMedCrossRef Pinilla C, Appel JR, Houghten RA (1993) Functional importance of amino acid residues making up peptide antigenic determinants. Mol Immunol 30:577–585PubMedCrossRef
42.
go back to reference Reineke U, Ivascu C, Schlief M, Landgraf C, Gericke S, Zahn G, Herzel H, Volkmer-Engert R, Schneider-Mergener J (2002) Identification of distinct antibody epitopes and mimotopes from a peptide array of 5520 randomly generated sequences. J Immunol Methods 267:37–51PubMedCrossRef Reineke U, Ivascu C, Schlief M, Landgraf C, Gericke S, Zahn G, Herzel H, Volkmer-Engert R, Schneider-Mergener J (2002) Identification of distinct antibody epitopes and mimotopes from a peptide array of 5520 randomly generated sequences. J Immunol Methods 267:37–51PubMedCrossRef
43.
go back to reference Kahlon J, Whitley RJ (1988) Antibody response of the newborn after herpes simplex virus infection. J Infect Dis 158:925–933PubMedCrossRef Kahlon J, Whitley RJ (1988) Antibody response of the newborn after herpes simplex virus infection. J Infect Dis 158:925–933PubMedCrossRef
44.
go back to reference Reed LJ, Muench H (1938) A simple method of estimating fifty percent endpoints. Am J Hyg 27:493–497 Reed LJ, Muench H (1938) A simple method of estimating fifty percent endpoints. Am J Hyg 27:493–497
45.
go back to reference Andersen PH, Nielsen M, Lund O (2006) Prediction of residues in discontinuous B-cell epitopes using protein 3D structures. Protein Sci 15:2558–2567CrossRef Andersen PH, Nielsen M, Lund O (2006) Prediction of residues in discontinuous B-cell epitopes using protein 3D structures. Protein Sci 15:2558–2567CrossRef
46.
go back to reference Van Regenmortel MHV (2009) What is a B-cell epitope? Methods Mol Biol 524:3–20 Van Regenmortel MHV (2009) What is a B-cell epitope? Methods Mol Biol 524:3–20
47.
go back to reference Gao B, Esnouf MP (1996) Elucidation of the core residues of an epitope using membrane-based combinatorial peptide libraries. J Biol Chem 271:24634–24638PubMedCrossRef Gao B, Esnouf MP (1996) Elucidation of the core residues of an epitope using membrane-based combinatorial peptide libraries. J Biol Chem 271:24634–24638PubMedCrossRef
48.
go back to reference Korth C, Stierli B, Streit P, Moser M, Schaller O, Fischer R, Schulz-Schaeffer W, Kretzschmar H, Raeber A, Braun U, Ehrensperger F, Hornemann S, Glockshuber R, Riek R, Billeter M, Wüthrich K, Oesch B (1997) Prion (PrPSc)-specific epitope defined by a monoclonal antibody. Nature 390:74–77PubMedCrossRef Korth C, Stierli B, Streit P, Moser M, Schaller O, Fischer R, Schulz-Schaeffer W, Kretzschmar H, Raeber A, Braun U, Ehrensperger F, Hornemann S, Glockshuber R, Riek R, Billeter M, Wüthrich K, Oesch B (1997) Prion (PrPSc)-specific epitope defined by a monoclonal antibody. Nature 390:74–77PubMedCrossRef
49.
go back to reference Prodinger WM, Schwendinger MG, Schoch J, Köchle M, Larcher C, Dierich MP (1998) Characterization of C3dg binding to a recess formed between short consensus repeats 1 and 2 of complement receptor type 2 (CR2; CD21). J Immunol 161:4604–4610PubMed Prodinger WM, Schwendinger MG, Schoch J, Köchle M, Larcher C, Dierich MP (1998) Characterization of C3dg binding to a recess formed between short consensus repeats 1 and 2 of complement receptor type 2 (CR2; CD21). J Immunol 161:4604–4610PubMed
50.
go back to reference Reineke U, Sabat R, Misselwitz R, Welfle H, Volk HD, Schneider-Mergener J (1999) A synthetic mimic of a discontinuous binding site on interleukin-10. Nat Biotechnol 17:271–275PubMedCrossRef Reineke U, Sabat R, Misselwitz R, Welfle H, Volk HD, Schneider-Mergener J (1999) A synthetic mimic of a discontinuous binding site on interleukin-10. Nat Biotechnol 17:271–275PubMedCrossRef
51.
go back to reference Bian C, Zhang X, Cai X, Zhang L, Chen Z, Zha Y, Xu Y, Xu K, Lu W, Yan L, Yuan J, Feng J, Hao P, Wang Q, Zhao G, Liu G, Zhu X, Shen H, Zheng B, Shen B, Sun B (2009) Conserved amino acids W423 and N424 in receptor-binding domain of SARS-CoV are potential targets for therapeutic monoclonal antibody. Virology 383:39–46PubMedCrossRef Bian C, Zhang X, Cai X, Zhang L, Chen Z, Zha Y, Xu Y, Xu K, Lu W, Yan L, Yuan J, Feng J, Hao P, Wang Q, Zhao G, Liu G, Zhu X, Shen H, Zheng B, Shen B, Sun B (2009) Conserved amino acids W423 and N424 in receptor-binding domain of SARS-CoV are potential targets for therapeutic monoclonal antibody. Virology 383:39–46PubMedCrossRef
52.
