Skip to main content
Top
Published in: Medical Microbiology and Immunology 2/2008

01-06-2008 | Review

CD8 T-cell-based immunotherapy of cytomegalovirus infection: “proof of concept” provided by the murine model

Authors: Rafaela Holtappels, Verena Böhm, Jürgen Podlech, Matthias J. Reddehase

Published in: Medical Microbiology and Immunology | Issue 2/2008

Login to get access

Abstract

Adoptive transfer of antiviral effector or memory CD8 T cells is a therapeutic option for preventing acute cytomegalovirus (CMV) disease after primary or recurrent infection in immunocompromised recipients of hematopoietic stem cell transplantation (HSCT) aimed at curing hematopoietic malignancies. Preclinical research in murine models has demonstrated the power of CD8 T-cell-based preemptive immunotherapy and has encouraged clinical trials that gave promising results. The clinical evidence, however, is based primarily on statistical analyses indicating a reduced incidence of CMV-associated complications. Here, we will briefly review the data obtained from the murine model showing that CD8 T cells derived from CMV-immune donors and administered either as peptide-selected cytolytic T lymphocyte lines or after ex vivo purification by T-cell-receptor-specific cell sorting can indeed prevent CMV-mediated histopathology and multiple organ failure.
Literature
1.
2.
go back to reference Hebart H, Einsele H (2004) Clinical aspects of CMV infection after stem cell transplantation. Hum Immunol 65:432–436PubMedCrossRef Hebart H, Einsele H (2004) Clinical aspects of CMV infection after stem cell transplantation. Hum Immunol 65:432–436PubMedCrossRef
3.
go back to reference Riddell SR (1995) Pathogenesis of cytomegalovirus pneumonia in immunocompromised hosts. Semin Respir Infect 10:199–208PubMed Riddell SR (1995) Pathogenesis of cytomegalovirus pneumonia in immunocompromised hosts. Semin Respir Infect 10:199–208PubMed
4.
go back to reference Wills MR, Carmichael AJ, Patrick Sissons JG (2006) Adaptive cellular immunity to human cytomegalovirus. In: Reddehase MJ (ed) Cytomegaloviruses: molecular biology and immunology. Caister Academic Press, Norfolk, pp 341–365 Wills MR, Carmichael AJ, Patrick Sissons JG (2006) Adaptive cellular immunity to human cytomegalovirus. In: Reddehase MJ (ed) Cytomegaloviruses: molecular biology and immunology. Caister Academic Press, Norfolk, pp 341–365
5.
go back to reference Riddell SR, Greenberg PD (1995) Principles for adoptive T cell therapy of human viral diseases. Annu Rev Immunol 13:545–586PubMedCrossRef Riddell SR, Greenberg PD (1995) Principles for adoptive T cell therapy of human viral diseases. Annu Rev Immunol 13:545–586PubMedCrossRef
6.
go back to reference Moss P, Rickinson A (2005) Cellular immunotherapy for viral infection after HSC transplantation. Nat Rev Immunol 5:9–20PubMedCrossRef Moss P, Rickinson A (2005) Cellular immunotherapy for viral infection after HSC transplantation. Nat Rev Immunol 5:9–20PubMedCrossRef
7.
go back to reference Pepperl-Klindworth S, Plachter B (2006) Current perspectives in vaccine development. In: Reddehase MJ (ed) Cytomegaloviruses: molecular biology and immunology. Caister Academic Press, Norfolk, pp 551–572 Pepperl-Klindworth S, Plachter B (2006) Current perspectives in vaccine development. In: Reddehase MJ (ed) Cytomegaloviruses: molecular biology and immunology. Caister Academic Press, Norfolk, pp 551–572
8.
go back to reference Reddehase MJ, Weiland F, Münch K, Jonjic S, Lüske A, Koszinowski UH (1985) Interstitial murine cytomegalovirus pneumonia after irradiation: characterization of cells that limit viral replication during established infection of the lungs. J Virol 55:264–273PubMedPubMedCentralCrossRef Reddehase MJ, Weiland F, Münch K, Jonjic S, Lüske A, Koszinowski UH (1985) Interstitial murine cytomegalovirus pneumonia after irradiation: characterization of cells that limit viral replication during established infection of the lungs. J Virol 55:264–273PubMedPubMedCentralCrossRef
9.
go back to reference Reddehase MJ, Mutter W, Koszinowski UH (1987) In vivo application of recombinant interleukin 2 in the immunotherapy of established cytomegalovirus infection. J Exp Med 165:650–656PubMedCrossRef Reddehase MJ, Mutter W, Koszinowski UH (1987) In vivo application of recombinant interleukin 2 in the immunotherapy of established cytomegalovirus infection. J Exp Med 165:650–656PubMedCrossRef
10.
