Skip to main content
Top
Published in: Brain Structure and Function 6/2018

01-07-2018 | Original Article

Lateral preoptic and ventral pallidal roles in locomotion and other movements

Authors: Suriya Subramanian, Rhett A. Reichard, Hunter S. Stevenson, Zachary M. Schwartz, Kenneth P. Parsley, Daniel S. Zahm

Published in: Brain Structure and Function | Issue 6/2018

Login to get access

Abstract

The lateral preoptic area (LPO) and ventral pallidum (VP) are structurally and functionally distinct territories in the subcommissural basal forebrain. It was recently shown that unilateral infusion of the GABAA receptor antagonist, bicuculline, into the LPO strongly invigorates exploratory locomotion, whereas bicuculline infused unilaterally into the VP has a negligible locomotor effect, but when infused bilaterally, produces vigorous, abnormal pivoting and gnawing movements and compulsive ingestion. This study was done to further characterize these responses. We observed that bilateral LPO infusions of bicuculline activate exploratory locomotion only slightly more potently than unilateral infusions and that unilateral and bilateral LPO injections of the GABAA receptor agonist muscimol potently suppress basal locomotion, but only modestly inhibit locomotion invigorated by amphetamine. In contrast, unilateral infusions of muscimol into the VP affect basal and amphetamine-elicited locomotion negligibly, but bilateral VP muscimol infusions profoundly suppress both. Locomotor activation elicited from the LPO by bicuculline was inhibited modestly and profoundly by blockade of dopamine D2 and D1 receptors, respectively, but was not entirely abolished even under combined blockade of dopamine D1 and D2 receptors. That is, infusing the LPO with bic caused instances of near normal, even if sporadic, invigoration of locomotion in the presence of saturating dopamine receptor blockade, indicating that LPO can stimulate locomotion in the absence of dopamine signaling. Pivoting following bilateral VP bicuculline infusions was unaffected by dopamine D2 receptor blockade, but was completely suppressed by D1 receptor blockade. The present results are discussed in a context of neuroanatomical and functional organization underlying exploratory locomotion and adaptive movements.
Literature
go back to reference Alcaro A, Huber R, Panksepp J (2007) Behavioral functions of the mesolimbic dopaminergic system: an affective neuroethological perspective. Brain Research Reviews 56:283–321PubMedPubMedCentralCrossRef Alcaro A, Huber R, Panksepp J (2007) Behavioral functions of the mesolimbic dopaminergic system: an affective neuroethological perspective. Brain Research Reviews 56:283–321PubMedPubMedCentralCrossRef
go back to reference Alheid GF, Heimer L (1988) New perspectives in basal forebrain organization of special relevance for neuropsychiatric disorders: the striatopallidal, amygdaloid, and corticopetal components of substantia innominata. Neuroscience 27:1–39PubMedCrossRef Alheid GF, Heimer L (1988) New perspectives in basal forebrain organization of special relevance for neuropsychiatric disorders: the striatopallidal, amygdaloid, and corticopetal components of substantia innominata. Neuroscience 27:1–39PubMedCrossRef
go back to reference Austin MC, Kalivas PW (1989) Blockade of enkephalinergic and GABAergic mediated locomotion in the nucleus accumbens by muscimol in the ventral pallidum. Jpn J Pharmacol 50:487–490PubMedCrossRef Austin MC, Kalivas PW (1989) Blockade of enkephalinergic and GABAergic mediated locomotion in the nucleus accumbens by muscimol in the ventral pallidum. Jpn J Pharmacol 50:487–490PubMedCrossRef
go back to reference Austin MC, Kalivas PW (1990) Enkephalinergic and GABAergic modulation of motor activity in the ventral pallidum. J Pharmacol Exp Ther 252:1370–1377PubMed Austin MC, Kalivas PW (1990) Enkephalinergic and GABAergic modulation of motor activity in the ventral pallidum. J Pharmacol Exp Ther 252:1370–1377PubMed
go back to reference Austin MC, Kalivas PW (1991) Dopaminergic involvement in locomotion elicited from the ventral pallidum/substantia innominata. Brain Res 542:123–131PubMedCrossRef Austin MC, Kalivas PW (1991) Dopaminergic involvement in locomotion elicited from the ventral pallidum/substantia innominata. Brain Res 542:123–131PubMedCrossRef
go back to reference Balleine BW, Dickinson A (1998) Goal-directed instrumental action: contingency and incentive learning and their cortical substrates. Neuropharmacology 37:407–419PubMedCrossRef Balleine BW, Dickinson A (1998) Goal-directed instrumental action: contingency and incentive learning and their cortical substrates. Neuropharmacology 37:407–419PubMedCrossRef
go back to reference Bannerman DM, Rawlins JN, McHugh SB, Deacon RM, Yee BK, Bast T, Zhang WN, Pothuizen HH, Feldon J (2004) Regional dissociations within the hippocampus–memory and anxiety. Neurosci Biobehav Rev 28:273–283PubMedCrossRef Bannerman DM, Rawlins JN, McHugh SB, Deacon RM, Yee BK, Bast T, Zhang WN, Pothuizen HH, Feldon J (2004) Regional dissociations within the hippocampus–memory and anxiety. Neurosci Biobehav Rev 28:273–283PubMedCrossRef
go back to reference Bard P, Macht MB (1958) The behaviour of chronically decerebrate cats. In: Wolstenholme GEW, O’Connor CM eds. Ciba foundation symposium on the neurological basis of behavior. J & A Churchill, LTD, London, pp. 55–75 Bard P, Macht MB (1958) The behaviour of chronically decerebrate cats. In: Wolstenholme GEW, O’Connor CM eds. Ciba foundation symposium on the neurological basis of behavior. J & A Churchill, LTD, London, pp. 55–75
go back to reference Bard, P. and D.M. Rioch (1937) A study of four cats deprived of neocortex and additional portions of the forebrain. Johns Hopkins Med. J. 60:73–153 Bard, P. and D.M. Rioch (1937) A study of four cats deprived of neocortex and additional portions of the forebrain. Johns Hopkins Med. J. 60:73–153
go back to reference Barker DJ, Miranda-Barrientos J, Zhang S, Root DH, Wang HL, Liu B, Calipari ES, Morales M (2017) Lateral preoptic control of the lateral habenula through convergent glutamate and GABA transmission. Cell Rep 21:1757–1769PubMedPubMedCentralCrossRef Barker DJ, Miranda-Barrientos J, Zhang S, Root DH, Wang HL, Liu B, Calipari ES, Morales M (2017) Lateral preoptic control of the lateral habenula through convergent glutamate and GABA transmission. Cell Rep 21:1757–1769PubMedPubMedCentralCrossRef
go back to reference Baud P, Mayo W, Le Moal M, Simon H (1988) Locomotor hyperactivity in the rat after infusion of muscimol and [D-Ala2]Met-enkephalin into the nucleus basalis magnocellularis. Possible interaction with cortical cholinergic projections. Brain Res 452:203–211PubMedCrossRef Baud P, Mayo W, Le Moal M, Simon H (1988) Locomotor hyperactivity in the rat after infusion of muscimol and [D-Ala2]Met-enkephalin into the nucleus basalis magnocellularis. Possible interaction with cortical cholinergic projections. Brain Res 452:203–211PubMedCrossRef
go back to reference Bean AJ, During MJ, Deutch AY, Roth RH (1989) Effects of dopamine depletion on striatal neurotensin: biochemical and immunohistochemical studies. J Neurosci 9:4430–4438PubMedCrossRef Bean AJ, During MJ, Deutch AY, Roth RH (1989) Effects of dopamine depletion on striatal neurotensin: biochemical and immunohistochemical studies. J Neurosci 9:4430–4438PubMedCrossRef
