Skip to main content
Top
Published in: Medical Microbiology and Immunology 2/2008

01-06-2008 | Review

MHC class I immune evasion in MCMV infection

Authors: Carmen M. Doom, Ann B. Hill

Published in: Medical Microbiology and Immunology | Issue 2/2008

Login to get access

Abstract

Murine cytomegalovirus (MCMV) is a well-studied model of natural β-herpesvirus infection. However, many questions remain regarding its control by and evasion of the immune response it generates. CD8 and CD4 T cells have both unique and redundant roles in control of the virus that differ based on the immunocompetence of the infected mice. MCMV encodes major histocompatibility complex (MHC) class I immune evasion genes that can have an impact in vitro, but their role in infection of immunocompetent mice has been difficult to identify. This review addresses the evidence for their in vivo function and suggests why they may be evolutionarily conserved.
Literature
1.
go back to reference Smith MG (1954) Propagation of salivary gland virus of the mouse in tissue cultures. Proc Soc Exp Biol Med 86:435–440PubMedCrossRef Smith MG (1954) Propagation of salivary gland virus of the mouse in tissue cultures. Proc Soc Exp Biol Med 86:435–440PubMedCrossRef
2.
go back to reference Singleton GR, Smith AL, Shellam GR, Fitzgerald N, Muller WJ (1993) Prevalence of viral antibodies and helminths in field populations of house mice (Mus domesticus) in southeastern Australia. Epidemiol Infect 110:399–417PubMedPubMedCentralCrossRef Singleton GR, Smith AL, Shellam GR, Fitzgerald N, Muller WJ (1993) Prevalence of viral antibodies and helminths in field populations of house mice (Mus domesticus) in southeastern Australia. Epidemiol Infect 110:399–417PubMedPubMedCentralCrossRef
3.
go back to reference Singleton GR, Smith AL, Krebs CJ (2000) The prevalence of viral antibodies during a large population fluctuation of house mice in Australia. Epidemiol Infect 125:719–727PubMedPubMedCentralCrossRef Singleton GR, Smith AL, Krebs CJ (2000) The prevalence of viral antibodies during a large population fluctuation of house mice in Australia. Epidemiol Infect 125:719–727PubMedPubMedCentralCrossRef
4.
go back to reference Moro D, Lloyd ML, Smith AL, Shellam GR, Lawson MA (1999) Murine viruses in an island population of introduced house mice and endemic short-tailed mice in Western Australia. J Wildl Dis 35:301–310PubMedCrossRef Moro D, Lloyd ML, Smith AL, Shellam GR, Lawson MA (1999) Murine viruses in an island population of introduced house mice and endemic short-tailed mice in Western Australia. J Wildl Dis 35:301–310PubMedCrossRef
5.
go back to reference Gorman S, Harvey NL, Moro D, Lloyd ML, Voigt V, Smith LM, Lawson MA, Shellam GR (2006) Mixed infection with multiple strains of murine cytomegalovirus occurs following simultaneous or sequential infection of immunocompetent mice. J Gen Virol 87:1123–1132PubMedCrossRef Gorman S, Harvey NL, Moro D, Lloyd ML, Voigt V, Smith LM, Lawson MA, Shellam GR (2006) Mixed infection with multiple strains of murine cytomegalovirus occurs following simultaneous or sequential infection of immunocompetent mice. J Gen Virol 87:1123–1132PubMedCrossRef
6.
go back to reference Booth TW, Scalzo AA, Carrello C, Lyons PA, Farrell HE, Singleton GR, Shellam GR (1993) Molecular and biological characterization of new strains of murine cytomegalovirus isolated from wild mice. Arch Virol 132:209–220PubMedCrossRef Booth TW, Scalzo AA, Carrello C, Lyons PA, Farrell HE, Singleton GR, Shellam GR (1993) Molecular and biological characterization of new strains of murine cytomegalovirus isolated from wild mice. Arch Virol 132:209–220PubMedCrossRef
7.
go back to reference Farroway LN, Gorman S, Lawson MA, Harvey NL, Jones DA, Shellam GR, Singleton GR (2005) Transmission of two Australian strains of murine cytomegalovirus (MCMV) in enclosure populations of house mice (Mus domesticus). Epidemiol Infect 133:701–710PubMedPubMedCentralCrossRef Farroway LN, Gorman S, Lawson MA, Harvey NL, Jones DA, Shellam GR, Singleton GR (2005) Transmission of two Australian strains of murine cytomegalovirus (MCMV) in enclosure populations of house mice (Mus domesticus). Epidemiol Infect 133:701–710PubMedPubMedCentralCrossRef
9.
go back to reference Kurz S, Steffens HP, Mayer A, Harris JR, Reddehase MJ (1997) Latency versus persistence or intermittent recurrences: evidence for a latent state of murine cytomegalovirus in the lungs. J Virol 71:2980–2987PubMedPubMedCentralCrossRef Kurz S, Steffens HP, Mayer A, Harris JR, Reddehase MJ (1997) Latency versus persistence or intermittent recurrences: evidence for a latent state of murine cytomegalovirus in the lungs. J Virol 71:2980–2987PubMedPubMedCentralCrossRef
10.
go back to reference Koffron AJ, Hummel M, Patterson BK, Yan S, Kaufman DB, Fryer JP, Stuart FP, Abecassis MI (1998) Cellular localization of latent murine cytomegalovirus. J Virol 72:95–103PubMedPubMedCentralCrossRef Koffron AJ, Hummel M, Patterson BK, Yan S, Kaufman DB, Fryer JP, Stuart FP, Abecassis MI (1998) Cellular localization of latent murine cytomegalovirus. J Virol 72:95–103PubMedPubMedCentralCrossRef
11.
