Skip to main content
Top
Published in: Brain Structure and Function 6/2018

Open Access 01-07-2018 | Short Communication

Frontal cortical control of posterior sensory and association cortices through the claustrum

Published in: Brain Structure and Function | Issue 6/2018

Login to get access

Abstract

The claustrum is a telencephalic gray matter nucleus that is richly interconnected with the neocortex. This structure subserves top-down executive functions that require frontal cortical control of posterior cortical regions. However, functional anatomical support for the claustrum allowing for long-range intercortical communication is lacking. To test this, we performed a channelrhodopsin-assisted long-circuit mapping strategy in mouse brain slices. We find that anterior cingulate cortex input to the claustrum is transiently amplified by claustrum neurons that, in turn, project to parietal association cortex or to primary and secondary visual cortices. Additionally, we observe that claustrum drive of cortical neurons in parietal association cortex is layer-specific, eliciting action potential generation briefly in layers II/III, IV, and VI but not V. These data are the first to provide a functional anatomical substrate through claustrum that may underlie top-down functions, such as executive attention or working memory, providing critical insight to this most interconnected and enigmatic nucleus.
Literature
go back to reference Atlan G, Terem A, Peretz-Rivlin N, Groysman M, Citri A (2017) Mapping synaptic cortico-claustral connectivity in the mouse. J Comp Neurol 525:1381–1402CrossRefPubMed Atlan G, Terem A, Peretz-Rivlin N, Groysman M, Citri A (2017) Mapping synaptic cortico-claustral connectivity in the mouse. J Comp Neurol 525:1381–1402CrossRefPubMed
go back to reference Barbas H, Rempel-Clower N (1997) Cortical structure predicts the pattern of corticocortical connections. Cereb Cortex 7:635–646CrossRefPubMed Barbas H, Rempel-Clower N (1997) Cortical structure predicts the pattern of corticocortical connections. Cereb Cortex 7:635–646CrossRefPubMed
go back to reference Benevento LA, Rezak M (1976) The cortical projections of the inferior pulvinar and adjacent lateral pulvinar in the rhesus monkey (Macaca mulatta): an autoradiographic study. Brain Res 108:1–24CrossRefPubMed Benevento LA, Rezak M (1976) The cortical projections of the inferior pulvinar and adjacent lateral pulvinar in the rhesus monkey (Macaca mulatta): an autoradiographic study. Brain Res 108:1–24CrossRefPubMed
go back to reference Braak H, Braak E (1982) Neuronal types in the claustrum of man. Anat Embryol (Berl) 163:447–460CrossRef Braak H, Braak E (1982) Neuronal types in the claustrum of man. Anat Embryol (Berl) 163:447–460CrossRef
go back to reference Brand S (1981) A serial section Golgi analysis of the primate claustrum. Anat Embryol (Berl) 162:475–488CrossRef Brand S (1981) A serial section Golgi analysis of the primate claustrum. Anat Embryol (Berl) 162:475–488CrossRef
go back to reference Buschman TJ, Miller EK (2007) Top-down versus bottom-up control of attention in the prefrontal and posterior parietal cortices. Science 315:1860–1862CrossRefPubMed Buschman TJ, Miller EK (2007) Top-down versus bottom-up control of attention in the prefrontal and posterior parietal cortices. Science 315:1860–1862CrossRefPubMed
go back to reference Cascella NG, Gerner GJ, Fieldston A, Sawa A, Schretlen DJ (2011) The insula-clausrum region and delusions in schizophrenia. Schizophr Res 133:77–81CrossRefPubMed Cascella NG, Gerner GJ, Fieldston A, Sawa A, Schretlen DJ (2011) The insula-clausrum region and delusions in schizophrenia. Schizophr Res 133:77–81CrossRefPubMed
go back to reference Corbetta M, Shulman GL (2002) Control of goal-directed and stimulus-driven attention in the brain. Nat Rev Neurosci 3:201–215CrossRefPubMed Corbetta M, Shulman GL (2002) Control of goal-directed and stimulus-driven attention in the brain. Nat Rev Neurosci 3:201–215CrossRefPubMed
go back to reference Corbetta M, Miezin FM, Shulman GL, Petersen SE (1993) A PET study of visuospatial attention. J Neurosci 13:1202–1226CrossRefPubMed Corbetta M, Miezin FM, Shulman GL, Petersen SE (1993) A PET study of visuospatial attention. J Neurosci 13:1202–1226CrossRefPubMed