go back to reference Beckstead RM, Kersey KS (1985) Immunohistochemical demonstration of differential substance P-, met-enkephalin-, and glutamic-acid-decarboxylase-containing cell body and axon distributions in the corpus striatum of the cat. J Comp Neurol 232:481–498PubMedCrossRef Beckstead RM, Kersey KS (1985) Immunohistochemical demonstration of differential substance P-, met-enkephalin-, and glutamic-acid-decarboxylase-containing cell body and axon distributions in the corpus striatum of the cat. J Comp Neurol 232:481–498PubMedCrossRef
go back to reference Bell K, Churchill L, Kalivas PW (1995) GABAergic projection from the ventral pallidum and globus pallidus to the subthalamic nucleus. Synapse 20:10–18PubMedCrossRef Bell K, Churchill L, Kalivas PW (1995) GABAergic projection from the ventral pallidum and globus pallidus to the subthalamic nucleus. Synapse 20:10–18PubMedCrossRef
go back to reference Berendse HW, Galis-de Graaf Y, Groenewegen HJ (1992) Topographical organization and relationship with ventral striatal compartments of prefrontal corticostriatal projections in the rat. J Comp Neurol 316:314–347PubMedCrossRef Berendse HW, Galis-de Graaf Y, Groenewegen HJ (1992) Topographical organization and relationship with ventral striatal compartments of prefrontal corticostriatal projections in the rat. J Comp Neurol 316:314–347PubMedCrossRef
go back to reference Bourne JA (2001) SCH 23390: the first selective dopamine D1-like receptor antagonist. CNS drug Rev 7:399–414PubMedCrossRef Bourne JA (2001) SCH 23390: the first selective dopamine D1-like receptor antagonist. CNS drug Rev 7:399–414PubMedCrossRef
go back to reference Brog JS, Salyapongse A, Deutch AY, Zahm DS (1993) The patterns of afferent innervation of the core and shell in the “accumbens” part of the rat ventral striatum: immunohistochemical detection of retrogradely transported fluoro-gold. J Comp Neurol 338:255–278PubMedCrossRef Brog JS, Salyapongse A, Deutch AY, Zahm DS (1993) The patterns of afferent innervation of the core and shell in the “accumbens” part of the rat ventral striatum: immunohistochemical detection of retrogradely transported fluoro-gold. J Comp Neurol 338:255–278PubMedCrossRef
go back to reference Brownstein MJ, Mroz EA, Tappaz ML, Leeman SE (1977) On the origin of substance P and glutamic acid decarboxylase (GAD) in the substantia nigra. Brain Res 135:315–323PubMedCrossRef Brownstein MJ, Mroz EA, Tappaz ML, Leeman SE (1977) On the origin of substance P and glutamic acid decarboxylase (GAD) in the substantia nigra. Brain Res 135:315–323PubMedCrossRef
go back to reference Bunney BS, Walters JR, Roth RH, Aghajanian GK (1973) Dopaminergic neurons: effect of antipsychotic drugs and amphetamine on single cell activity. J Pharmacol Exp Ther 185:560–571PubMed Bunney BS, Walters JR, Roth RH, Aghajanian GK (1973) Dopaminergic neurons: effect of antipsychotic drugs and amphetamine on single cell activity. J Pharmacol Exp Ther 185:560–571PubMed
go back to reference Chen JC, Liang KW, Huang YK, Liang CS, Chiang YC (2001) Significance of glutamate and dopamine neurons in the ventral pallidum in the expression of behavioral sensitization to amphetamine. Life Sci 68:973–983PubMedCrossRef Chen JC, Liang KW, Huang YK, Liang CS, Chiang YC (2001) Significance of glutamate and dopamine neurons in the ventral pallidum in the expression of behavioral sensitization to amphetamine. Life Sci 68:973–983PubMedCrossRef
go back to reference Christensen AV, Arnt J, Hyttel J, Larsen JJ, Svendsen O (1984) Pharmacological effects of a specific dopamine D-1 antagonist SCH 23390 in comparison with neuroleptics. Life Sci 34:1529–1540PubMedCrossRef Christensen AV, Arnt J, Hyttel J, Larsen JJ, Svendsen O (1984) Pharmacological effects of a specific dopamine D-1 antagonist SCH 23390 in comparison with neuroleptics. Life Sci 34:1529–1540PubMedCrossRef
go back to reference Coombs JS, Eccles JC, Fatt P (1955) The specific ionic conductances and the ionic movements across the motoneuronal membrane that produce the inhibitory post-synaptic potential. J Physiol 130:326–374PubMedPubMedCentralCrossRef Coombs JS, Eccles JC, Fatt P (1955) The specific ionic conductances and the ionic movements across the motoneuronal membrane that produce the inhibitory post-synaptic potential. J Physiol 130:326–374PubMedPubMedCentralCrossRef
go back to reference Cooper DC, Klipec WD, Fowler MA, Ozkan ED (2006) A role for the subiculum in the brain motivation/reward circuitry. Behav Brain Res 174:225–231PubMedCrossRef Cooper DC, Klipec WD, Fowler MA, Ozkan ED (2006) A role for the subiculum in the brain motivation/reward circuitry. Behav Brain Res 174:225–231PubMedCrossRef
go back to reference Costall B, Fortune DH, Hui SC, Naylor RJ (1980) Neuroleptic antagonism of the motor inhibitory effects of apomorphine within the nucleus accumbens: drug interaction at presynaptic receptors? Eur J Pharmacol 63:347–358PubMedCrossRef Costall B, Fortune DH, Hui SC, Naylor RJ (1980) Neuroleptic antagonism of the motor inhibitory effects of apomorphine within the nucleus accumbens: drug interaction at presynaptic receptors? Eur J Pharmacol 63:347–358PubMedCrossRef
go back to reference Covelo IR, Patel ZI, Luviano JA, Stratford TR, Wirtshafter D (2014) Manipulation of GABA in the ventral pallidum, but not the nucleus accumbens, induces intense, preferential, fat consumption in rats. Behav Brain Res 270:316–325PubMedCrossRef Covelo IR, Patel ZI, Luviano JA, Stratford TR, Wirtshafter D (2014) Manipulation of GABA in the ventral pallidum, but not the nucleus accumbens, induces intense, preferential, fat consumption in rats. Behav Brain Res 270:316–325PubMedCrossRef
go back to reference Creese I, Kuczenski R, Segal D (1982) Lack of behavioral evidence for dopamine autoreceptor subsensitivity after acute electroconvulsive shock. Pharmacol Biochem Behav 17:375–376PubMedCrossRef Creese I, Kuczenski R, Segal D (1982) Lack of behavioral evidence for dopamine autoreceptor subsensitivity after acute electroconvulsive shock. Pharmacol Biochem Behav 17:375–376PubMedCrossRef
go back to reference Cromwell HC, Berridge KC (1993) Where does damage lead to enhanced food aversion: the ventral pallidum/substantia innominata or lateral hypothalamus? Brain Res 624:1–10PubMedCrossRef Cromwell HC, Berridge KC (1993) Where does damage lead to enhanced food aversion: the ventral pallidum/substantia innominata or lateral hypothalamus? Brain Res 624:1–10PubMedCrossRef
go back to reference Dray A (1975) Comparison of bicuculline methochloride with bicuculline and picrotoxin as antagonists of amino acid and monoamine depression of neurones in the rat brainstem. Neuropharmacology 14:887–891PubMedCrossRef Dray A (1975) Comparison of bicuculline methochloride with bicuculline and picrotoxin as antagonists of amino acid and monoamine depression of neurones in the rat brainstem. Neuropharmacology 14:887–891PubMedCrossRef
go back to reference Einhorn LC, Johansen PA, White FJ (1988) Electrophysiological effects of cocaine in the mesoaccumbens dopamine system: studies in the ventral tegmental area. J Neurosci 8:100–112PubMedCrossRef Einhorn LC, Johansen PA, White FJ (1988) Electrophysiological effects of cocaine in the mesoaccumbens dopamine system: studies in the ventral tegmental area. J Neurosci 8:100–112PubMedCrossRef