12.
go back to reference Henson D, Strano AJ (1972) Mouse cytomegalovirus. Necrosis of infected and morphologically normal submaxillary gland acinar cells during termination of chronic infection. Am J Pathol 68:183–202PubMedPubMedCentral Henson D, Strano AJ (1972) Mouse cytomegalovirus. Necrosis of infected and morphologically normal submaxillary gland acinar cells during termination of chronic infection. Am J Pathol 68:183–202PubMedPubMedCentral
13.
go back to reference Reddehase MJ, Balthesen M, Rapp M, Jonjic S, Pavic I, Koszinowski UH (1994) The conditions of primary infection define the load of latent viral genome in organs and the risk of recurrent cytomegalovirus disease. J Exp Med 179:185–193PubMedCrossRef Reddehase MJ, Balthesen M, Rapp M, Jonjic S, Pavic I, Koszinowski UH (1994) The conditions of primary infection define the load of latent viral genome in organs and the risk of recurrent cytomegalovirus disease. J Exp Med 179:185–193PubMedCrossRef
14.
go back to reference Reddehase MJ, Weiland F, Munch K, Jonjic S, Luske A, Koszinowski UH (1985) Interstitial murine cytomegalovirus pneumonia after irradiation: characterization of cells that limit viral replication during established infection of the lungs. J Virol 55:264–273PubMedPubMedCentralCrossRef Reddehase MJ, Weiland F, Munch K, Jonjic S, Luske A, Koszinowski UH (1985) Interstitial murine cytomegalovirus pneumonia after irradiation: characterization of cells that limit viral replication during established infection of the lungs. J Virol 55:264–273PubMedPubMedCentralCrossRef
15.
go back to reference Koffron AJ, Mueller KH, Kaufman DB, Stuart FP, Patterson B, Abecassis MI (1995) Direct evidence using in situ polymerase chain reaction that the endothelial cell and T-lymphocyte harbor latent murine cytomegalovirus. Scand J Infect Dis Suppl 99:61–62PubMed Koffron AJ, Mueller KH, Kaufman DB, Stuart FP, Patterson B, Abecassis MI (1995) Direct evidence using in situ polymerase chain reaction that the endothelial cell and T-lymphocyte harbor latent murine cytomegalovirus. Scand J Infect Dis Suppl 99:61–62PubMed
16.
go back to reference Pollock JL, Presti RM, Paetzold S, Virgin HWt (1997) Latent murine cytomegalovirus infection in macrophages. Virology 227:168–179PubMedCrossRef Pollock JL, Presti RM, Paetzold S, Virgin HWt (1997) Latent murine cytomegalovirus infection in macrophages. Virology 227:168–179PubMedCrossRef
17.
go back to reference Jonjic S, Pavic I, Polic B, Crnkovic I, Lucin P, Koszinowski UH (1994) Antibodies are not essential for the resolution of primary cytomegalovirus infection but limit dissemination of recurrent virus. J Exp Med 179:1713–1717PubMedCrossRef Jonjic S, Pavic I, Polic B, Crnkovic I, Lucin P, Koszinowski UH (1994) Antibodies are not essential for the resolution of primary cytomegalovirus infection but limit dissemination of recurrent virus. J Exp Med 179:1713–1717PubMedCrossRef
18.
go back to reference Gold MC, Munks MW, Wagner M, McMahon CW, Kelly A, Kavanagh DG, Slifka MK, Koszinowski UH, Raulet DH, Hill AB (2004) Murine cytomegalovirus interference with antigen presentation has little effect on the size or the effector memory phenotype of the CD8 T cell response. J Immunol 172:6944–6953PubMedCrossRef Gold MC, Munks MW, Wagner M, McMahon CW, Kelly A, Kavanagh DG, Slifka MK, Koszinowski UH, Raulet DH, Hill AB (2004) Murine cytomegalovirus interference with antigen presentation has little effect on the size or the effector memory phenotype of the CD8 T cell response. J Immunol 172:6944–6953PubMedCrossRef
19.
go back to reference Arase H, Mocarski ES, Campbell AE, Hill AB, Lanier LL (2002) Direct recognition of cytomegalovirus by activating and inhibitory NK cell receptors. Science 296:1323–1326PubMedCrossRef Arase H, Mocarski ES, Campbell AE, Hill AB, Lanier LL (2002) Direct recognition of cytomegalovirus by activating and inhibitory NK cell receptors. Science 296:1323–1326PubMedCrossRef
20.
go back to reference Smith HR, Heusel JW, Mehta IK, Kim S, Dorner BG, Naidenko OV, Iizuka K, Furukawa H, Beckman DL, Pingel JT et al (2002) Recognition of a virus-encoded ligand by a natural killer cell activation receptor. Proc Natl Acad Sci USA 99:8826–8831PubMedPubMedCentralCrossRef Smith HR, Heusel JW, Mehta IK, Kim S, Dorner BG, Naidenko OV, Iizuka K, Furukawa H, Beckman DL, Pingel JT et al (2002) Recognition of a virus-encoded ligand by a natural killer cell activation receptor. Proc Natl Acad Sci USA 99:8826–8831PubMedPubMedCentralCrossRef
21.
