Skip to main content
Log in

Neuronal types in the claustrum of man

  • Published:
Anatomy and Embryology Aims and scope Submit manuscript

Summary

Neuronal types of the human clastrum have been investigated by means of a transparent Golgi technique which enables one to study the characteristics of not only the cellular processes but also the marking features of the nuclei, the cellular organelles, and the paraplasmic substances of various types of nerve cells.

Five varieties of neurons have been distinguished:

Type I represents a class of spiny nerve cells varying to a certain extent in size and shape. These cells contain fine and widely dispersed lipofuscin granules which can only faintly be tinged by aldehydefuchsin.

Type II cells are large aspiny neurons. Their cell bodies contain a great number of deeply stained coarse pigment granules.

Type III cells are large aspiny neurons devoid of pigment deposits.

Type IV is a small pigment-laden aspiny neuron.

Type V is a small aspiny neuron devoid of lipofuscin granules.

The pattern of pigmentation revealed by the different types of nerve cells turns out to be highly characteristic. It can well be used for classification of the various types of nerve cells which occur within the reaches of the claustrum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Astruc J (1971) Corticofugal connections of area 8 (frontal eye field) in Macaca mulatta. Brain Res 33:241–256

    Google Scholar 

  • Berke JJ (1960) the claustrum, the external capsule and the extreme capsule of Macaca mulatta. J. Comp. Neurol. 115:297–331

    Google Scholar 

  • Braak H (1978) On the pigmentarchitectonics of the human telencephalic cortex. In: MAB Brazier, H Petsche (eds) Architectonics of the cerebral cortex. Raven Press, New York

    Google Scholar 

  • Braak H (1980) Architectonics of the human telencephalic cortex. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Braak H (in prep.) Transparent Golgi-impregnations: a way to examine both details of the cellular processes and components of the cell body

  • Braak H, Braak E (1981) Korrelation zwischen dem Fortsatzbild eines Neurons und seinen cytoplasmatischen Bestandteilen mit Hilfe einer transparenten Golgi-Imprägnation. Jahrestagung dtsch. Neurobiol. Göttingen

  • Braak H, Goebel HH (1978) Loss of pigment-laden stellate cells: a severe alteration of the isocortex in juvenile neuronal ceroid-lipofuscinosis. Acta Neuropathol (Berl.) 42:53–57

    Google Scholar 

  • Braitenberg V, Guglielmotti U, Sada E (1967) Correlation of cyrstal growth with the staining of axons by the Golgi procedure. Stain Technol 42:277–283

    Google Scholar 

  • Brand S (1981) A serial section Golgi analysis of the primate claustrum. Anat Embryol 162:475–488

    Google Scholar 

  • Brockhaus H (1940) Die Cyto- und Myeloarchitektonik des Cortex claustralis und des Claustrum beim Menschen. J Psychol Neurol 49:249–348

    Google Scholar 

  • Carey RG, Fitzpatrick D, Diamond IT (1979) Layer I of striate cortex of Tupaia glis and Galago senegalensis: projections from thalamus and claustrum revealed by retrograde transport of horseradish peroxidase. J Comp Neurol 186:393–438

    Google Scholar 

  • Carey RG, Bear MF, Diamond IT (1980) The laminar organization of the reciprocal projections between the claustrum and striate cortex in the tree shrew, Tupaia glis. Brain Res 184:193–198

    Google Scholar 

  • Carman JB, Cowan WM, Powell TPS (1964) The cortical projection upon the claustrum. J Neurol Neurosurg Psychiat 27:46–51

    Google Scholar 

  • Chadzypanagiotis D, Narkiewicz O (1971) Connections of the visual cortex with the claustrum. Acta Neurobiol (Warsaw) 31:291–311

    Google Scholar 

  • Colonnier M (1968) Synaptic patterns of different cell types in the different laminae of the cat visual cortex. An electron microscope study. Bran Res 9:269–287

    Google Scholar 

  • DeVito JL, Smith OA (1964) Subcortical projections of the prefrontal lobe of the monkey. J Comp Neurol 123:413–424