go back to reference Ferraguti F, Zoli M, Aronsson M, Agnati LF, Goldstein M, Filer D, Fuxe K (1990) Distribution of glutamic acid decarboxylase messenger RNA-containing nerve cell populations of the male rat brain. J Chem Neuroanat 3:377–396PubMed Ferraguti F, Zoli M, Aronsson M, Agnati LF, Goldstein M, Filer D, Fuxe K (1990) Distribution of glutamic acid decarboxylase messenger RNA-containing nerve cell populations of the male rat brain. J Chem Neuroanat 3:377–396PubMed
go back to reference Ferrier D. 1876/1966. The Functions of the Brain. Smith Elder, London, 1976; reprinted in 1966 by Dawsons of Pall Mall, London Ferrier D. 1876/1966. The Functions of the Brain. Smith Elder, London, 1976; reprinted in 1966 by Dawsons of Pall Mall, London
go back to reference Floresco SB, West AR, Ash B, Moore H, Grace AA (2003) Afferent modulation of dopamine neuron firing differentially regulates tonic and phasic dopamine transmission. Nat Neurosci 6:968–973PubMedCrossRef Floresco SB, West AR, Ash B, Moore H, Grace AA (2003) Afferent modulation of dopamine neuron firing differentially regulates tonic and phasic dopamine transmission. Nat Neurosci 6:968–973PubMedCrossRef
go back to reference Furmidge L, Tong ZY, Petry N, Clark D (1991) Effects of low, autoreceptor selective doses of dopamine agonists on the discriminative cue and locomotor hyperactivity produced by d-amphetamine. J Neural Trans Gen Sect 86:61–70CrossRef Furmidge L, Tong ZY, Petry N, Clark D (1991) Effects of low, autoreceptor selective doses of dopamine agonists on the discriminative cue and locomotor hyperactivity produced by d-amphetamine. J Neural Trans Gen Sect 86:61–70CrossRef
go back to reference Garcia-Rill E, Skinner RD (1987) The mesencephalic locomotor region. II. Projections to reticulospinal neurons. Brain Res 411:13–20PubMedCrossRef Garcia-Rill E, Skinner RD (1987) The mesencephalic locomotor region. II. Projections to reticulospinal neurons. Brain Res 411:13–20PubMedCrossRef
go back to reference Garcia-Rill E, Skinner RD, Gilmore SA, Owings R (1983) Connections of the mesencephalic locomotor region (MLR) II. Afferents and efferents. Brain Res Bull 10:63–71PubMedCrossRef Garcia-Rill E, Skinner RD, Gilmore SA, Owings R (1983) Connections of the mesencephalic locomotor region (MLR) II. Afferents and efferents. Brain Res Bull 10:63–71PubMedCrossRef
go back to reference Gong W, Neill DB, Lynn M, Justice JB, Jr. (1999) Dopamine D1/D2 agonists injected into nucleus accumbens and ventral pallidum differentially affect locomotor activity depending on site. Neuroscience 93:1349–1358PubMedCrossRef Gong W, Neill DB, Lynn M, Justice JB, Jr. (1999) Dopamine D1/D2 agonists injected into nucleus accumbens and ventral pallidum differentially affect locomotor activity depending on site. Neuroscience 93:1349–1358PubMedCrossRef
go back to reference Gonzalez-Vegas JA, Pardey B (1979) A presynaptic action of dopamine on globus pallidus afferents to substantia nigra in the rat. Neurosci Lett 14:77–80PubMedCrossRef Gonzalez-Vegas JA, Pardey B (1979) A presynaptic action of dopamine on globus pallidus afferents to substantia nigra in the rat. Neurosci Lett 14:77–80PubMedCrossRef
go back to reference Gritti I, Mainville L, Jones BE (1994) Projections of GABAergic and cholinergic basal forebrain and GABAergic preoptic-anterior hypothalamic neurons to the posterior lateral hypothalamus of the rat. J Comp Neurol 339:251–268PubMedCrossRef Gritti I, Mainville L, Jones BE (1994) Projections of GABAergic and cholinergic basal forebrain and GABAergic preoptic-anterior hypothalamic neurons to the posterior lateral hypothalamus of the rat. J Comp Neurol 339:251–268PubMedCrossRef
go back to reference Gritti I, Mainville L, Mancia M, Jones BE (1997) GABAergic and other noncholinergic basal forebrain neurons, together with cholinergic neurons, project to the mesocortex and isocortex in the rat. J Comp Neurol 383:163–177PubMedCrossRef Gritti I, Mainville L, Mancia M, Jones BE (1997) GABAergic and other noncholinergic basal forebrain neurons, together with cholinergic neurons, project to the mesocortex and isocortex in the rat. J Comp Neurol 383:163–177PubMedCrossRef
go back to reference Groenewegen HJ, Russchen FT (1984) Organization of the efferent projections of the nucleus accumbens to pallidal, hypothalamic, and mesencephalic structures: a tracing and immunohistochemical study in the cat. J Comp Neurol 223:347–367PubMedCrossRef Groenewegen HJ, Russchen FT (1984) Organization of the efferent projections of the nucleus accumbens to pallidal, hypothalamic, and mesencephalic structures: a tracing and immunohistochemical study in the cat. J Comp Neurol 223:347–367PubMedCrossRef
go back to reference Groenewegen HJ, Vermeulen-Van der Zee E, te Kortschot A, Witter MP (1987) Organization of the projections from the subiculum to the ventral striatum in the rat. A study using anterograde transport of Phaseolus vulgaris leucoagglutinin. Neuroscience 23:103–120PubMedCrossRef Groenewegen HJ, Vermeulen-Van der Zee E, te Kortschot A, Witter MP (1987) Organization of the projections from the subiculum to the ventral striatum in the rat. A study using anterograde transport of Phaseolus vulgaris leucoagglutinin. Neuroscience 23:103–120PubMedCrossRef
go back to reference Groenewegen HJ, Berendse HW, Wolters JG, Lohman AH (1990) The anatomical relationship of the prefrontal cortex with the striatopallidal system, the thalamus and the amygdala: evidence for a parallel organization. Prog Brain Res 85:95–116; discussion 116–118PubMedCrossRef Groenewegen HJ, Berendse HW, Wolters JG, Lohman AH (1990) The anatomical relationship of the prefrontal cortex with the striatopallidal system, the thalamus and the amygdala: evidence for a parallel organization. Prog Brain Res 85:95–116; discussion 116–118PubMedCrossRef
go back to reference Groenewegen HJ, Berendse HW, Haber SN (1993) Organization of the output of the ventral striatopallidal system in the rat: ventral pallidal efferents. Neuroscience 57:113–142PubMedCrossRef Groenewegen HJ, Berendse HW, Haber SN (1993) Organization of the output of the ventral striatopallidal system in the rat: ventral pallidal efferents. Neuroscience 57:113–142PubMedCrossRef
go back to reference Groenewegen HJ, Berendse HW, Wouterlood FG (1994) Organization of the projections from the ventral striato-pallidal system to ventral mesencephalic dopaminergic neurons in the rat Groenewegen HJ, Berendse HW, Wouterlood FG (1994) Organization of the projections from the ventral striato-pallidal system to ventral mesencephalic dopaminergic neurons in the rat
go back to reference Haber SN, Groenewegen HJ, Grove EA, Nauta WJ (1985) Efferent connections of the ventral pallidum: evidence of a dual striato pallidofugal pathway. J Comp Neurol 235:322–335PubMedCrossRef Haber SN, Groenewegen HJ, Grove EA, Nauta WJ (1985) Efferent connections of the ventral pallidum: evidence of a dual striato pallidofugal pathway. J Comp Neurol 235:322–335PubMedCrossRef
go back to reference Haber SN, Lynd-Balta E, Mitchell SJ (1993) The organization of the descending ventral pallidal projections in the monkey. J Comp Neurol 329:111–128PubMedCrossRef Haber SN, Lynd-Balta E, Mitchell SJ (1993) The organization of the descending ventral pallidal projections in the monkey. J Comp Neurol 329:111–128PubMedCrossRef