go back to reference Shellam GR, Flexman JP (1986) Genetically determined resistance to murine cytomegalovirus and herpes simplex virus in newborn mice. J Virol 58:152–156PubMedPubMedCentralCrossRef Shellam GR, Flexman JP (1986) Genetically determined resistance to murine cytomegalovirus and herpes simplex virus in newborn mice. J Virol 58:152–156PubMedPubMedCentralCrossRef
22.
go back to reference Quinnan GVJ, Manischewitz JF (1987) Genetically determined resistance to lethal murine cytomegalovirus infection is mediated by interferon-dependent and -independent restriction of virus replication. J Virol 61:1875–1881PubMedPubMedCentralCrossRef Quinnan GVJ, Manischewitz JF (1987) Genetically determined resistance to lethal murine cytomegalovirus infection is mediated by interferon-dependent and -independent restriction of virus replication. J Virol 61:1875–1881PubMedPubMedCentralCrossRef
23.
go back to reference Allan JE, Shellam GR (1984) Genetic control of murine cytomegalovirus infection: virus titres in resistant and susceptible strains of mice. Arch Virol 81:139–150PubMedCrossRef Allan JE, Shellam GR (1984) Genetic control of murine cytomegalovirus infection: virus titres in resistant and susceptible strains of mice. Arch Virol 81:139–150PubMedCrossRef
24.
go back to reference Scalzo AA, Fitzgerald NA, Wallace CR, Gibbons AE, Smart YC, Burton RC, Shellam GR (1992) The effect of the Cmv-1 resistance gene, which is linked to the natural killer cell gene complex, is mediated by natural killer cells. J Immunol 149:581–589PubMedCrossRef Scalzo AA, Fitzgerald NA, Wallace CR, Gibbons AE, Smart YC, Burton RC, Shellam GR (1992) The effect of the Cmv-1 resistance gene, which is linked to the natural killer cell gene complex, is mediated by natural killer cells. J Immunol 149:581–589PubMedCrossRef
25.
go back to reference Katzenstein DA, Yu GS, Jordan MC (1983) Lethal infection with murine cytomegalovirus after early viral replication in the spleen. J Infect Dis 148:406–411PubMedCrossRef Katzenstein DA, Yu GS, Jordan MC (1983) Lethal infection with murine cytomegalovirus after early viral replication in the spleen. J Infect Dis 148:406–411PubMedCrossRef
26.
go back to reference Krmpotic A, Busch DH, Bubic I, Gebhardt F, Hengel H, Hasan M, Scalzo AA, Koszinowski UH, Jonjic S (2002) MCMV glycoprotein gp40 confers virus resistance to CD8+ T cells and NK cells in vivo. Nat Immunol 3:529–535PubMedCrossRef Krmpotic A, Busch DH, Bubic I, Gebhardt F, Hengel H, Hasan M, Scalzo AA, Koszinowski UH, Jonjic S (2002) MCMV glycoprotein gp40 confers virus resistance to CD8+ T cells and NK cells in vivo. Nat Immunol 3:529–535PubMedCrossRef
27.
go back to reference Iizuka K, Nakajima C, Iizuka YM, Takase M, Kato T, Noda S, Tanaka K, Kanagawa O (2007) Protection from lethal infection by adoptive transfer of CD8 T cells genetically engineered to express virus-specific innate immune receptor. J Immunol 179:1122–1128PubMedCrossRef Iizuka K, Nakajima C, Iizuka YM, Takase M, Kato T, Noda S, Tanaka K, Kanagawa O (2007) Protection from lethal infection by adoptive transfer of CD8 T cells genetically engineered to express virus-specific innate immune receptor. J Immunol 179:1122–1128PubMedCrossRef
28.
go back to reference Scalzo AA, Lyons PA, Fitzgerald NA, Forbes CA, Shellam GR (1995) The BALB.B6-Cmv1r mouse: a strain congenic for Cmv1 and the NK gene complex. Immunogenetics 41:148–151PubMedCrossRef Scalzo AA, Lyons PA, Fitzgerald NA, Forbes CA, Shellam GR (1995) The BALB.B6-Cmv1r mouse: a strain congenic for Cmv1 and the NK gene complex. Immunogenetics 41:148–151PubMedCrossRef
29.
go back to reference Lathbury LJ, Allan JE, Shellam GR, Scalzo AA (1996) Effect of host genotype in determining the relative roles of natural killer cells and T cells in mediating protection against murine cytomegalovirus infection. J Gen Virol 77:2605–2613PubMedCrossRef Lathbury LJ, Allan JE, Shellam GR, Scalzo AA (1996) Effect of host genotype in determining the relative roles of natural killer cells and T cells in mediating protection against murine cytomegalovirus infection. J Gen Virol 77:2605–2613PubMedCrossRef
30.