    Google Scholar 

  • Druga R (1966a) The claustrum of the cat (Felis domestica). Folia Morphol (Praha) 14:7–16

    Google Scholar 

  • Druga R (1966b) Cortico-claustral connections. I. Fronto-claustral connections. Folia Morphol (Praha) 14:391–399

    Google Scholar 

  • Druga R (1968) Cortico-claustral connections. II. Connections from the parietal, temporal and occipital cortex to the claustrum. Folia Morphol (Praha) 16:142–149

    Google Scholar 

  • Druga R (1971) Projection of prepyriform cortex into claustrum. Folia Morphol (Praha) 19:405–410

    Google Scholar 

  • Druga R (1972) Efferent projections from the claustrum (an experimental study using Nauta's method). Folia Morphol (Praha) 20:163–165

    Google Scholar 

  • Druga R (1974) The claustrum and the transitional neo-palaeo-cortical area of the hedgehog (Erinaceus europaeus). Anat Anz 135:442–454

    Google Scholar 

  • Filimonoff IN (1966) The claustrum, its origin and development. J Hirnforsch 8:503–528

    Google Scholar 

  • Irvine DRF, Brugge JF (1980) Afferent and efferent connections between the claustrum and parietal association cortex in cat: a horseradish peroxidase and autoradiographic study. Neurosci Lett 20:5–10

    Google Scholar 

  • Javaraman A, Updyke BV (1979) Organization of visual cortical projections to the claustrum in the cat. Brain Res 178:107–115

    Google Scholar 

  • Juraniec J, Narkiewicz O, Wrzolkowa T (1971) Axon terminals in the claustrum of the cat: an electron microscopic study. Brain Res 35:277–282

    Google Scholar 

  • Künzle H, Akert K (1977) Efferent connections of cortical area 8 (frontal eye field) in Macaca fascicularis. A reinvestigation using the autoradiographic technique. J Comp Neurol 173:147–164

    Google Scholar 

  • Leichnetz GR, Astruc J (1975) Efferent connections of the orbitofrontal cortex in the marmoset (Saguinus oedipus). Brain Res 84:169–180

    Google Scholar 

  • Macchi G, Bentivoglio M, Minciacchi D, Molinari M (1981) The organization of the claustroneocortical projections in the cat studied by means of the HRP retrograde axonal transport. J Comp Neurol 195:681–695

    Google Scholar 

  • Miodonski R (1975) The claustrum in the dog brain. Acta anat 91:409–422

    Google Scholar 

  • Narkiewicz O (1964) Degenerations in the claustrum after regional neocortical ablations in the cat. J Comp Neurol 123:335–356

    Google Scholar 

  • Norita M, Hirata Y (1976) Some electron microscope findings of the claustrum of the cat. Arch Histol Jpn 39:33–49

    Google Scholar 

  • Olson CR, Graybiel AM (1980) Sensory maps in the claustrum of the cat. Nature 288:479–481

    Google Scholar 

  • Pasik P, Pasik T, Difiglia M (1979) The internal organization of the neostriatum in mammals. In I Divac, GE Oberg (eds) The neostriatum. Pergamon Press, Oxford New York

    Google Scholar 

  • Rae ASL (1954) The form and structure of the human claustrum. J Comp Neurol 100:15–40

    Google Scholar 

  • Riche D, Lanoir J (1978) Some claustro-cortical connections in the cat and baboon as studied by retrograde horseradish peroxidase transport. J Comp Neurol 177:435–444

    Google Scholar 

  • Squatritio S, Battaglini PP, Galletti C, Riva Sanseverino E (1980) Autoradiographic evidence for projections from cortical visual areas 17, 18, 19 and the Clare-Bishop area to the ipsilateral claustrum in the cat. Neurosci Lett 19:265–270

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Braak, H., Braak, E. Neuronal types in the claustrum of man. Anat Embryol 163, 447–460 (1982). https://doi.org/10.1007/BF00305558

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00305558

Key words

Navigation