go back to reference Hall H, Kohler C, Gawell L (1985) Some in vitro receptor binding properties of [3H]eticlopride, a novel substituted benzamide, selective for dopamine-D2 receptors in the rat brain. European journal of pharmacology 111:191–199PubMedCrossRef Hall H, Kohler C, Gawell L (1985) Some in vitro receptor binding properties of [3H]eticlopride, a novel substituted benzamide, selective for dopamine-D2 receptors in the rat brain. European journal of pharmacology 111:191–199PubMedCrossRef
go back to reference Harris GW (1958) Chairman’s opening remarks. In Wolstenholme GEW, O’Connor CM, eds. Ciba Foundation symposium on the neurological basis of behavior. J & A Churchill, LTD, London, pp 1–3 Harris GW (1958) Chairman’s opening remarks. In Wolstenholme GEW, O’Connor CM, eds. Ciba Foundation symposium on the neurological basis of behavior. J & A Churchill, LTD, London, pp 1–3
go back to reference Heidbreder CA, Groenewegen HJ (2003) The medial prefrontal cortex in the rat: evidence for a dorso-ventral distinction based upon functional and anatomical characteristics. Neurosci Biobehav Rev 27:555–579PubMedCrossRef Heidbreder CA, Groenewegen HJ (2003) The medial prefrontal cortex in the rat: evidence for a dorso-ventral distinction based upon functional and anatomical characteristics. Neurosci Biobehav Rev 27:555–579PubMedCrossRef
go back to reference Heimer L (1972) The olfactory connections of the diencephalon in the rat. An experimental light- and electron-microscopic study with special emphasis on the problem of terminal degeneration. Brain Behav Evol 6:484–523PubMedCrossRef Heimer L (1972) The olfactory connections of the diencephalon in the rat. An experimental light- and electron-microscopic study with special emphasis on the problem of terminal degeneration. Brain Behav Evol 6:484–523PubMedCrossRef
go back to reference Heimer L, Alheid GF (1991) Piecing together the puzzle of basal forebrain anatomy. Adv Exp Med Biol 295:1–42PubMedCrossRef Heimer L, Alheid GF (1991) Piecing together the puzzle of basal forebrain anatomy. Adv Exp Med Biol 295:1–42PubMedCrossRef
go back to reference Heimer L, van Hoesen GW (1978) Ventral striatum. In: Divac I, Oberg RGE., eds., The Neostriatum. Pergammon Press, Oxford, pp. 147–158 Heimer L, van Hoesen GW (1978) Ventral striatum. In: Divac I, Oberg RGE., eds., The Neostriatum. Pergammon Press, Oxford, pp. 147–158
go back to reference Heimer L, Van Hoesen GW (2006) The limbic lobe and its output channels: implications for emotional functions and adaptive behavior. Neurosci Biobehav Rev 30:126–147PubMedCrossRef Heimer L, Van Hoesen GW (2006) The limbic lobe and its output channels: implications for emotional functions and adaptive behavior. Neurosci Biobehav Rev 30:126–147PubMedCrossRef
go back to reference Heimer L, Switzer RC, and Van Hoesen GW (1982) Ventral striatum and ventral pallidum: additional components of the motor system? Trends Neurosci 5:83–87CrossRef Heimer L, Switzer RC, and Van Hoesen GW (1982) Ventral striatum and ventral pallidum: additional components of the motor system? Trends Neurosci 5:83–87CrossRef
go back to reference Heimer L, Alheid GF, Zaborszky L (1985) Basal ganglia In: Paxinos G (ed.) The rat nervous system, volume 1, forebrain and midbrain, 2nd Edition, Academic Press, Sydney, pgs. 37–86 Heimer L, Alheid GF, Zaborszky L (1985) Basal ganglia In: Paxinos G (ed.) The rat nervous system, volume 1, forebrain and midbrain, 2nd Edition, Academic Press, Sydney, pgs. 37–86
go back to reference Heimer L, Zahm DS, Churchill L, Kalivas PW, Wohltmann C (1991a) Specificity in the projection patterns of accumbal core and shell in the rat. Neuroscience 41:89–125PubMedCrossRef Heimer L, Zahm DS, Churchill L, Kalivas PW, Wohltmann C (1991a) Specificity in the projection patterns of accumbal core and shell in the rat. Neuroscience 41:89–125PubMedCrossRef
go back to reference Heimer L, de Olmos J, Alheid GF, Zaborszky L (1991b) “Perestroika” in the basal forebrain: opening the border between neurology and psychiatry. Prog Brain Res 87:109–165PubMedCrossRef Heimer L, de Olmos J, Alheid GF, Zaborszky L (1991b) “Perestroika” in the basal forebrain: opening the border between neurology and psychiatry. Prog Brain Res 87:109–165PubMedCrossRef
go back to reference Heimer L, Alheid GF, Zahm DS (1995) Basal Ganglia In: Paxinos G (ed.) The rat nervous system, volume 1, forebrain and midbrain, 2nd Edition, Academic Press, Sydney, pgs. 579–628 Heimer L, Alheid GF, Zahm DS (1995) Basal Ganglia In: Paxinos G (ed.) The rat nervous system, volume 1, forebrain and midbrain, 2nd Edition, Academic Press, Sydney, pgs. 579–628
go back to reference Heimer L, Harlan RE, Alheid GF, Garcia M, de Olmos J (1997) Substantia innominata: a notion which impedes clinical-anatomical correlations in neuropsychiatric disorders. Neuroscience 76:957–1006PubMedCrossRef Heimer L, Harlan RE, Alheid GF, Garcia M, de Olmos J (1997) Substantia innominata: a notion which impedes clinical-anatomical correlations in neuropsychiatric disorders. Neuroscience 76:957–1006PubMedCrossRef
go back to reference Hinsey JC, Ranson SW, McNattin RF (1930) The role of the hypothalamus and mesencephalon in locomotion. Arch Neurol Psychiat 23:1–42CrossRef Hinsey JC, Ranson SW, McNattin RF (1930) The role of the hypothalamus and mesencephalon in locomotion. Arch Neurol Psychiat 23:1–42CrossRef
go back to reference Hoffman DC, West TE, Wise RA (1991) Ventral pallidal microinjections of receptor-selective opioid agonists produce differential effects on circling and locomotor activity in rats. Brain Res 550:205–212PubMedCrossRef Hoffman DC, West TE, Wise RA (1991) Ventral pallidal microinjections of receptor-selective opioid agonists produce differential effects on circling and locomotor activity in rats. Brain Res 550:205–212PubMedCrossRef
go back to reference Holstege G (1991) Descending motor pathways and the spinal motor system: limbic and non-limbic components. Prog Brain Res 87:307–421PubMedCrossRef Holstege G (1991) Descending motor pathways and the spinal motor system: limbic and non-limbic components. Prog Brain Res 87:307–421PubMedCrossRef
go back to reference Holstege G. The emotional motor system (1992) Eur J Morphol 30:67–79PubMed Holstege G. The emotional motor system (1992) Eur J Morphol 30:67–79PubMed
go back to reference Holstege, G (1996) The somatic motor system, in (Holstege G, Bandler R, Saper CB, eds) The emotional motor system. Prog Brain Res 107:9–28PubMedCrossRef Holstege, G (1996) The somatic motor system, in (Holstege G, Bandler R, Saper CB, eds) The emotional motor system. Prog Brain Res 107:9–28PubMedCrossRef
go back to reference Hooks MS, Kalivas PW (1995) The role of mesoaccumbens–pallidal circuitry in novelty-induced behavioral activation. Neuroscience 64:587–597PubMedCrossRef Hooks MS, Kalivas PW (1995) The role of mesoaccumbens–pallidal circuitry in novelty-induced behavioral activation. Neuroscience 64:587–597PubMedCrossRef