31.
go back to reference Shanley JD (1990) In vivo administration of monoclonal antibody to the NK 1.1 antigen of natural killer cells: effect on acute murine cytomegalovirus infection. J Med Virol 30:58–60PubMedCrossRef Shanley JD (1990) In vivo administration of monoclonal antibody to the NK 1.1 antigen of natural killer cells: effect on acute murine cytomegalovirus infection. J Med Virol 30:58–60PubMedCrossRef
32.
go back to reference Welsh RM, Brubaker JO, Vargas-Cortes M, O’Donnell CL (1991) Natural killer (NK) cell response to virus infections in mice with severe combined immunodeficiency. The stimulation of NK cells and the NK cell-dependent control of virus infections occur independently of T and B cell function. J Exp Med 173:1053–1063PubMedCrossRef Welsh RM, Brubaker JO, Vargas-Cortes M, O’Donnell CL (1991) Natural killer (NK) cell response to virus infections in mice with severe combined immunodeficiency. The stimulation of NK cells and the NK cell-dependent control of virus infections occur independently of T and B cell function. J Exp Med 173:1053–1063PubMedCrossRef
33.
go back to reference Lawson CM, Grundy JE, Shellam GR (1988) Antibody responses to murine cytomegalovirus in genetically resistant and susceptible strains of mice. J Gen Virol 69:1987–1998PubMedCrossRef Lawson CM, Grundy JE, Shellam GR (1988) Antibody responses to murine cytomegalovirus in genetically resistant and susceptible strains of mice. J Gen Virol 69:1987–1998PubMedCrossRef
34.
go back to reference Tolpin MD, Starr SE, Arbeter AM, Plotkin SA (1980) Inactivated mouse cytomegalovirus vaccine: preparation, immunogenicity, and protective effect. J Infect Dis 142:569–574PubMedCrossRef Tolpin MD, Starr SE, Arbeter AM, Plotkin SA (1980) Inactivated mouse cytomegalovirus vaccine: preparation, immunogenicity, and protective effect. J Infect Dis 142:569–574PubMedCrossRef
35.
go back to reference Farrell HE, Shellam GR (1991) Protection against murine cytomegalovirus infection by passive transfer of neutralizing and non-neutralizing monoclonal antibodies. J Gen Virol 72:149–156PubMedCrossRef Farrell HE, Shellam GR (1991) Protection against murine cytomegalovirus infection by passive transfer of neutralizing and non-neutralizing monoclonal antibodies. J Gen Virol 72:149–156PubMedCrossRef
36.
go back to reference Rapp M, Messerle M, Buhler B, Tannheimer M, Keil GM, Koszinowski UH (1992) Identification of the murine cytomegalovirus glycoprotein B gene and its expression by recombinant vaccinia virus. J Virol 66:4399–4406PubMedPubMedCentralCrossRef Rapp M, Messerle M, Buhler B, Tannheimer M, Keil GM, Koszinowski UH (1992) Identification of the murine cytomegalovirus glycoprotein B gene and its expression by recombinant vaccinia virus. J Virol 66:4399–4406PubMedPubMedCentralCrossRef
37.
go back to reference Xu J, Lyons PA, Carter MD, Booth TW, Davis-Poynter NJ, Shellam GR, Scalzo AA (1996) Assessment of antigenicity and genetic variation of glycoprotein B of murine cytomegalovirus. J Gen Virol 77:49–59PubMedCrossRef Xu J, Lyons PA, Carter MD, Booth TW, Davis-Poynter NJ, Shellam GR, Scalzo AA (1996) Assessment of antigenicity and genetic variation of glycoprotein B of murine cytomegalovirus. J Gen Virol 77:49–59PubMedCrossRef
38.
go back to reference Geoffroy F, Moachon N, Rodwell J, Quash GA (1996) Murine cytomegalovirus inactivated by sodium periodate is innocuous and immunogenic in mice and protects them against death and infection. Vaccine 14:1686–1694PubMedCrossRef Geoffroy F, Moachon N, Rodwell J, Quash GA (1996) Murine cytomegalovirus inactivated by sodium periodate is innocuous and immunogenic in mice and protects them against death and infection. Vaccine 14:1686–1694PubMedCrossRef
39.
go back to reference Polic B, Hengel H, Krmpotic A, Trgovcich J, Pavic I, Luccaronin P, Jonjic S, Koszinowski UH (1998) Hierarchical and redundant lymphocyte subset control precludes cytomegalovirus replication during latent infection. J Exp Med 188:1047–1054PubMedPubMedCentralCrossRef Polic B, Hengel H, Krmpotic A, Trgovcich J, Pavic I, Luccaronin P, Jonjic S, Koszinowski UH (1998) Hierarchical and redundant lymphocyte subset control precludes cytomegalovirus replication during latent infection. J Exp Med 188:1047–1054PubMedPubMedCentralCrossRef
40.
go back to reference Jonjic S, Mutter W, Weiland F, Reddehase MJ, Koszinowski UH (1989) Site-restricted persistent cytomegalovirus infection after selective long-term depletion of CD4+ T lymphocytes. J Exp Med 169:1199–1212PubMedCrossRef Jonjic S, Mutter W, Weiland F, Reddehase MJ, Koszinowski UH (1989) Site-restricted persistent cytomegalovirus infection after selective long-term depletion of CD4+ T lymphocytes. J Exp Med 169:1199–1212PubMedCrossRef
41.
go back to reference Jonjic S, Pavic I, Lucin P, Rukavina D, Koszinowski UH (1990) Efficacious control of cytomegalovirus infection after long-term depletion of CD8+ T lymphocytes. J Virol 64:5457–5464PubMedPubMedCentralCrossRef Jonjic S, Pavic I, Lucin P, Rukavina D, Koszinowski UH (1990) Efficacious control of cytomegalovirus infection after long-term depletion of CD8+ T lymphocytes. J Virol 64:5457–5464PubMedPubMedCentralCrossRef
42.