go back to reference Reddehase MJ, Mutter W, Münch K, Bühring HJ, Koszinowski UH (1987) CD8-positive T lymphocytes specific for murine cytomegalovirus immediate-early antigens mediate protective immunity. J Virol 61:3102–3108PubMedPubMedCentralCrossRef Reddehase MJ, Mutter W, Münch K, Bühring HJ, Koszinowski UH (1987) CD8-positive T lymphocytes specific for murine cytomegalovirus immediate-early antigens mediate protective immunity. J Virol 61:3102–3108PubMedPubMedCentralCrossRef
11.
go back to reference Reddehase MJ, Jonjic S, Weiland F, Mutter W, Koszinowski UH (1988) Adoptive immunotherapy of murine cytomegalovirus adrenalitis in the immunocompromised host: CD4-helper-independent antiviral function of CD8-positive memory T lymphocytes derived from latently infected donors. J Virol 62:1061–1065PubMedPubMedCentralCrossRef Reddehase MJ, Jonjic S, Weiland F, Mutter W, Koszinowski UH (1988) Adoptive immunotherapy of murine cytomegalovirus adrenalitis in the immunocompromised host: CD4-helper-independent antiviral function of CD8-positive memory T lymphocytes derived from latently infected donors. J Virol 62:1061–1065PubMedPubMedCentralCrossRef
12.
go back to reference Greenberg PD, Reusser P, Goodrich JM, Riddell SR (1991) Development of a treatment regimen for human cytomegalovirus (CMV) infection in bone marrow transplantation recipients by adoptive transfer of donor-derived CMV-specific T cell clones expanded in vitro. Ann NY Acad Sci 636:184–195PubMedCrossRef Greenberg PD, Reusser P, Goodrich JM, Riddell SR (1991) Development of a treatment regimen for human cytomegalovirus (CMV) infection in bone marrow transplantation recipients by adoptive transfer of donor-derived CMV-specific T cell clones expanded in vitro. Ann NY Acad Sci 636:184–195PubMedCrossRef
13.
go back to reference Riddell SR, Watanabe KS, Goodrich JM, Li CR, Agha ME, Greenberg PD (1992) Restoration of viral immunity in immunodeficient humans by the adoptive transfer of T cell clones. Science 257:238–241PubMedCrossRef Riddell SR, Watanabe KS, Goodrich JM, Li CR, Agha ME, Greenberg PD (1992) Restoration of viral immunity in immunodeficient humans by the adoptive transfer of T cell clones. Science 257:238–241PubMedCrossRef
14.
go back to reference Walter EA, Greenberg PD, Gilbert MJ, Finch RJ, Watanabe KS, Thomas ED, Riddell SR (1996) Reconstitution of cellular immunity against cytomegalovirus in recipients of allogeneic bone marrow by transfer of T-cell clones from the donor. N Engl J Med 333:1038–1044CrossRef Walter EA, Greenberg PD, Gilbert MJ, Finch RJ, Watanabe KS, Thomas ED, Riddell SR (1996) Reconstitution of cellular immunity against cytomegalovirus in recipients of allogeneic bone marrow by transfer of T-cell clones from the donor. N Engl J Med 333:1038–1044CrossRef
15.
go back to reference Peggs KS, Verfuerth S, Pizzey A, Khan N, Guiver M, Moss PA, Mackinnon S (2003) Adoptive cellular therapy for early cytomegalovirus infection after allogeneic stem-cell transplantation with virus-specific T-cell lines. Lancet 362:1275–1277CrossRef Peggs KS, Verfuerth S, Pizzey A, Khan N, Guiver M, Moss PA, Mackinnon S (2003) Adoptive cellular therapy for early cytomegalovirus infection after allogeneic stem-cell transplantation with virus-specific T-cell lines. Lancet 362:1275–1277CrossRef
16.
go back to reference Einsele H, Hamprecht K (2003) Immunotherapy of cytomegalovirus infection after stem-cell transplantation: a new option? Lancet 362:1343–1344PubMedCrossRef Einsele H, Hamprecht K (2003) Immunotherapy of cytomegalovirus infection after stem-cell transplantation: a new option? Lancet 362:1343–1344PubMedCrossRef
17.
go back to reference Pahl-Seibert M-F, Jülch M, Podlech J, Thomas D, Deegen P, Reddehase MJ, Holtappels R (2005) Highly protective in vivo function of cytomegalovirus IE1 epitope-specific memory CD8 T cells purified by T-cell receptor-based cell sorting. J Virol 79:5400–5413PubMedPubMedCentralCrossRef Pahl-Seibert M-F, Jülch M, Podlech J, Thomas D, Deegen P, Reddehase MJ, Holtappels R (2005) Highly protective in vivo function of cytomegalovirus IE1 epitope-specific memory CD8 T cells purified by T-cell receptor-based cell sorting. J Virol 79:5400–5413PubMedPubMedCentralCrossRef
18.