go back to reference Gregoriou GG, Gotts SJ, Zhou H, Desimone R (2009) High-frequency, long-range coupling between prefrontal and visual cortex during attention. Science 324:1207–1210CrossRefPubMedPubMedCentral Gregoriou GG, Gotts SJ, Zhou H, Desimone R (2009) High-frequency, long-range coupling between prefrontal and visual cortex during attention. Science 324:1207–1210CrossRefPubMedPubMedCentral
go back to reference Gutierrez C, Cola MG, Seltzer B, Cusick C (2000) Neurochemical and connectional organization of the dorsal pulvinar complex in monkeys. J Comp Neurol 419:61–86CrossRefPubMed Gutierrez C, Cola MG, Seltzer B, Cusick C (2000) Neurochemical and connectional organization of the dorsal pulvinar complex in monkeys. J Comp Neurol 419:61–86CrossRefPubMed
go back to reference Hur EE, Zaborszky L (2005) Vglut2 afferents to the medial prefrontal and primary somatosensory cortices: a combined retrograde tracing in situ hybridization. J Comp Neurol 483:351–373CrossRefPubMed Hur EE, Zaborszky L (2005) Vglut2 afferents to the medial prefrontal and primary somatosensory cortices: a combined retrograde tracing in situ hybridization. J Comp Neurol 483:351–373CrossRefPubMed
go back to reference Kastner S, Ungerleider LG (2000) Mechanisms of visual attention in the human cortex. Annu Rev Neurosci 23:315–341CrossRefPubMed Kastner S, Ungerleider LG (2000) Mechanisms of visual attention in the human cortex. Annu Rev Neurosci 23:315–341CrossRefPubMed
go back to reference Kolb B, Walkey J (1987) Behavioural and anatomical studies of the posterior parietal cortex in the rat. Behav Brain Res 23:127–145CrossRefPubMed Kolb B, Walkey J (1987) Behavioural and anatomical studies of the posterior parietal cortex in the rat. Behav Brain Res 23:127–145CrossRefPubMed
go back to reference Kupferschmidt DA, Cody PA, Lovinger DM, Davis MI (2015) Brain BLAQ: post-hoc thick-section histochemistry for localizing optogenetic constructs in neurons and their distal terminals. Front Neuroanat 9:6CrossRefPubMedPubMedCentral Kupferschmidt DA, Cody PA, Lovinger DM, Davis MI (2015) Brain BLAQ: post-hoc thick-section histochemistry for localizing optogenetic constructs in neurons and their distal terminals. Front Neuroanat 9:6CrossRefPubMedPubMedCentral
go back to reference Mathur BN, Deutch AY (2008) Rat meningeal and brain microvasculature pericytes co-express the vesicular glutamate transporters 2 and 3. Neurosci Lett 435:90–94CrossRefPubMedPubMedCentral Mathur BN, Deutch AY (2008) Rat meningeal and brain microvasculature pericytes co-express the vesicular glutamate transporters 2 and 3. Neurosci Lett 435:90–94CrossRefPubMedPubMedCentral
go back to reference Mathur BN, Tanahira C, Tamamaki N, Lovinger DM (2013) Voltage drives diverse endocannabinoid signals to mediate striatal microcircuit-specific plasticity. Nat Neurosci 16:1275–1283CrossRefPubMedPubMedCentral Mathur BN, Tanahira C, Tamamaki N, Lovinger DM (2013) Voltage drives diverse endocannabinoid signals to mediate striatal microcircuit-specific plasticity. Nat Neurosci 16:1275–1283CrossRefPubMedPubMedCentral
go back to reference Mease RA, Metz M, Groh A (2016) Cortical sensory responses are enhanced by the higher-order thalamus. Cell Rep 14:208–215CrossRefPubMed Mease RA, Metz M, Groh A (2016) Cortical sensory responses are enhanced by the higher-order thalamus. Cell Rep 14:208–215CrossRefPubMed
go back to reference Miller EK, Buschman TJ (2013) Cortical circuits for the control of attention. Curr Opin Neurobiol 23:216–222CrossRefPubMed Miller EK, Buschman TJ (2013) Cortical circuits for the control of attention. Curr Opin Neurobiol 23:216–222CrossRefPubMed
go back to reference Morishima Y et al (2009) Task-specific signal transmission from prefrontal cortex in visual selective attention. Nat Neurosci 12:85–91CrossRefPubMed Morishima Y et al (2009) Task-specific signal transmission from prefrontal cortex in visual selective attention. Nat Neurosci 12:85–91CrossRefPubMed
go back to reference Morys J, Bobinski M, Wegiel J, Wisniewski HM, Narkiewicz O (1996) Alzheimer’s disease severely affects areas of the claustrum connected with the entorhinal cortex. J Hirnforsch 37:173–180PubMed Morys J, Bobinski M, Wegiel J, Wisniewski HM, Narkiewicz O (1996) Alzheimer’s disease severely affects areas of the claustrum connected with the entorhinal cortex. J Hirnforsch 37:173–180PubMed