go back to reference Koszinowski UH (1991) Molecular aspects of immune recognition of cytomegalovirus. Transplant Proc 23:70–73, discussion 74PubMed Koszinowski UH (1991) Molecular aspects of immune recognition of cytomegalovirus. Transplant Proc 23:70–73, discussion 74PubMed
43.
go back to reference Reddehase MJ, Jonjic S, Weiland F, Mutter W, Koszinowski UH (1988) Adoptive immunotherapy of murine cytomegalovirus adrenalitis in the immunocompromised host: CD4-helper-independent antiviral function of CD8-positive memory T lymphocytes derived from latently infected donors. J Virol 62:1061–1065PubMedPubMedCentralCrossRef Reddehase MJ, Jonjic S, Weiland F, Mutter W, Koszinowski UH (1988) Adoptive immunotherapy of murine cytomegalovirus adrenalitis in the immunocompromised host: CD4-helper-independent antiviral function of CD8-positive memory T lymphocytes derived from latently infected donors. J Virol 62:1061–1065PubMedPubMedCentralCrossRef
44.
go back to reference Alterio de Goss M, Holtappels R, Steffens HP, Podlech J, Angele P, Dreher L, Thomas D, Reddehase MJ (1998) Control of cytomegalovirus in bone marrow transplantation chimeras lacking the prevailing antigen-presenting molecule in recipient tissues rests primarily on recipient-derived CD8 T cells. J Virol 72:7733–7744CrossRef Alterio de Goss M, Holtappels R, Steffens HP, Podlech J, Angele P, Dreher L, Thomas D, Reddehase MJ (1998) Control of cytomegalovirus in bone marrow transplantation chimeras lacking the prevailing antigen-presenting molecule in recipient tissues rests primarily on recipient-derived CD8 T cells. J Virol 72:7733–7744CrossRef
45.
go back to reference Reddehase MJ, Mutter W, Munch K, Buhring HJ, Koszinowski UH (1987) CD8-positive T lymphocytes specific for murine cytomegalovirus immediate-early antigens mediate protective immunity. J Virol 61:3102–3108PubMedPubMedCentralCrossRef Reddehase MJ, Mutter W, Munch K, Buhring HJ, Koszinowski UH (1987) CD8-positive T lymphocytes specific for murine cytomegalovirus immediate-early antigens mediate protective immunity. J Virol 61:3102–3108PubMedPubMedCentralCrossRef
46.
go back to reference Koszinowski UH, Reddehase MJ, Keil GM, Volkmer H, Jonjic S, Messerle M, del Val M, Mutter W, Munch K, Buhler B (1987) Molecular analysis of herpesviral gene products recognized by protective cytolytic T lymphocytes. Immunol Lett 16:185–192PubMedCrossRef Koszinowski UH, Reddehase MJ, Keil GM, Volkmer H, Jonjic S, Messerle M, del Val M, Mutter W, Munch K, Buhler B (1987) Molecular analysis of herpesviral gene products recognized by protective cytolytic T lymphocytes. Immunol Lett 16:185–192PubMedCrossRef
47.
go back to reference Holtappels R, Podlech J, Pahl-Seibert MF, Julch M, Thomas D, Simon CO, Wagner M, Reddehase MJ (2004) Cytomegalovirus misleads its host by priming of CD8 T cells specific for an epitope not presented in infected tissues. J Exp Med 199:131–136PubMedPubMedCentralCrossRef Holtappels R, Podlech J, Pahl-Seibert MF, Julch M, Thomas D, Simon CO, Wagner M, Reddehase MJ (2004) Cytomegalovirus misleads its host by priming of CD8 T cells specific for an epitope not presented in infected tissues. J Exp Med 199:131–136PubMedPubMedCentralCrossRef
48.
go back to reference Fitzgerald NA, Papadimitriou JM, Shellam GR (1990) Cytomegalovirus-induced pneumonitis and myocarditis in newborn mice. A model for perinatal human cytomegalovirus infection. Arch Virol 115:75–88PubMedCrossRef Fitzgerald NA, Papadimitriou JM, Shellam GR (1990) Cytomegalovirus-induced pneumonitis and myocarditis in newborn mice. A model for perinatal human cytomegalovirus infection. Arch Virol 115:75–88PubMedCrossRef
49.
go back to reference Fitzgerald NA, Shellam GR (1991) Host genetic influences on fetal susceptibility to murine cytomegalovirus after maternal or fetal infection. J Infect Dis 163:276–281PubMedCrossRef Fitzgerald NA, Shellam GR (1991) Host genetic influences on fetal susceptibility to murine cytomegalovirus after maternal or fetal infection. J Infect Dis 163:276–281PubMedCrossRef
50.
go back to reference Grundy JE, Mackenzie JS, Stanley NF (1981) Influence of H-2 and non-H-2 genes on resistance to murine cytomegalovirus infection. Infect Immun 32:277–286PubMedPubMedCentralCrossRef Grundy JE, Mackenzie JS, Stanley NF (1981) Influence of H-2 and non-H-2 genes on resistance to murine cytomegalovirus infection. Infect Immun 32:277–286PubMedPubMedCentralCrossRef
51.
go back to reference Shellam GR, Flexman JP, Farrell HE, Papadimitriou JM (1985) The genetic background modulates the effect of the beige gene on susceptibility to cytomegalovirus infection in mice. Scand J Immunol 22:147–155PubMedCrossRef Shellam GR, Flexman JP, Farrell HE, Papadimitriou JM (1985) The genetic background modulates the effect of the beige gene on susceptibility to cytomegalovirus infection in mice. Scand J Immunol 22:147–155PubMedCrossRef
52.