go back to reference Cobbold M, Khan N, Pourgheysari B, Tauro S, McDonald C, Osman H, Assenmacher M, Billingham L, Steward C, Crawley C, Olavarria E, Goldman J, Chakraverty R, Mahendra P, Craddock C, Moss PA (2005) Adoptive transfer of cytomegalovirus-specific CTL to stem cell transplant patients after selection by HLA-peptide tetramers. J Exp Med 202:379–386PubMedPubMedCentralCrossRef Cobbold M, Khan N, Pourgheysari B, Tauro S, McDonald C, Osman H, Assenmacher M, Billingham L, Steward C, Crawley C, Olavarria E, Goldman J, Chakraverty R, Mahendra P, Craddock C, Moss PA (2005) Adoptive transfer of cytomegalovirus-specific CTL to stem cell transplant patients after selection by HLA-peptide tetramers. J Exp Med 202:379–386PubMedPubMedCentralCrossRef
19.
go back to reference Sacher T, Podlech J, Mohr AC, Jordan S, Ruzsics Z, Reddehase MJ, Koszinowski UH (2008) Cell type specific labelling of a herpesvirus: the major virus producing cell type does not contribute to virus dissemination. Cell Host Microbe (in press) Sacher T, Podlech J, Mohr AC, Jordan S, Ruzsics Z, Reddehase MJ, Koszinowski UH (2008) Cell type specific labelling of a herpesvirus: the major virus producing cell type does not contribute to virus dissemination. Cell Host Microbe (in press)
20.
go back to reference Holtappels R, Munks WM, Podlech J, Reddehase MJ (2006) CD8 T-cell-based immunotherapy of cytomegalovirus disease in the mouse model of the immunocompromised bone marrow transplantation recipient. In: Reddehase MJ (ed) Cytomegaloviruses: molecular biology and immunology. Caister Academic Press, Norfolk, pp 383–418 Holtappels R, Munks WM, Podlech J, Reddehase MJ (2006) CD8 T-cell-based immunotherapy of cytomegalovirus disease in the mouse model of the immunocompromised bone marrow transplantation recipient. In: Reddehase MJ (ed) Cytomegaloviruses: molecular biology and immunology. Caister Academic Press, Norfolk, pp 383–418
21.
go back to reference Reddehase MJ, Simon CO, Seckert CK, Lemmermann N, Grzimek NK (2008) Murine model of cytomegalovirus latency and reactivation. In: Shenk TE, Stinski MF (eds) Human Cytomegalovirus. Current Topics in Microbiology and Immunology 325. Springer, Berlin , pp 315–332 Reddehase MJ, Simon CO, Seckert CK, Lemmermann N, Grzimek NK (2008) Murine model of cytomegalovirus latency and reactivation. In: Shenk TE, Stinski MF (eds) Human Cytomegalovirus. Current Topics in Microbiology and Immunology 325. Springer, Berlin , pp 315–332
22.
go back to reference Reddehase MJ (2002) Antigens and immunoevasins: opponents in cytomegalovirus immune surveillance. Nat Rev Immunol 2:831–844PubMedCrossRef Reddehase MJ (2002) Antigens and immunoevasins: opponents in cytomegalovirus immune surveillance. Nat Rev Immunol 2:831–844PubMedCrossRef
23.
go back to reference Reddehase MJ, Koszinowski UH (1984) Significance of herpesvirus immediate early gene expression in cellular immunity to cytomegalovirus infection. Nature 312:369–371PubMedCrossRef Reddehase MJ, Koszinowski UH (1984) Significance of herpesvirus immediate early gene expression in cellular immunity to cytomegalovirus infection. Nature 312:369–371PubMedCrossRef
24.
go back to reference Reddehase MJ, Bühring HJ, Koszinowski UH (1986) Cloned long-term cytolytic T-lymphocyte line with specificity for an immediate-early membrane antigen of murine cytomegalovirus. J Virol 57:408–412PubMedPubMedCentralCrossRef Reddehase MJ, Bühring HJ, Koszinowski UH (1986) Cloned long-term cytolytic T-lymphocyte line with specificity for an immediate-early membrane antigen of murine cytomegalovirus. J Virol 57:408–412PubMedPubMedCentralCrossRef
25.
go back to reference Borysiewicz LK, Hickling JK, Graham S, Sinclair J, Cranage MP, Smith GL, Sissons JG (1988) Human cytomegalovirus-specific cytotoxic T cells. Relative frequency of stage-specific CTL recognizing the 72-kD immediate early protein and glycoprotein B expressed by recombinant vaccinia viruses. J Exp Med 168:919–931PubMedCrossRef Borysiewicz LK, Hickling JK, Graham S, Sinclair J, Cranage MP, Smith GL, Sissons JG (1988) Human cytomegalovirus-specific cytotoxic T cells. Relative frequency of stage-specific CTL recognizing the 72-kD immediate early protein and glycoprotein B expressed by recombinant vaccinia viruses. J Exp Med 168:919–931PubMedCrossRef
26.