go back to reference Hotsenpiller G, Giorgetti M, Wolf ME (2001) Alterations in behaviour and glutamate transmission following presentation of stimuli previously associated with cocaine exposure. Eur J Neurosci 14:1843–1855PubMedCrossRef Hotsenpiller G, Giorgetti M, Wolf ME (2001) Alterations in behaviour and glutamate transmission following presentation of stimuli previously associated with cocaine exposure. Eur J Neurosci 14:1843–1855PubMedCrossRef
go back to reference Hubert GW, Manvich DF, Kuhar MJ (2010) Cocaine and amphetamine-regulated transcript-containing neurons in the nucleus accumbens project to the ventral pallidum in the rat and may inhibit cocaine-induced locomotion. Neuroscience 165:179–187PubMedCrossRef Hubert GW, Manvich DF, Kuhar MJ (2010) Cocaine and amphetamine-regulated transcript-containing neurons in the nucleus accumbens project to the ventral pallidum in the rat and may inhibit cocaine-induced locomotion. Neuroscience 165:179–187PubMedCrossRef
go back to reference Hurley KM, Herbert H, Moga MM, Saper CB (1991) Efferent projections of the infralimbic cortex of the rat. J Comp Neurol 308:249–276PubMedCrossRef Hurley KM, Herbert H, Moga MM, Saper CB (1991) Efferent projections of the infralimbic cortex of the rat. J Comp Neurol 308:249–276PubMedCrossRef
go back to reference Ikeda H, Akiyama G, Fujii Y, Minowa R, Koshikawa N, Cools AR (2003) Role of AMPA and NMDA receptors in the nucleus accumbens shell in turning behaviour of rats: interaction with dopamine receptors. Neuropharmacology 44:81–87PubMedCrossRef Ikeda H, Akiyama G, Fujii Y, Minowa R, Koshikawa N, Cools AR (2003) Role of AMPA and NMDA receptors in the nucleus accumbens shell in turning behaviour of rats: interaction with dopamine receptors. Neuropharmacology 44:81–87PubMedCrossRef
go back to reference Ikeda H, Kotani A, Koshikawa N, Cools AR. 2007. A vehicle injection into the right core of the nucleus accumbens both reverses the region-specificity and alters the type of contralateral turning elicited by unilateral stimulation of dopamine D2/D3 and D1 receptors in the left core of the nucleus accumbens. Eur J Pharmacol 577: 64–70PubMedCrossRef Ikeda H, Kotani A, Koshikawa N, Cools AR. 2007. A vehicle injection into the right core of the nucleus accumbens both reverses the region-specificity and alters the type of contralateral turning elicited by unilateral stimulation of dopamine D2/D3 and D1 receptors in the left core of the nucleus accumbens. Eur J Pharmacol 577: 64–70PubMedCrossRef
go back to reference Ikemoto S, Panksepp J (1999) The role of nucleus accumbens dopamine in motivated behavior: a unifying interpretation with special reference to reward-seeking. Brain Res Brain Res Rev 31:6–41PubMedCrossRef Ikemoto S, Panksepp J (1999) The role of nucleus accumbens dopamine in motivated behavior: a unifying interpretation with special reference to reward-seeking. Brain Res Brain Res Rev 31:6–41PubMedCrossRef
go back to reference Ito R, Lee AC (2016) The role of the hippocampus in approach-avoidance conflict decision-making: Evidence from rodent and human studies. Behav Brain Res 313:345–357PubMedCrossRef Ito R, Lee AC (2016) The role of the hippocampus in approach-avoidance conflict decision-making: Evidence from rodent and human studies. Behav Brain Res 313:345–357PubMedCrossRef
go back to reference Johnson PI, Napier TC (2000) Ventral pallidal injections of a mu antagonist block the development of behavioral sensitization to systemic morphine. Synapse 38:61–70PubMedCrossRef Johnson PI, Napier TC (2000) Ventral pallidal injections of a mu antagonist block the development of behavioral sensitization to systemic morphine. Synapse 38:61–70PubMedCrossRef
go back to reference Johnson K, Churchill L, Klitenick MA, Hooks MS, Kalivas PW (1996) Involvement of the ventral tegmental area in locomotion elicited from the nucleus accumbens or ventral pallidum. J Pharmacol Exp Ther 277:1122–1131PubMed Johnson K, Churchill L, Klitenick MA, Hooks MS, Kalivas PW (1996) Involvement of the ventral tegmental area in locomotion elicited from the nucleus accumbens or ventral pallidum. J Pharmacol Exp Ther 277:1122–1131PubMed
go back to reference June HL, Foster KL, McKay PF, Seyoum R, Woods JE, Harvey SC, Eiler WJ, Grey C, Carroll MR, McCane S, Jones CM, Yin W, Mason D, Cummings R, Garcia M, Ma C, Sarma PV, Cook JM, Skolnick P (2003) The reinforcing properties of alcohol are mediated by GABA(A1) receptors in the ventral pallidum. Neuropsychopharmacology 28:2124–2137PubMedCrossRef June HL, Foster KL, McKay PF, Seyoum R, Woods JE, Harvey SC, Eiler WJ, Grey C, Carroll MR, McCane S, Jones CM, Yin W, Mason D, Cummings R, Garcia M, Ma C, Sarma PV, Cook JM, Skolnick P (2003) The reinforcing properties of alcohol are mediated by GABA(A1) receptors in the ventral pallidum. Neuropsychopharmacology 28:2124–2137PubMedCrossRef
go back to reference Kaila K, Pasternack M, Saarikoski J, Voipio J (1989) Influence of GABA-gated bicarbonate conductance on potential, current and intracellular chloride in crayfish muscle fibres. J Physiol 416:161–181PubMedPubMedCentralCrossRef Kaila K, Pasternack M, Saarikoski J, Voipio J (1989) Influence of GABA-gated bicarbonate conductance on potential, current and intracellular chloride in crayfish muscle fibres. J Physiol 416:161–181PubMedPubMedCentralCrossRef
go back to reference Kalivas PW, Klitenick MA, Hagler H, Austin MC (1991) GABAergic and enkephalinergic regulation of locomotion in the ventral pallidum: involvement of the mesolimbic dopamine system. In: Napier TC, Kaliavs PW, Hanin I, eds The basal forebrain. Anatomy to function, Plenum Press, New York (Adv Exp Med Biol 295), pp 315–326CrossRef Kalivas PW, Klitenick MA, Hagler H, Austin MC (1991) GABAergic and enkephalinergic regulation of locomotion in the ventral pallidum: involvement of the mesolimbic dopamine system. In: Napier TC, Kaliavs PW, Hanin I, eds The basal forebrain. Anatomy to function, Plenum Press, New York (Adv Exp Med Biol 295), pp 315–326CrossRef
go back to reference Kelley AE (1999) Functional specificity of ventral striatal compartments in appetitive behaviors. Ann NY Acad Sci 877:71–90PubMedCrossRef Kelley AE (1999) Functional specificity of ventral striatal compartments in appetitive behaviors. Ann NY Acad Sci 877:71–90PubMedCrossRef
go back to reference Kelley AE, Domesick VB (1982) The distribution of the projection from the hippocampal formation to the nucleus accumbens in the rat: an anterograde- and retrograde-horseradish peroxidase study. Neuroscience 7:2321–2335PubMedCrossRef Kelley AE, Domesick VB (1982) The distribution of the projection from the hippocampal formation to the nucleus accumbens in the rat: an anterograde- and retrograde-horseradish peroxidase study. Neuroscience 7:2321–2335PubMedCrossRef
go back to reference Kelley AE, Smith-Roe SL, Holahan MR (1997) Response-reinforcement learning is dependent on N-methyl-D-aspartate receptor activation in the nucleus accumbens core. Proc Natl Acad Sci USA 94:12174–12179PubMedPubMedCentralCrossRef Kelley AE, Smith-Roe SL, Holahan MR (1997) Response-reinforcement learning is dependent on N-methyl-D-aspartate receptor activation in the nucleus accumbens core. Proc Natl Acad Sci USA 94:12174–12179PubMedPubMedCentralCrossRef
go back to reference Kelly PH, Seviour PW, Iversen SD (1975) Amphetamine and apomorphine responses in the rat following 6-OHDA lesions of the nucleus accumbens septi and corpus striatum. Brain Res 94:507–522PubMedCrossRef Kelly PH, Seviour PW, Iversen SD (1975) Amphetamine and apomorphine responses in the rat following 6-OHDA lesions of the nucleus accumbens septi and corpus striatum. Brain Res 94:507–522PubMedCrossRef