go back to reference Bukowski JF, Warner JF, Dennert G, Welsh RM (1985) Adoptive transfer studies demonstrating the antiviral effect of natural killer cells in vivo. J Exp Med 161:40–52PubMedCrossRef Bukowski JF, Warner JF, Dennert G, Welsh RM (1985) Adoptive transfer studies demonstrating the antiviral effect of natural killer cells in vivo. J Exp Med 161:40–52PubMedCrossRef
53.
go back to reference Krmpotic A, Messerle M, Crnkovic-Mertens I, Polic B, Jonjic S, Koszinowski UH (1999) The immunoevasive function encoded by the mouse cytomegalovirus gene m152 protects the virus against T cell control in vivo. J Exp Med 190:1285–1296PubMedPubMedCentralCrossRef Krmpotic A, Messerle M, Crnkovic-Mertens I, Polic B, Jonjic S, Koszinowski UH (1999) The immunoevasive function encoded by the mouse cytomegalovirus gene m152 protects the virus against T cell control in vivo. J Exp Med 190:1285–1296PubMedPubMedCentralCrossRef
54.
go back to reference Reusch U, Muranyi W, Lucin P, Burgert HG, Hengel H, Koszinowski UH (1999) A cytomegalovirus glycoprotein re-routes MHC class I complexes to lysosomes for degradation. EMBO J 18:1081–1091PubMedPubMedCentralCrossRef Reusch U, Muranyi W, Lucin P, Burgert HG, Hengel H, Koszinowski UH (1999) A cytomegalovirus glycoprotein re-routes MHC class I complexes to lysosomes for degradation. EMBO J 18:1081–1091PubMedPubMedCentralCrossRef
55.
go back to reference Ziegler H, Thale R, Lucin P, Muranyi W, Flohr T, Hengel H, Farrell H, Rawlinson W, Koszinowski UH (1997) A mouse cytomegalovirus glycoprotein retains MHC class I complexes in the ERGIC/cis-Golgi compartments. Immunity 6:57–66PubMedCrossRef Ziegler H, Thale R, Lucin P, Muranyi W, Flohr T, Hengel H, Farrell H, Rawlinson W, Koszinowski UH (1997) A mouse cytomegalovirus glycoprotein retains MHC class I complexes in the ERGIC/cis-Golgi compartments. Immunity 6:57–66PubMedCrossRef
56.
go back to reference Wagner M, Gutermann A, Podlech J, Reddehase MJ, Koszinowski UH (2002) Major histocompatibility complex class I allele-specific cooperative and competitive interactions between immune evasion proteins of cytomegalovirus. J Exp Med 196:805–816PubMedPubMedCentralCrossRef Wagner M, Gutermann A, Podlech J, Reddehase MJ, Koszinowski UH (2002) Major histocompatibility complex class I allele-specific cooperative and competitive interactions between immune evasion proteins of cytomegalovirus. J Exp Med 196:805–816PubMedPubMedCentralCrossRef
57.
go back to reference Holtappels R, Gillert-Marien D, Thomas D, Podlech J, Deegen P, Herter S, Oehrlein-Karpi SA, Strand D, Wagner M, Reddehase MJ (2006) Cytomegalovirus encodes a positive regulator of antigen presentation. J Virol 80:7613–7624PubMedPubMedCentralCrossRef Holtappels R, Gillert-Marien D, Thomas D, Podlech J, Deegen P, Herter S, Oehrlein-Karpi SA, Strand D, Wagner M, Reddehase MJ (2006) Cytomegalovirus encodes a positive regulator of antigen presentation. J Virol 80:7613–7624PubMedPubMedCentralCrossRef
58.
go back to reference Pinto AK, Munks MW, Koszinowski UH, Hill AB (2006) Coordinated function of murine cytomegalovirus genes completely inhibits CTL lysis. J Immunol 177:3225–3234PubMedCrossRef Pinto AK, Munks MW, Koszinowski UH, Hill AB (2006) Coordinated function of murine cytomegalovirus genes completely inhibits CTL lysis. J Immunol 177:3225–3234PubMedCrossRef
59.
go back to reference Gold MC, Munks MW, Wagner M, Koszinowski UH, Hill AB, Fling SP (2002) The murine cytomegalovirus immunomodulatory gene m152 prevents recognition of infected cells by M45-specific CTL but does not alter the immunodominance of the M45-specific CD8 T cell response in vivo. J Immunol 169:359–365PubMedCrossRef Gold MC, Munks MW, Wagner M, Koszinowski UH, Hill AB, Fling SP (2002) The murine cytomegalovirus immunomodulatory gene m152 prevents recognition of infected cells by M45-specific CTL but does not alter the immunodominance of the M45-specific CD8 T cell response in vivo. J Immunol 169:359–365PubMedCrossRef
60.
go back to reference Munks MW, Gold MC, Zajac AL, Doom CM, Morello CS, Spector DH, Hill AB (2006) Genome-wide analysis reveals a highly diverse CD8 T cell response to murine cytomegalovirus. J Immunol 176:3760–3766PubMedCrossRef Munks MW, Gold MC, Zajac AL, Doom CM, Morello CS, Spector DH, Hill AB (2006) Genome-wide analysis reveals a highly diverse CD8 T cell response to murine cytomegalovirus. J Immunol 176:3760–3766PubMedCrossRef
61.