go back to reference Kern F, Surel IP, Faulhaber N, Frömmel C, Schneider-Mergener J, Schönemann C, Reinke P, Volk HD (1999) Target structures of the CD8(+)-T-cell response to human cytomegalovirus: the 72-kilodalton immediate-early protein revisited. J Virol 73:8179–8184PubMedPubMedCentralCrossRef Kern F, Surel IP, Faulhaber N, Frömmel C, Schneider-Mergener J, Schönemann C, Reinke P, Volk HD (1999) Target structures of the CD8(+)-T-cell response to human cytomegalovirus: the 72-kilodalton immediate-early protein revisited. J Virol 73:8179–8184PubMedPubMedCentralCrossRef
27.
go back to reference Gibson L, Piccini G, Lilleri D, Revello MG, Wang Z, Markel S, Diamond DJ, Luzuriaga K (2004) Human cytomegalovirus proteins pp65 and immediate early protein 1 are common targets for CD8+ T cell responses in children with congenital or postnatal human cytomegalovirus infection. J Immunol 172:2256–2264PubMedCrossRef Gibson L, Piccini G, Lilleri D, Revello MG, Wang Z, Markel S, Diamond DJ, Luzuriaga K (2004) Human cytomegalovirus proteins pp65 and immediate early protein 1 are common targets for CD8+ T cell responses in children with congenital or postnatal human cytomegalovirus infection. J Immunol 172:2256–2264PubMedCrossRef
28.
go back to reference Bunde T, Kirchner A, Hoffmeister B, Habedank D, Hetzer R, Cherepnev G, Proesch S, Reinke P, Volk HD, Lehmkuhl H, Kern F (2005) Protection from cytomegalovirus after transplantation is correlated with immediate early 1-specific CD8 T cells. J Exp Med 201:1031–1036PubMedPubMedCentralCrossRef Bunde T, Kirchner A, Hoffmeister B, Habedank D, Hetzer R, Cherepnev G, Proesch S, Reinke P, Volk HD, Lehmkuhl H, Kern F (2005) Protection from cytomegalovirus after transplantation is correlated with immediate early 1-specific CD8 T cells. J Exp Med 201:1031–1036PubMedPubMedCentralCrossRef
29.
go back to reference Sylwester AW, Mitchell BL, Edgar JB, Taormina C, Pelte C, Ruchti F, Sleath PR, Grabstein KH, Hosken NA, Kern F, Nelson JA, Picker LJ (2005) Broadly targeted human cytomegalovirus-specific CD4+ and CD8+ T cells dominate the memory compartments of exposed subjects. J Exp Med 202:673–685PubMedPubMedCentralCrossRef Sylwester AW, Mitchell BL, Edgar JB, Taormina C, Pelte C, Ruchti F, Sleath PR, Grabstein KH, Hosken NA, Kern F, Nelson JA, Picker LJ (2005) Broadly targeted human cytomegalovirus-specific CD4+ and CD8+ T cells dominate the memory compartments of exposed subjects. J Exp Med 202:673–685PubMedPubMedCentralCrossRef
32.
go back to reference Holtappels R, Podlech J, Geginat G, Steffens HP, Thomas D, Reddehase MJ (1998) Control of murine cytomegalovirus in the lungs: relative but not absolute immunodominance of the immediate-early 1 nonapeptide during the antiviral cytolytic T-lymphocyte response in pulmonary infiltrates. J Virol 72:7201–7212PubMedPubMedCentralCrossRef Holtappels R, Podlech J, Geginat G, Steffens HP, Thomas D, Reddehase MJ (1998) Control of murine cytomegalovirus in the lungs: relative but not absolute immunodominance of the immediate-early 1 nonapeptide during the antiviral cytolytic T-lymphocyte response in pulmonary infiltrates. J Virol 72:7201–7212PubMedPubMedCentralCrossRef
33.
go back to reference Podlech J, Holtappels R, Wirtz N, Steffens HP, Reddehase MJ (1998) Reconstitution of CD8 T cells is essential for the prevention of multiple-organ cytomegalovirus histopathology after bone marrow transplantation. J Gen Virol 79:2099–2104PubMedCrossRef Podlech J, Holtappels R, Wirtz N, Steffens HP, Reddehase MJ (1998) Reconstitution of CD8 T cells is essential for the prevention of multiple-organ cytomegalovirus histopathology after bone marrow transplantation. J Gen Virol 79:2099–2104PubMedCrossRef
34.
go back to reference Podlech J, Holtappels R, Pahl-Seibert M-F, Steffens HP, Reddehase MJ (2000) Murine model of interstitial cytomegalovirus pneumonia in syngeneic bone marrow transplantation: persistence of protective pulmonary CD8-T-cell infiltrates after clearance of acute infection. J Virol 74:7496–7507PubMedPubMedCentralCrossRef Podlech J, Holtappels R, Pahl-Seibert M-F, Steffens HP, Reddehase MJ (2000) Murine model of interstitial cytomegalovirus pneumonia in syngeneic bone marrow transplantation: persistence of protective pulmonary CD8-T-cell infiltrates after clearance of acute infection. J Virol 74:7496–7507PubMedPubMedCentralCrossRef
35.