go back to reference Kinjo N, Atsuta Y, Webber M, Kyle R, Skinner RD, Garcia-Rill E (1990) Medioventral medulla-induced locomotion. Brain Res Bull 24:509–516PubMedCrossRef Kinjo N, Atsuta Y, Webber M, Kyle R, Skinner RD, Garcia-Rill E (1990) Medioventral medulla-induced locomotion. Brain Res Bull 24:509–516PubMedCrossRef
go back to reference Kitamura M, Koshikawa N, Yoneshige N, Cools AR (1999) Behavioural and neurochemical effects of cholinergic and dopaminergic agonists administered into the accumbal core and shell in rats. Neuropharmacology 38:1397–1407PubMedCrossRef Kitamura M, Koshikawa N, Yoneshige N, Cools AR (1999) Behavioural and neurochemical effects of cholinergic and dopaminergic agonists administered into the accumbal core and shell in rats. Neuropharmacology 38:1397–1407PubMedCrossRef
go back to reference Kitamura M, Ikeda H, Koshikawa N, Cools AR (2001) GABA(A) agents injected into the ventral pallidum differentially affect dopaminergic pivoting and cholinergic circling elicited from the shell of the nucleus accumbens. Neuroscience 104:117–127PubMedCrossRef Kitamura M, Ikeda H, Koshikawa N, Cools AR (2001) GABA(A) agents injected into the ventral pallidum differentially affect dopaminergic pivoting and cholinergic circling elicited from the shell of the nucleus accumbens. Neuroscience 104:117–127PubMedCrossRef
go back to reference Köhler C, Hall H, Gawell L (1986) Regional in vivo binding of the substituted benzamide [3H]eticlopride in the rat brain: evidence for selective labelling of dopamine receptors. Eur J Pharmacol 120:217–226PubMedCrossRef Köhler C, Hall H, Gawell L (1986) Regional in vivo binding of the substituted benzamide [3H]eticlopride in the rat brain: evidence for selective labelling of dopamine receptors. Eur J Pharmacol 120:217–226PubMedCrossRef
go back to reference Koshikawa N, Kitamura M, Kobayashi M, Cools AR (1996) Contralateral turning elicited by unilateral stimulation of dopamine D2 and D1 receptors in the nucleus accumbens of rats is due to stimulation of these receptors in the shell, but not the core, of this nucleus. Psychopharmacology (Berl) 126:185–190CrossRef Koshikawa N, Kitamura M, Kobayashi M, Cools AR (1996) Contralateral turning elicited by unilateral stimulation of dopamine D2 and D1 receptors in the nucleus accumbens of rats is due to stimulation of these receptors in the shell, but not the core, of this nucleus. Psychopharmacology (Berl) 126:185–190CrossRef
go back to reference Krishek BJ, Moss SJ, Smart TG (1996) A functional comparison of the antagonists bicuculline and picrotoxin at recominant GABAA receptors. Neuropharmacology 35:1289–1298PubMedCrossRef Krishek BJ, Moss SJ, Smart TG (1996) A functional comparison of the antagonists bicuculline and picrotoxin at recominant GABAA receptors. Neuropharmacology 35:1289–1298PubMedCrossRef
go back to reference Kuczenski R, Segal DS, Manley LD (1990) Apomorphine does not alter amphetamine-induced dopamine release measured in striatal dialysates. J Neurochem 54:1492–1499PubMedCrossRef Kuczenski R, Segal DS, Manley LD (1990) Apomorphine does not alter amphetamine-induced dopamine release measured in striatal dialysates. J Neurochem 54:1492–1499PubMedCrossRef
go back to reference Lavezzi HN, Parsley KP, Zahm DS (2015) Modulation of locomotor activation by the rostromedial tegmental nucleus. 40:676–687 Lavezzi HN, Parsley KP, Zahm DS (2015) Modulation of locomotor activation by the rostromedial tegmental nucleus. 40:676–687
go back to reference Leslie CA, Bennett JP, Jr. (1987a) Striatal D1- and D2-dopamine receptor sites are separately detectable in vivo. Brain Res 415:90–97PubMedCrossRef Leslie CA, Bennett JP, Jr. (1987a) Striatal D1- and D2-dopamine receptor sites are separately detectable in vivo. Brain Res 415:90–97PubMedCrossRef
go back to reference Leslie CA, Bennett JP, Jr. (1987b) [3H]spiperone binds selectively to rat striatal D2 dopamine receptors in vivo: a kinetic and pharmacological analysis. Brain Res 407:253–262PubMedCrossRef Leslie CA, Bennett JP, Jr. (1987b) [3H]spiperone binds selectively to rat striatal D2 dopamine receptors in vivo: a kinetic and pharmacological analysis. Brain Res 407:253–262PubMedCrossRef
go back to reference Ma J, Brudzynski SM, Leung LW (1996) Involvement of the nucleus accumbens-ventral pallidal pathway in postictal behavior induced by a hippocampal afterdischarge in rats. Brain Res 739:26–35PubMedCrossRef Ma J, Brudzynski SM, Leung LW (1996) Involvement of the nucleus accumbens-ventral pallidal pathway in postictal behavior induced by a hippocampal afterdischarge in rats. Brain Res 739:26–35PubMedCrossRef
go back to reference Mary Christopher S, Butter CM (1968) Consummatory behaviors and locomotor exploration evoked from self-stimulation sites in rats. J Comp Physiol Psychol 66:335–339CrossRef Mary Christopher S, Butter CM (1968) Consummatory behaviors and locomotor exploration evoked from self-stimulation sites in rats. J Comp Physiol Psychol 66:335–339CrossRef
go back to reference Mascagni F, McDonald AJ (2009) Parvalbumin-immunoreactive neurons and GABAergic neurons of the basal forebrain project to the rat basolateral amygdala. Neuroscience 160:805–812PubMedPubMedCentralCrossRef Mascagni F, McDonald AJ (2009) Parvalbumin-immunoreactive neurons and GABAergic neurons of the basal forebrain project to the rat basolateral amygdala. Neuroscience 160:805–812PubMedPubMedCentralCrossRef
go back to reference McGeorge AJ, Faull RL (1989) The organization of the projection from the cerebral cortex to the striatum in the rat. Neuroscience 29:503–537PubMedCrossRef McGeorge AJ, Faull RL (1989) The organization of the projection from the cerebral cortex to the striatum in the rat. Neuroscience 29:503–537PubMedCrossRef
go back to reference McHugh SB, Deacon RM, Rawlins JN, Bannerman DM (2004) Amygdala and ventral hippocampus contribute differentially to mechanisms of fear and anxiety. Behav Neurosci 118:63–78PubMedCrossRef McHugh SB, Deacon RM, Rawlins JN, Bannerman DM (2004) Amygdala and ventral hippocampus contribute differentially to mechanisms of fear and anxiety. Behav Neurosci 118:63–78PubMedCrossRef
go back to reference Mink JW (1996) The basal ganglia: focused selection and inhibition of competing motor programs. Prog Neurobiol 50:381–425PubMedCrossRef Mink JW (1996) The basal ganglia: focused selection and inhibition of competing motor programs. Prog Neurobiol 50:381–425PubMedCrossRef
go back to reference Mitrofanis J (2005) Some certainty for the “zone of uncertainty”? Exploring the function of the zona incerta. Neuroscience 130:1–15PubMedCrossRef Mitrofanis J (2005) Some certainty for the “zone of uncertainty”? Exploring the function of the zona incerta. Neuroscience 130:1–15PubMedCrossRef
go back to reference Mogenson GJ, Nielsen MA (1983) Evidence that an accumbens to subpallidal GABAergic projection contributes to locomotor activity. Brain Res Bull 11:309–314PubMedCrossRef Mogenson GJ, Nielsen MA (1983) Evidence that an accumbens to subpallidal GABAergic projection contributes to locomotor activity. Brain Res Bull 11:309–314PubMedCrossRef