go back to reference Reddehase MJ, Koszinowski UH (1984) Significance of herpesvirus immediate early gene expression in cellular immunity to cytomegalovirus infection. Nature 312:369–371PubMedCrossRef Reddehase MJ, Koszinowski UH (1984) Significance of herpesvirus immediate early gene expression in cellular immunity to cytomegalovirus infection. Nature 312:369–371PubMedCrossRef
62.
go back to reference Reddehase MJ, Fibi MR, Keil GM, Koszinowski UH (1986) Late-phase expression of a murine cytomegalovirus immediate-early antigen recognized by cytolytic T lymphocytes. J Virol 60:1125–1129PubMedPubMedCentralCrossRef Reddehase MJ, Fibi MR, Keil GM, Koszinowski UH (1986) Late-phase expression of a murine cytomegalovirus immediate-early antigen recognized by cytolytic T lymphocytes. J Virol 60:1125–1129PubMedPubMedCentralCrossRef
63.
go back to reference Holtappels R, Grzimek NK, Simon CO, Thomas D, Dreis D, Reddehase MJ (2002) Processing and presentation of murine cytomegalovirus pORFm164-derived peptide in fibroblasts in the face of all viral immunosubversive early gene functions. J Virol 76:6044–6053PubMedPubMedCentralCrossRef Holtappels R, Grzimek NK, Simon CO, Thomas D, Dreis D, Reddehase MJ (2002) Processing and presentation of murine cytomegalovirus pORFm164-derived peptide in fibroblasts in the face of all viral immunosubversive early gene functions. J Virol 76:6044–6053PubMedPubMedCentralCrossRef
64.
go back to reference Pinto AK, Jamieson AM, Raulet DH, Hill AB (2007) The role of NKG2D signaling in inhibition of cytotoxic T-lymphocyte lysis by the Murine cytomegalovirus immunoevasin m152/gp40. J Virol 81:12564–12571PubMedPubMedCentralCrossRef Pinto AK, Jamieson AM, Raulet DH, Hill AB (2007) The role of NKG2D signaling in inhibition of cytotoxic T-lymphocyte lysis by the Murine cytomegalovirus immunoevasin m152/gp40. J Virol 81:12564–12571PubMedPubMedCentralCrossRef
65.
go back to reference LoPiccolo DM, Gold MC, Kavanagh DG, Wagner M, Koszinowski UH, Hill AB (2003) Effective inhibition of K(b)- and D(b)-restricted antigen presentation in primary macrophages by murine cytomegalovirus. J Virol 77:301–308PubMedPubMedCentralCrossRef LoPiccolo DM, Gold MC, Kavanagh DG, Wagner M, Koszinowski UH, Hill AB (2003) Effective inhibition of K(b)- and D(b)-restricted antigen presentation in primary macrophages by murine cytomegalovirus. J Virol 77:301–308PubMedPubMedCentralCrossRef
66.
go back to reference Hengel H, Reusch U, Geginat G, Holtappels R, Ruppert T, Hellebrand E, Koszinowski UH (2000) Macrophages escape inhibition of major histocompatibility complex class I-dependent antigen presentation by cytomegalovirus. J Virol 74:7861–7868PubMedPubMedCentralCrossRef Hengel H, Reusch U, Geginat G, Holtappels R, Ruppert T, Hellebrand E, Koszinowski UH (2000) Macrophages escape inhibition of major histocompatibility complex class I-dependent antigen presentation by cytomegalovirus. J Virol 74:7861–7868PubMedPubMedCentralCrossRef
67.
go back to reference Kavanagh DG, Gold MC, Wagner M, Koszinowski UH, Hill AB (2001) The multiple immune-evasion genes of murine cytomegalovirus are not redundant: m4 and m152 inhibit antigen presentation in a complementary and cooperative fashion. J Exp Med 194:967–978PubMedPubMedCentralCrossRef Kavanagh DG, Gold MC, Wagner M, Koszinowski UH, Hill AB (2001) The multiple immune-evasion genes of murine cytomegalovirus are not redundant: m4 and m152 inhibit antigen presentation in a complementary and cooperative fashion. J Exp Med 194:967–978PubMedPubMedCentralCrossRef
68.
go back to reference del Val M, Hengel H, Hacker H, Hartlaub U, Ruppert T, Lucin P, Koszinowski UH (1992) Cytomegalovirus prevents antigen presentation by blocking the transport of peptide-loaded major histocompatibility complex class I molecules into the medial-Golgi compartment. J Exp Med 176:729–738PubMedCrossRef del Val M, Hengel H, Hacker H, Hartlaub U, Ruppert T, Lucin P, Koszinowski UH (1992) Cytomegalovirus prevents antigen presentation by blocking the transport of peptide-loaded major histocompatibility complex class I molecules into the medial-Golgi compartment. J Exp Med 176:729–738PubMedCrossRef
69.
go back to reference Smith LM, Shellam GR, Redwood AJ (2006) Genes of murine cytomegalovirus exist as a number of distinct genotypes. Virology 352:450–465PubMedCrossRef Smith LM, Shellam GR, Redwood AJ (2006) Genes of murine cytomegalovirus exist as a number of distinct genotypes. Virology 352:450–465PubMedCrossRef
70.
go back to reference Munks MW, Cho KS, Pinto AK, Sierro S, Klenerman P, Hill AB (2006) Four distinct patterns of memory CD8 T cell responses to chronic murine cytomegalovirus infection. J Immunol 177:450–458PubMedCrossRef Munks MW, Cho KS, Pinto AK, Sierro S, Klenerman P, Hill AB (2006) Four distinct patterns of memory CD8 T cell responses to chronic murine cytomegalovirus infection. J Immunol 177:450–458PubMedCrossRef
71.