go back to reference Alterio de Goss M, Holtappels R, Steffens HP, Podlech J, Angele P, Dreher L, Thomas D, Reddehase MJ (1998) Control of cytomegalovirus in bone marrow transplantation chimeras lacking the prevailing antigen-presenting molecule in recipient tissues rests primarily on recipient-derived CD8 T cells. J Virol 72:7733–7744CrossRef Alterio de Goss M, Holtappels R, Steffens HP, Podlech J, Angele P, Dreher L, Thomas D, Reddehase MJ (1998) Control of cytomegalovirus in bone marrow transplantation chimeras lacking the prevailing antigen-presenting molecule in recipient tissues rests primarily on recipient-derived CD8 T cells. J Virol 72:7733–7744CrossRef
36.
go back to reference Steffens HP, Kurz S, Holtappels R, Reddehase MJ (1998) Preemptive CD8 T-cell immunotherapy of acute cytomegalovirus infection prevents lethal disease, limits the burden of latent viral genomes, and reduces the risk of virus recurrence. J Virol 72:1797–1804PubMedPubMedCentralCrossRef Steffens HP, Kurz S, Holtappels R, Reddehase MJ (1998) Preemptive CD8 T-cell immunotherapy of acute cytomegalovirus infection prevents lethal disease, limits the burden of latent viral genomes, and reduces the risk of virus recurrence. J Virol 72:1797–1804PubMedPubMedCentralCrossRef
37.
go back to reference Holtappels R, Pahl-Seibert M-F, Thomas D, Reddehase MJ (2000) Enrichment of immediate-early 1(m123/pp89) peptide-specific CD8 T cells in a pulmonary CD62L(lo) memory-effector cell pool during latent murine cytomegalovirus infection of the lungs. J Virol 74:11495–11503PubMedPubMedCentralCrossRef Holtappels R, Pahl-Seibert M-F, Thomas D, Reddehase MJ (2000) Enrichment of immediate-early 1(m123/pp89) peptide-specific CD8 T cells in a pulmonary CD62L(lo) memory-effector cell pool during latent murine cytomegalovirus infection of the lungs. J Virol 74:11495–11503PubMedPubMedCentralCrossRef
38.
go back to reference Simon CO, Holtappels R, Tervo HM, Böhm V, Däubner T, Oehrlein-Karpi SA, Kühnapfel B, Renzaho A, Strand D, Podlech J, Reddehase MJ, Grzimek NK (2006) CD8 T cells control cytomegalovirus latency by epitope-specific sensing of transcriptional reactivation. J Virol 80:10436–10456PubMedPubMedCentralCrossRef Simon CO, Holtappels R, Tervo HM, Böhm V, Däubner T, Oehrlein-Karpi SA, Kühnapfel B, Renzaho A, Strand D, Podlech J, Reddehase MJ, Grzimek NK (2006) CD8 T cells control cytomegalovirus latency by epitope-specific sensing of transcriptional reactivation. J Virol 80:10436–10456PubMedPubMedCentralCrossRef
39.
go back to reference Morello CS, Ye M, Spector DH (2002) Development of a vaccine against murine cytomegalovirus (MCMV), consisting of a plasmid DNA and formalin-inactivated MCMV, that provides long-term, complete protection against viral replication. J Virol 76:4822–4835PubMedPubMedCentralCrossRef Morello CS, Ye M, Spector DH (2002) Development of a vaccine against murine cytomegalovirus (MCMV), consisting of a plasmid DNA and formalin-inactivated MCMV, that provides long-term, complete protection against viral replication. J Virol 76:4822–4835PubMedPubMedCentralCrossRef
40.
go back to reference Holtappels R, Thomas D, Podlech J, Geginat G, Steffens HP, Reddehase MJ (2000) The putative natural killer decoy early gene m04 (gp34) of murine cytomegalovirus encodes an antigenic peptide recognized by protective antiviral CD8 T cells. J Virol 74:1871–1884PubMedPubMedCentralCrossRef Holtappels R, Thomas D, Podlech J, Geginat G, Steffens HP, Reddehase MJ (2000) The putative natural killer decoy early gene m04 (gp34) of murine cytomegalovirus encodes an antigenic peptide recognized by protective antiviral CD8 T cells. J Virol 74:1871–1884PubMedPubMedCentralCrossRef
41.
go back to reference Morello CS, Cranmer LD, Spector DH (2000) Suppression of murine cytomegalovirus (MCMV) replication with a DNA vaccine encoding MCMV M84 (a homolog of human cytomegalovirus pp65). J Virol 74:3696–3708PubMedPubMedCentralCrossRef Morello CS, Cranmer LD, Spector DH (2000) Suppression of murine cytomegalovirus (MCMV) replication with a DNA vaccine encoding MCMV M84 (a homolog of human cytomegalovirus pp65). J Virol 74:3696–3708PubMedPubMedCentralCrossRef
42.