go back to reference Petersen SE, Robinson DL, Keys W (1985) Pulvinar nuclei of the behaving rhesus monkey: visual responses and their modulation. J Neurophysiol 54:867–886CrossRefPubMed Petersen SE, Robinson DL, Keys W (1985) Pulvinar nuclei of the behaving rhesus monkey: visual responses and their modulation. J Neurophysiol 54:867–886CrossRefPubMed
go back to reference Pinault D (2004) The thalamic reticular nucleus: structure, function and concept. Brain Res Brain Res Rev 46:1–31CrossRefPubMed Pinault D (2004) The thalamic reticular nucleus: structure, function and concept. Brain Res Brain Res Rev 46:1–31CrossRefPubMed
go back to reference Reep RL, Chandler HC, King V, Corwin JV (1994) Rat posterior parietal cortex: topography of corticocortical and thalamic connections. Exp Brain Res 100:67–84CrossRefPubMed Reep RL, Chandler HC, King V, Corwin JV (1994) Rat posterior parietal cortex: topography of corticocortical and thalamic connections. Exp Brain Res 100:67–84CrossRefPubMed
go back to reference Remedios R, Logothetis NK, Kayser C (2010) Unimodal responses prevail within the multisensory claustrum. J Neurosci 30:12902–12907CrossRefPubMed Remedios R, Logothetis NK, Kayser C (2010) Unimodal responses prevail within the multisensory claustrum. J Neurosci 30:12902–12907CrossRefPubMed
go back to reference Ruff CC et al (2006) Concurrent TMS-fMRI and psychophysics reveal frontal influences on human retinotopic visual cortex. Curr Biol 16:1479–1488CrossRefPubMed Ruff CC et al (2006) Concurrent TMS-fMRI and psychophysics reveal frontal influences on human retinotopic visual cortex. Curr Biol 16:1479–1488CrossRefPubMed
go back to reference Sherman SM, Guillery RM (2011) Distinct functions for direct and transthalamic corticocortical connections. J Neurophysiol 106:1068–1077CrossRefPubMed Sherman SM, Guillery RM (2011) Distinct functions for direct and transthalamic corticocortical connections. J Neurophysiol 106:1068–1077CrossRefPubMed
go back to reference Smith JB, Alloway KD (2010) Functional specificity of claustrum connections in the rat: interhemispheric communication between specific parts of motor cortex. J Neurosci 30:16832–16844CrossRefPubMedPubMedCentral Smith JB, Alloway KD (2010) Functional specificity of claustrum connections in the rat: interhemispheric communication between specific parts of motor cortex. J Neurosci 30:16832–16844CrossRefPubMedPubMedCentral
go back to reference Smith JB, Alloway KD (2014) Interhemispheric claustral circuits coordinate sensory and motor cortical areas that regulate exploratory behaviors. Front Syst Neurosci 8:93PubMedPubMedCentral Smith JB, Alloway KD (2014) Interhemispheric claustral circuits coordinate sensory and motor cortical areas that regulate exploratory behaviors. Front Syst Neurosci 8:93PubMedPubMedCentral
go back to reference Wang Q et al (2017) Organization of the connections between claustrum and cortex in the mouse. J Comp Neurol 525:1317–1346CrossRefPubMed Wang Q et al (2017) Organization of the connections between claustrum and cortex in the mouse. J Comp Neurol 525:1317–1346CrossRefPubMed
go back to reference Watakabe A, Ohsawa S, Ichinohe N, Rockland KS, Yamamori T (2014) Characterization of claustral neurons by comparative gene expression profiling and dye-injection analyses. Front Syst Neurosci 8:98CrossRefPubMedPubMedCentral Watakabe A, Ohsawa S, Ichinohe N, Rockland KS, Yamamori T (2014) Characterization of claustral neurons by comparative gene expression profiling and dye-injection analyses. Front Syst Neurosci 8:98CrossRefPubMedPubMedCentral
go back to reference White MG et al (2017) Cortical hierarchy governs rat claustrocortical circuit organization. J Comp Neurol 525:1347–1362CrossRefPubMed White MG et al (2017) Cortical hierarchy governs rat claustrocortical circuit organization. J Comp Neurol 525:1347–1362CrossRefPubMed
Metadata
Title
Frontal cortical control of posterior sensory and association cortices through the claustrum
Publication date
01-07-2018
Published in
Brain Structure and Function / Issue 6/2018
Print ISSN: 1863-2653
Electronic ISSN: 1863-2661
DOI
https://doi.org/10.1007/s00429-018-1661-x

Other articles of this Issue 6/2018

Brain Structure and Function 6/2018 Go to the issue