go back to reference Holtappels R, Pahl-Seibert MF, Thomas D, Reddehase MJ (2000) Enrichment of immediate-early 1 (m123/pp89) peptide-specific CD8 T cells in a pulmonary CD62L(lo) memory-effector cell pool during latent murine cytomegalovirus infection of the lungs. J Virol 74:11495–11503PubMedPubMedCentralCrossRef Holtappels R, Pahl-Seibert MF, Thomas D, Reddehase MJ (2000) Enrichment of immediate-early 1 (m123/pp89) peptide-specific CD8 T cells in a pulmonary CD62L(lo) memory-effector cell pool during latent murine cytomegalovirus infection of the lungs. J Virol 74:11495–11503PubMedPubMedCentralCrossRef
72.
go back to reference Karrer U, Sierro S, Wagner M, Oxenius A, Hengel H, Koszinowski U, Phillips RE, Klenerman P (2003) Memory inflation: continuous accumulation of antiviral CD8+ T cells over time. J Immunol 171:3895CrossRef Karrer U, Sierro S, Wagner M, Oxenius A, Hengel H, Koszinowski U, Phillips RE, Klenerman P (2003) Memory inflation: continuous accumulation of antiviral CD8+ T cells over time. J Immunol 171:3895CrossRef
73.
go back to reference Karrer U, Sierro S, Wagner M, Oxenius A, Hengel H, Koszinowski UH, Phillips RE, Klenerman P (2003) Memory inflation: continuous accumulation of antiviral CD8+ T cells over time. J Immunol 170:2022–2029PubMedCrossRef Karrer U, Sierro S, Wagner M, Oxenius A, Hengel H, Koszinowski UH, Phillips RE, Klenerman P (2003) Memory inflation: continuous accumulation of antiviral CD8+ T cells over time. J Immunol 170:2022–2029PubMedCrossRef
74.
go back to reference Munks MW, Pinto AK, Doom CM, Hill AB (2007) Viral interference with antigen presentation does not alter acute or chronic CD8 T cell immunodominance in murine cytomegalovirus infection. J Immunol 178:7235–7241PubMedCrossRef Munks MW, Pinto AK, Doom CM, Hill AB (2007) Viral interference with antigen presentation does not alter acute or chronic CD8 T cell immunodominance in murine cytomegalovirus infection. J Immunol 178:7235–7241PubMedCrossRef
75.
go back to reference Reddehase MJ, Simon CO, Podlech J, Holtappels R (2004) Stalemating a clever opportunist: lessons from murine cytomegalovirus. Hum Immunol 65:446–455PubMedCrossRef Reddehase MJ, Simon CO, Podlech J, Holtappels R (2004) Stalemating a clever opportunist: lessons from murine cytomegalovirus. Hum Immunol 65:446–455PubMedCrossRef
76.
go back to reference Lu X, Pinto AK, Kelly AM, Cho KS, Hill AB (2006) Murine cytomegalovirus interference with antigen presentation contributes to the inability of CD8 T cells to control virus in the salivary gland. J Virol 80:4200–4202PubMedPubMedCentralCrossRef Lu X, Pinto AK, Kelly AM, Cho KS, Hill AB (2006) Murine cytomegalovirus interference with antigen presentation contributes to the inability of CD8 T cells to control virus in the salivary gland. J Virol 80:4200–4202PubMedPubMedCentralCrossRef
77.
go back to reference Simon CO, Holtappels R, Tervo HM, Bohm V, Daubner T, Oehrlein-Karpi SA, Kuhnapfel B, Renzaho A, Strand D, Podlech J et al (2006) CD8 T cells control cytomegalovirus latency by epitope-specific sensing of transcriptional reactivation. J Virol 80:10436–10456PubMedPubMedCentralCrossRef Simon CO, Holtappels R, Tervo HM, Bohm V, Daubner T, Oehrlein-Karpi SA, Kuhnapfel B, Renzaho A, Strand D, Podlech J et al (2006) CD8 T cells control cytomegalovirus latency by epitope-specific sensing of transcriptional reactivation. J Virol 80:10436–10456PubMedPubMedCentralCrossRef
78.
go back to reference Cicin-Sain L, Podlech J, Messerle M, Reddehase MJ, Koszinowski UH (2005) Frequent coinfection of cells explains functional in vivo complementation between cytomegalovirus variants in the multiply infected host. J Virol 79:9492–9502PubMedPubMedCentralCrossRef Cicin-Sain L, Podlech J, Messerle M, Reddehase MJ, Koszinowski UH (2005) Frequent coinfection of cells explains functional in vivo complementation between cytomegalovirus variants in the multiply infected host. J Virol 79:9492–9502PubMedPubMedCentralCrossRef
79.
Metadata
Title
MHC class I immune evasion in MCMV infection
Authors
Carmen M. Doom
Ann B. Hill
Publication date
01-06-2008
Publisher
Springer Berlin Heidelberg
Published in
Medical Microbiology and Immunology / Issue 2/2008
Print ISSN: 0300-8584
Electronic ISSN: 1432-1831
DOI
https://doi.org/10.1007/s00430-008-0089-y

Other articles of this Issue 2/2008

Medical Microbiology and Immunology 2/2008 Go to the issue