go back to reference Holtappels R, Podlech J, Grzimek NK, Thomas D, Pahl-Seibert M-F, Reddehase MJ (2001) Experimental preemptive immunotherapy of murine cytomegalovirus disease with CD8 T-cell lines specific for ppM83 and ppM84, the two homologs of human cytomegalovirus tegument protein ppUL83 (pp65). J Virol 75:6584–6600PubMedPubMedCentralCrossRef Holtappels R, Podlech J, Grzimek NK, Thomas D, Pahl-Seibert M-F, Reddehase MJ (2001) Experimental preemptive immunotherapy of murine cytomegalovirus disease with CD8 T-cell lines specific for ppM83 and ppM84, the two homologs of human cytomegalovirus tegument protein ppUL83 (pp65). J Virol 75:6584–6600PubMedPubMedCentralCrossRef
43.
go back to reference Ye M, Morello CS, Spector DH (2002) Strong CD8 T-cell responses following coimmunization with plasmids expressing the dominant pp89 and subdominant M84 antigens of murine cytomegalovirus correlate with long-term protection against subsequent viral challenge. J Virol 76:2100–2112PubMedPubMedCentralCrossRef Ye M, Morello CS, Spector DH (2002) Strong CD8 T-cell responses following coimmunization with plasmids expressing the dominant pp89 and subdominant M84 antigens of murine cytomegalovirus correlate with long-term protection against subsequent viral challenge. J Virol 76:2100–2112PubMedPubMedCentralCrossRef
44.
go back to reference Ye M, Morello CS, Spector DH (2004) Multiple epitopes in the murine cytomegalovirus early gene product M84 are efficiently presented in infected primary macrophages and contribute to strong CD8+-T-lymphocyte responses and protection following DNA immunization. J Virol 78:11233–11245PubMedPubMedCentralCrossRef Ye M, Morello CS, Spector DH (2004) Multiple epitopes in the murine cytomegalovirus early gene product M84 are efficiently presented in infected primary macrophages and contribute to strong CD8+-T-lymphocyte responses and protection following DNA immunization. J Virol 78:11233–11245PubMedPubMedCentralCrossRef
45.
go back to reference Morello CS, Kelley LA, Munks MW, Hill AB, Spector DH (2007) DNA immunization using highly conserved murine cytomegalovirus genes encoding homologs of human cytomegalovirus UL54 (DNA polymerase) and UL105 (helicase) elicits strong CD8 T-cell responses and is protective against systemic challenge. J Virol 81:7766–7775PubMedPubMedCentralCrossRef Morello CS, Kelley LA, Munks MW, Hill AB, Spector DH (2007) DNA immunization using highly conserved murine cytomegalovirus genes encoding homologs of human cytomegalovirus UL54 (DNA polymerase) and UL105 (helicase) elicits strong CD8 T-cell responses and is protective against systemic challenge. J Virol 81:7766–7775PubMedPubMedCentralCrossRef
46.
go back to reference Gonzales Armas JC, Morello CS, Cranmer LD, Spector DH (1996) DNA immunization confers protection against murine cytomegalovirus infection. J Virol 70:7921–7928CrossRef Gonzales Armas JC, Morello CS, Cranmer LD, Spector DH (1996) DNA immunization confers protection against murine cytomegalovirus infection. J Virol 70:7921–7928CrossRef
47.
go back to reference Holtappels R, Thomas D, Podlech J, Reddehase MJ (2002) Two antigenic peptides from genes m123 and m164 of murine cytomegalovirus quantitatively dominate CD8 T-cell memory in the H-2d haplotype. J Virol 76:151–164PubMedPubMedCentralCrossRef Holtappels R, Thomas D, Podlech J, Reddehase MJ (2002) Two antigenic peptides from genes m123 and m164 of murine cytomegalovirus quantitatively dominate CD8 T-cell memory in the H-2d haplotype. J Virol 76:151–164PubMedPubMedCentralCrossRef
48.
go back to reference Holtappels R, Janda J, Thomas D, Schenk S, Reddehase MJ, Geginat G (2008) Adoptive CD8 T cell control of pathogens cannot be improved by combining protective epitope specificities. J Infect Dis 197:622–629PubMedCrossRef Holtappels R, Janda J, Thomas D, Schenk S, Reddehase MJ, Geginat G (2008) Adoptive CD8 T cell control of pathogens cannot be improved by combining protective epitope specificities. J Infect Dis 197:622–629PubMedCrossRef
49.
go back to reference Hanson LK, Campbell AE (2006) Determinants of macrophage tropism. In: Reddehase MJ (ed) Cytomegaloviruses: molecular biology and immunology. Caister Academic Press, Norfolk, pp 341–365 Hanson LK, Campbell AE (2006) Determinants of macrophage tropism. In: Reddehase MJ (ed) Cytomegaloviruses: molecular biology and immunology. Caister Academic Press, Norfolk, pp 341–365
50.