go back to reference Mogenson GJ, Wu M (1991) Quinpirole to the accumbens reduces exploratory and amphetamine-elicited locomotion. Brain Res Bull 27:743–746PubMedCrossRef Mogenson GJ, Wu M (1991) Quinpirole to the accumbens reduces exploratory and amphetamine-elicited locomotion. Brain Res Bull 27:743–746PubMedCrossRef
go back to reference Mogenson GJ, Yang CR (1991) The contribution of basal forebrain to limbic-motor integration and the mediation of motivation to action. Adv Exp Med Biol 295:267–290PubMedCrossRef Mogenson GJ, Yang CR (1991) The contribution of basal forebrain to limbic-motor integration and the mediation of motivation to action. Adv Exp Med Biol 295:267–290PubMedCrossRef
go back to reference Mogenson GJ, Wu M, Manchanda SK (1979) Locomotor activity initiated by microinfusion of picrotoxin into the ventral tegmental area. Brain Res 161:311–319PubMedCrossRef Mogenson GJ, Wu M, Manchanda SK (1979) Locomotor activity initiated by microinfusion of picrotoxin into the ventral tegmental area. Brain Res 161:311–319PubMedCrossRef
go back to reference Mogenson GJ, Wu M, Jones DL (1980) Locomotor activity elicited by injections of picrotoxin into the ventral tegmental area is attenuated by injections of GABA into the globus pallidus. Brain Res 191:569–571PubMedCrossRef Mogenson GJ, Wu M, Jones DL (1980) Locomotor activity elicited by injections of picrotoxin into the ventral tegmental area is attenuated by injections of GABA into the globus pallidus. Brain Res 191:569–571PubMedCrossRef
go back to reference Mogenson GJ, Swanson LW, Wu M (1983) Neural projections from nucleus accumbens to globus pallidus, substantia innominata, and lateral preoptic-lateral hypothalamic area: an anatomical and electrophysiological investigation in the rat. J Neurosci 3:189–202PubMedCrossRef Mogenson GJ, Swanson LW, Wu M (1983) Neural projections from nucleus accumbens to globus pallidus, substantia innominata, and lateral preoptic-lateral hypothalamic area: an anatomical and electrophysiological investigation in the rat. J Neurosci 3:189–202PubMedCrossRef
go back to reference Mogenson GJ, Swanson LW, Wu M (1985) Evidence that projections from substantia innominata to zona incerta and mesencephalic locomotor region contribute to locomotor activity. Brain Res 334:65–76PubMedCrossRef Mogenson GJ, Swanson LW, Wu M (1985) Evidence that projections from substantia innominata to zona incerta and mesencephalic locomotor region contribute to locomotor activity. Brain Res 334:65–76PubMedCrossRef
go back to reference Mogenson,GJ, Brudzynski SM, Wu M, Yang CR, Yim CY (1993) From motivation to action: a review of dopaminergic regulation of limbic-nucleus accumbens-ventral pallidum-pedunculopontine nucleus circuitries involved in limbic-motor integration. In: (Kalivas, PW, Barnes CD, eds) Limbic motor circuits and neuropsychiatry, CRC Press, Boca Raton, FL (Adv Exp Med Biol 295), pgs. 193–236 Mogenson,GJ, Brudzynski SM, Wu M, Yang CR, Yim CY (1993) From motivation to action: a review of dopaminergic regulation of limbic-nucleus accumbens-ventral pallidum-pedunculopontine nucleus circuitries involved in limbic-motor integration. In: (Kalivas, PW, Barnes CD, eds) Limbic motor circuits and neuropsychiatry, CRC Press, Boca Raton, FL (Adv Exp Med Biol 295), pgs. 193–236
go back to reference Mugnaini E, Oertel WH (1985), An atlas of the distribution of GABAergic neurons and terminals in the rat CNS as revealed by GAD immunohistochemistry. In A. Björklund and T. Hökfelt (Eds.), Handbook of chemical neuroanatomy, Vol. 4: GABA and neuropeptides in the CNS, Part 1, Chap. 10, Elsevier, New York, pgs 436–608 Mugnaini E, Oertel WH (1985), An atlas of the distribution of GABAergic neurons and terminals in the rat CNS as revealed by GAD immunohistochemistry. In A. Björklund and T. Hökfelt (Eds.), Handbook of chemical neuroanatomy, Vol. 4: GABA and neuropeptides in the CNS, Part 1, Chap. 10, Elsevier, New York, pgs 436–608
go back to reference Najlerahim A, Harrison PJ, Barton AJ, Heffernan J, Pearson RC (1990) Distribution of messenger RNAs encoding the enzymes glutaminase, aspartate aminotransferase and glutamic acid decarboxylase in rat brain. Brain Res Mol Brain Res 7:317–333PubMedCrossRef Najlerahim A, Harrison PJ, Barton AJ, Heffernan J, Pearson RC (1990) Distribution of messenger RNAs encoding the enzymes glutaminase, aspartate aminotransferase and glutamic acid decarboxylase in rat brain. Brain Res Mol Brain Res 7:317–333PubMedCrossRef
go back to reference Napier TC (1992) Dopamine receptors in the ventral pallidum regulate circling induced by opioids injected into the ventral pallidum. Neuropharmacology 31:1127–1136PubMedCrossRef Napier TC (1992) Dopamine receptors in the ventral pallidum regulate circling induced by opioids injected into the ventral pallidum. Neuropharmacology 31:1127–1136PubMedCrossRef
go back to reference Napier TC, Maslowski-Cobuzzi RJ (1994) Electrophysiological verification of the presence of D1 and D2 dopamine receptors within the ventral pallidum. Synapse 17:160–166PubMedCrossRef Napier TC, Maslowski-Cobuzzi RJ (1994) Electrophysiological verification of the presence of D1 and D2 dopamine receptors within the ventral pallidum. Synapse 17:160–166PubMedCrossRef
go back to reference Napier TC, Chrobak JJ, Yew J (1992) Systemic and microiontophoretic administration of morphine differentially effect ventral pallidum/substantia innominata neuronal activity. Synapse 12:214–219PubMedCrossRef Napier TC, Chrobak JJ, Yew J (1992) Systemic and microiontophoretic administration of morphine differentially effect ventral pallidum/substantia innominata neuronal activity. Synapse 12:214–219PubMedCrossRef
go back to reference Numan M, Numan MJ, Schwarz JM, Neuner CM, Flood TF, Smith CD (2005) Medial preoptic area interactions with the nucleus accumbens-ventral pallidum circuit and maternal behavior in rats. Behav Brain Res 158:53–68PubMedCrossRef Numan M, Numan MJ, Schwarz JM, Neuner CM, Flood TF, Smith CD (2005) Medial preoptic area interactions with the nucleus accumbens-ventral pallidum circuit and maternal behavior in rats. Behav Brain Res 158:53–68PubMedCrossRef
go back to reference Nutt D (2006) GABAA receptors: subtypes, regional distribution, and function. J Clin Sleep Med 2:S7–11PubMed Nutt D (2006) GABAA receptors: subtypes, regional distribution, and function. J Clin Sleep Med 2:S7–11PubMed
go back to reference O’Mara SM, Sanchez-Vives MV, Brotons-Mas JR, O’Hare E (2009) Roles for the subiculum in spatial information processing, memory, motivation and the temporal control of behaviour. Prog Neuro-Psychopharmacol Biol Psychiatry 33:782–790CrossRef O’Mara SM, Sanchez-Vives MV, Brotons-Mas JR, O’Hare E (2009) Roles for the subiculum in spatial information processing, memory, motivation and the temporal control of behaviour. Prog Neuro-Psychopharmacol Biol Psychiatry 33:782–790CrossRef
go back to reference Panksepp J (1998) Affective neuroscience: the foundations of human and animal emotions. Oxford University Press, New York, p 466 Panksepp J (1998) Affective neuroscience: the foundations of human and animal emotions. Oxford University Press, New York, p 466
go back to reference Paxinos G, Watson C (2007) The rat brain in stereotaxic coordinates, 6th edn. Academic Press, San Diego Paxinos G, Watson C (2007) The rat brain in stereotaxic coordinates, 6th edn. Academic Press, San Diego