go back to reference Villard S, Piquer D, Raut S, Léonetti JP, Saint-Remy JM, Granier C (2002) Low molecular weight peptides restore the procoagulant activity of factor VIII in the presence of the potent inhibitor antibody ESH8. J Biol Chem 277:27232–27239PubMedCrossRef Villard S, Piquer D, Raut S, Léonetti JP, Saint-Remy JM, Granier C (2002) Low molecular weight peptides restore the procoagulant activity of factor VIII in the presence of the potent inhibitor antibody ESH8. J Biol Chem 277:27232–27239PubMedCrossRef
53.
go back to reference Liljeqvist JA, Trybala E, Hoebeke J, Svennerholm B, Bergström T (2002) Monoclonal antibodies and human sera directed to the secreted glycoprotein G of herpes simplex virus type 2 recognize type-specific antigenic determinants. J Gen Virol 83:157–165PubMed Liljeqvist JA, Trybala E, Hoebeke J, Svennerholm B, Bergström T (2002) Monoclonal antibodies and human sera directed to the secreted glycoprotein G of herpes simplex virus type 2 recognize type-specific antigenic determinants. J Gen Virol 83:157–165PubMed
54.
go back to reference Reineke U, Schneider-Mergener J, Schutkowski M (2006) Peptide arrays in proteomics and drug discovery. In: Ozkan M, Heller MJ (eds) BioMEMS and biomedical nanotechnology, volume II, micro and nano-technologies for genomics and proteomics. Springer, Berlin, pp 161–282 Reineke U, Schneider-Mergener J, Schutkowski M (2006) Peptide arrays in proteomics and drug discovery. In: Ozkan M, Heller MJ (eds) BioMEMS and biomedical nanotechnology, volume II, micro and nano-technologies for genomics and proteomics. Springer, Berlin, pp 161–282
55.
go back to reference Roche S, Bressanelli S, Rey FA, Gaudin Y (2006) Crystal structure of the low-pH form of the vesicular stomatitis virus glycoprotein G. Science 313:187–191PubMedCrossRef Roche S, Bressanelli S, Rey FA, Gaudin Y (2006) Crystal structure of the low-pH form of the vesicular stomatitis virus glycoprotein G. Science 313:187–191PubMedCrossRef
56.
go back to reference Roche S, Rey FA, Gaudin Y, Bressanelli S (2007) Structure of the prefusion form of the vesicular stomatitis virus glycoprotein G. Science 315:843–848PubMedCrossRef Roche S, Rey FA, Gaudin Y, Bressanelli S (2007) Structure of the prefusion form of the vesicular stomatitis virus glycoprotein G. Science 315:843–848PubMedCrossRef
57.
go back to reference Lin E, Spear PG (2007) Random linker-insertion mutagenesis to identify functional domains of herpes simplex virus type 1 glycoprotein B. Proc Natl Acad Sci USA 104:13140–13145PubMedCrossRef Lin E, Spear PG (2007) Random linker-insertion mutagenesis to identify functional domains of herpes simplex virus type 1 glycoprotein B. Proc Natl Acad Sci USA 104:13140–13145PubMedCrossRef
58.
go back to reference Bender FC, Samanta M, Heldwein EE, Ponce de Leon M, Bilman E, Lou H, Whitbeck JC, Eisenberg RJ, Cohen GH (2007) Antigenic and mutational analyses of herpes simplex virus glycoprotein B reveal four functional regions. J Virol 81:3827–3841 Bender FC, Samanta M, Heldwein EE, Ponce de Leon M, Bilman E, Lou H, Whitbeck JC, Eisenberg RJ, Cohen GH (2007) Antigenic and mutational analyses of herpes simplex virus glycoprotein B reveal four functional regions. J Virol 81:3827–3841
Metadata
Title
Characterisation of the epitope for a herpes simplex virus glycoprotein B-specific monoclonal antibody with high protective capacity
Authors
Martin P. Däumer
Beate Schneider
Doris M. Giesen
Sheriff Aziz
Rolf Kaiser
Bernd Kupfer
Karl E. Schneweis
Jens Schneider-Mergener
Ulrich Reineke
Bertfried Matz
Anna M. Eis-Hübinger
Publication date
01-05-2011
Publisher
Springer-Verlag
Published in
Medical Microbiology and Immunology / Issue 2/2011
Print ISSN: 0300-8584
Electronic ISSN: 1432-1831
DOI
https://doi.org/10.1007/s00430-010-0174-x

Other articles of this Issue 2/2011

Medical Microbiology and Immunology 2/2011 Go to the issue