go back to reference Mocarski Jr ES, Hahn G, Lofgren White K, Xu J, Slobedman B, Hertel L, Aguirre SA, Noda S (2006) Myeloid cell recruitment and function in pathogenesis and latency. In: Reddehase MJ (ed) Cytomegaloviruses: molecular biology and immunology. Caister Academic Press, Norfolk, pp 465–481 Mocarski Jr ES, Hahn G, Lofgren White K, Xu J, Slobedman B, Hertel L, Aguirre SA, Noda S (2006) Myeloid cell recruitment and function in pathogenesis and latency. In: Reddehase MJ (ed) Cytomegaloviruses: molecular biology and immunology. Caister Academic Press, Norfolk, pp 465–481
51.
go back to reference Ménard C, Wagner M, Ruzsics Z, Holak K, Brune W, Campbell AE, Koszinowski UH (2003) Role of murine cytomegalovirus US22 gene family members in replication in macrophages. J Virol 77:5557–5570PubMedPubMedCentralCrossRef Ménard C, Wagner M, Ruzsics Z, Holak K, Brune W, Campbell AE, Koszinowski UH (2003) Role of murine cytomegalovirus US22 gene family members in replication in macrophages. J Virol 77:5557–5570PubMedPubMedCentralCrossRef
52.
go back to reference Cicin-Sain L, Podlech J, Messerle M, Reddehase MJ, Koszinowski UH (2005) Frequent coinfection of cells explains functional in vivo complementation between cytomegalovirus variants in the multiply infected host. J Virol 79:9492–9502PubMedPubMedCentralCrossRef Cicin-Sain L, Podlech J, Messerle M, Reddehase MJ, Koszinowski UH (2005) Frequent coinfection of cells explains functional in vivo complementation between cytomegalovirus variants in the multiply infected host. J Virol 79:9492–9502PubMedPubMedCentralCrossRef
53.
go back to reference Cicin-Sain L, Ruzsics Z, Podlech J, Bubic I, Ménard C, Jonjic S, Reddehase MJ, Koszinowski UH (2008) Dominant-negative FADD rescues the in vivo fitness of a cytomegalovirus lacking an anti-apoptotic viral gene. J Virol 82:2056–2064PubMedCrossRef Cicin-Sain L, Ruzsics Z, Podlech J, Bubic I, Ménard C, Jonjic S, Reddehase MJ, Koszinowski UH (2008) Dominant-negative FADD rescues the in vivo fitness of a cytomegalovirus lacking an anti-apoptotic viral gene. J Virol 82:2056–2064PubMedCrossRef
54.
go back to reference Erlach KC, Böhm V, Seckert CK, Reddehase MJ, Podlech J (2006) Lymphoma cell apoptosis in the liver induced by distant murine cytomegalovirus infection. J Virol 80:4801–4819PubMedPubMedCentralCrossRef Erlach KC, Böhm V, Seckert CK, Reddehase MJ, Podlech J (2006) Lymphoma cell apoptosis in the liver induced by distant murine cytomegalovirus infection. J Virol 80:4801–4819PubMedPubMedCentralCrossRef
55.
go back to reference Jonjic S, Pavic I, Lucin P, Rukavina D, Koszinowski UH (1990) Efficacious control of cytomegalovirus infection after long-term depletion of CD8+ T lymphocytes. J Virol 64:5457–5464PubMedPubMedCentralCrossRef Jonjic S, Pavic I, Lucin P, Rukavina D, Koszinowski UH (1990) Efficacious control of cytomegalovirus infection after long-term depletion of CD8+ T lymphocytes. J Virol 64:5457–5464PubMedPubMedCentralCrossRef
56.
go back to reference Polic B, Jonjic S, Pavic I, Crnkovic I, Zorica I, Hengel H, Lucin P, Koszinowski UH (1996) Lack of MHC class I complex expression has no effect on spread and control of cytomegalovirus infection in vivo. J Gen Virol 77:217–225PubMedCrossRef Polic B, Jonjic S, Pavic I, Crnkovic I, Zorica I, Hengel H, Lucin P, Koszinowski UH (1996) Lack of MHC class I complex expression has no effect on spread and control of cytomegalovirus infection in vivo. J Gen Virol 77:217–225PubMedCrossRef
57.
go back to reference Humphreys IR, Loewendorf A, de Trez C, Schneider K, Benedict CA, Munks MW, Ware CF, Croft M (2007) OX40 costimulation promotes persistence of cytomegalovirus-specific CD8 T cells: a CD4-dependent mechanism. J Immunol 179:2195–2202PubMedCrossRef Humphreys IR, Loewendorf A, de Trez C, Schneider K, Benedict CA, Munks MW, Ware CF, Croft M (2007) OX40 costimulation promotes persistence of cytomegalovirus-specific CD8 T cells: a CD4-dependent mechanism. J Immunol 179:2195–2202PubMedCrossRef
58.
go back to reference Munks MW, Gold MC, Zajac AL, Doom CM, Morello CS, Spector DH, Hill AB (2006) Genome-wide analysis reveals a highly diverse CD8 T cell response to murine cytomegalovirus. J Immunol 176:3760–3766PubMedCrossRef Munks MW, Gold MC, Zajac AL, Doom CM, Morello CS, Spector DH, Hill AB (2006) Genome-wide analysis reveals a highly diverse CD8 T cell response to murine cytomegalovirus. J Immunol 176:3760–3766PubMedCrossRef
59.
go back to reference Gold MC, Munks MW, Wagner M, Koszinowski UH, Hill AB, Fling SP (2002) The murine cytomegalovirus immunomodulatory gene m152 prevents recognition of infected cells by M45-specific CTL but does not alter the immunodominance of the M45-specific CD8 T cell response in vivo. J Immunol 169:359–365PubMedCrossRef Gold MC, Munks MW, Wagner M, Koszinowski UH, Hill AB, Fling SP (2002) The murine cytomegalovirus immunomodulatory gene m152 prevents recognition of infected cells by M45-specific CTL but does not alter the immunodominance of the M45-specific CD8 T cell response in vivo. J Immunol 169:359–365PubMedCrossRef
60.
go back to reference Munks MW, Pinto AK, Doom CM, Hill AB (2007) Viral interference with antigen presentation does not alter acute or chronic CD8 T cell immunodominance in murine cytomegalovirus infection. J Immunol 178:7235–7241PubMedCrossRef Munks MW, Pinto AK, Doom CM, Hill AB (2007) Viral interference with antigen presentation does not alter acute or chronic CD8 T cell immunodominance in murine cytomegalovirus infection. J Immunol 178:7235–7241PubMedCrossRef
61.
go back to reference Holtappels R, Podlech J, Pahl-Seibert M-F, Jülch M, Thomas D, Simon CO, Wagner M, Reddehase MJ (2004) Cytomegalovirus misleads its host by priming of CD8 T cells specific for an epitope not presented in infected tissues. J Exp Med 199:131–136PubMedPubMedCentralCrossRef Holtappels R, Podlech J, Pahl-Seibert M-F, Jülch M, Thomas D, Simon CO, Wagner M, Reddehase MJ (2004) Cytomegalovirus misleads its host by priming of CD8 T cells specific for an epitope not presented in infected tissues. J Exp Med 199:131–136PubMedPubMedCentralCrossRef
62.
go back to reference Holtappels R, Gillert-Marien D, Thomas D, Podlech J, Deegen P, Herter S, Oehrlein-Karpi SA, Strand D, Wagner M, Reddehase MJ (2006) Cytomegalovirus encodes a positive regulator of antigen presentation. J Virol 80:7613–7624PubMedPubMedCentralCrossRef Holtappels R, Gillert-Marien D, Thomas D, Podlech J, Deegen P, Herter S, Oehrlein-Karpi SA, Strand D, Wagner M, Reddehase MJ (2006) Cytomegalovirus encodes a positive regulator of antigen presentation. J Virol 80:7613–7624PubMedPubMedCentralCrossRef
63.
go back to reference Pinto AK, Munks MW, Koszinowski UH, Hill AB (2006) Coordinated function of murine cytomegalovirus genes completely inhibits CTL lysis. J Immunol 177:3225–3234PubMedCrossRef Pinto AK, Munks MW, Koszinowski UH, Hill AB (2006) Coordinated function of murine cytomegalovirus genes completely inhibits CTL lysis. J Immunol 177:3225–3234PubMedCrossRef
64.
go back to reference Hengel H, Jonjic S, Ruppert T, Koszinowski UH (1994) Restoration of cytomegalovirus antigen presentation by gamma interferon combats viral escape. J Virol 68:289–297PubMedPubMedCentralCrossRef Hengel H, Jonjic S, Ruppert T, Koszinowski UH (1994) Restoration of cytomegalovirus antigen presentation by gamma interferon combats viral escape. J Virol 68:289–297PubMedPubMedCentralCrossRef
Metadata
Title
CD8 T-cell-based immunotherapy of cytomegalovirus infection: “proof of concept” provided by the murine model
Authors
Rafaela Holtappels
Verena Böhm
Jürgen Podlech
Matthias J. Reddehase
Publication date
01-06-2008
Publisher
Springer Berlin Heidelberg
Published in
Medical Microbiology and Immunology / Issue 2/2008
Print ISSN: 0300-8584
Electronic ISSN: 1432-1831
DOI
https://doi.org/10.1007/s00430-008-0093-2

Other articles of this Issue 2/2008

Medical Microbiology and Immunology 2/2008 Go to the issue
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discuss last year's major advances in heart failure and cardiomyopathies.