go back to reference Ray JP, Russchen FT, Fuller TA, Price JL (1992) Sources of presumptive glutamatergic/aspartatergic afferents to the mediodorsal nucleus of the thalamus in the rat. J Comp Neurol 320:435–456PubMedCrossRef Ray JP, Russchen FT, Fuller TA, Price JL (1992) Sources of presumptive glutamatergic/aspartatergic afferents to the mediodorsal nucleus of the thalamus in the rat. J Comp Neurol 320:435–456PubMedCrossRef
go back to reference Reichard RA, Subramanian S, Desta MT, Sura T, Becker ML, Ghobadi CW, Parsley KP, Zahm DS (2017) Abundant collateralization of temporal lobe projections to the accumbens, bed nucleus of stria terminalis, central amygdala and lateral septum. Brain Struc Funct 222:1971–1988CrossRef Reichard RA, Subramanian S, Desta MT, Sura T, Becker ML, Ghobadi CW, Parsley KP, Zahm DS (2017) Abundant collateralization of temporal lobe projections to the accumbens, bed nucleus of stria terminalis, central amygdala and lateral septum. Brain Struc Funct 222:1971–1988CrossRef
go back to reference Reynolds SM, Zahm DS (2005) Specificity in the projections of prefrontal and insular cortex to ventral striatopallidum and the extended amygdala. J Neurosci 25:11757–11767PubMedCrossRef Reynolds SM, Zahm DS (2005) Specificity in the projections of prefrontal and insular cortex to ventral striatopallidum and the extended amygdala. J Neurosci 25:11757–11767PubMedCrossRef
go back to reference Reynolds SM, Geisler S, Berod A, Zahm DS (2006) Neurotensin antagonist acutely and robustly attenuates locomotion that accompanies stimulation of a neurotensin-containing pathway from rostrobasal forebrain to the ventral tegmental area. Eur J Neurosci 24:188–196PubMedCrossRef Reynolds SM, Geisler S, Berod A, Zahm DS (2006) Neurotensin antagonist acutely and robustly attenuates locomotion that accompanies stimulation of a neurotensin-containing pathway from rostrobasal forebrain to the ventral tegmental area. Eur J Neurosci 24:188–196PubMedCrossRef
go back to reference Ribak CE, Vaughn JE, Saito K (1978) Immunocytochemical localization of glutamic acid decarboxylase in neuronal somata following colchicine inhibition of axonal transport. Brain Res 140:315–332PubMedCrossRef Ribak CE, Vaughn JE, Saito K (1978) Immunocytochemical localization of glutamic acid decarboxylase in neuronal somata following colchicine inhibition of axonal transport. Brain Res 140:315–332PubMedCrossRef
go back to reference Robertson SD, Matthies HJ, Galli A (2009) A closer look at amphetamine-induced reverse transport and trafficking of the dopamine and norepinephrine transporters. Mol Neurobiol 39:73–80PubMedPubMedCentralCrossRef Robertson SD, Matthies HJ, Galli A (2009) A closer look at amphetamine-induced reverse transport and trafficking of the dopamine and norepinephrine transporters. Mol Neurobiol 39:73–80PubMedPubMedCentralCrossRef
go back to reference Room P, Russchen FT, Groenewegen HJ, Lohman AH (1985) Efferent connections of the prelimbic (area 32) and the infralimbic (area 25) cortices: an anterograde tracing study in the cat. J Comp Neurol 242:40–55PubMedCrossRef Room P, Russchen FT, Groenewegen HJ, Lohman AH (1985) Efferent connections of the prelimbic (area 32) and the infralimbic (area 25) cortices: an anterograde tracing study in the cat. J Comp Neurol 242:40–55PubMedCrossRef
go back to reference Root DH, Melendez RI, Zaborszky L, Napier TC (2015) The ventral pallidum: Subregion-specific functional anatomy and roles in motivated behaviors. Prog Neurobiol 130:29–70PubMedPubMedCentralCrossRef Root DH, Melendez RI, Zaborszky L, Napier TC (2015) The ventral pallidum: Subregion-specific functional anatomy and roles in motivated behaviors. Prog Neurobiol 130:29–70PubMedPubMedCentralCrossRef
go back to reference Saper, CB, Swanson LW, Cowan WM (1978) The efferent connections of the anterior hypothalamic area of the rat, cat and monkey. J Comp Neurol 182:575–599PubMedCrossRef Saper, CB, Swanson LW, Cowan WM (1978) The efferent connections of the anterior hypothalamic area of the rat, cat and monkey. J Comp Neurol 182:575–599PubMedCrossRef
go back to reference Scheel-Kruger J (1983) The GABA receptor and animal behavior, in (Enna SJ, ed), The GABA receptors, Humana Press, Clifton, NJ, pgs 215–256 Scheel-Kruger J (1983) The GABA receptor and animal behavior, in (Enna SJ, ed), The GABA receptors, Humana Press, Clifton, NJ, pgs 215–256
go back to reference Schmued L, Phermsangngam P, Lee H, Thio S, Chen E, Truong P, Colton E, Fallon J (1989) Collateralization and GAD immunoreactivity of descending pallidal efferents. Brain Res 487:131–142PubMedCrossRef Schmued L, Phermsangngam P, Lee H, Thio S, Chen E, Truong P, Colton E, Fallon J (1989) Collateralization and GAD immunoreactivity of descending pallidal efferents. Brain Res 487:131–142PubMedCrossRef
go back to reference Shepherd, GM (1975) The synaptic organization of the brain. An introduction. Oxford University Press, London Shepherd, GM (1975) The synaptic organization of the brain. An introduction. Oxford University Press, London
go back to reference Shi WX, Pun CL, Zhang XX, Jones MD, Bunney BS (2000a) Dual effects of D-amphetamine on dopamine neurons mediated by dopamine and nondopamine receptors. J Neurosci 20:3504–3511PubMedCrossRef Shi WX, Pun CL, Zhang XX, Jones MD, Bunney BS (2000a) Dual effects of D-amphetamine on dopamine neurons mediated by dopamine and nondopamine receptors. J Neurosci 20:3504–3511PubMedCrossRef
go back to reference Shi WX, Pun CL, Smith PL, Bunney BS (2000b) Endogenous DA-mediated feedback inhibition of DA neurons: involvement of both D(1)- and D(2)-like receptors. Synapse 35:111–119PubMedCrossRef Shi WX, Pun CL, Smith PL, Bunney BS (2000b) Endogenous DA-mediated feedback inhibition of DA neurons: involvement of both D(1)- and D(2)-like receptors. Synapse 35:111–119PubMedCrossRef
go back to reference Shi WX, Pun CL, Zhou Y (2004) Psychostimulants induce low-frequency oscillations in the firing activity of dopamine neurons. Neuropsychopharmacology 29:2160–2167PubMedCrossRef Shi WX, Pun CL, Zhou Y (2004) Psychostimulants induce low-frequency oscillations in the firing activity of dopamine neurons. Neuropsychopharmacology 29:2160–2167PubMedCrossRef
go back to reference Shimura T, Imaoka H, Yamamoto T (2006) Neurochemical modulation of ingestive behavior in the ventral pallidum. Eur J Neurosci 23:1596–1604PubMedCrossRef Shimura T, Imaoka H, Yamamoto T (2006) Neurochemical modulation of ingestive behavior in the ventral pallidum. Eur J Neurosci 23:1596–1604PubMedCrossRef
go back to reference Shreve PE, Uretsky NJ (1988) Effect of GABAergic transmission in the subpallidal region on the hypermotility response to the administration of excitatory amino acids and picrotoxin into the nucleus accumbens. Neuropharmacology 27:1271–1277PubMedCrossRef Shreve PE, Uretsky NJ (1988) Effect of GABAergic transmission in the subpallidal region on the hypermotility response to the administration of excitatory amino acids and picrotoxin into the nucleus accumbens. Neuropharmacology 27:1271–1277PubMedCrossRef
go back to reference Shreve PE, Uretsky NJ (1989) AMPA, kainic acid, and N-methyl-D-aspartic acid stimulate locomotor activity after injection into the substantia innominata/lateral preoptic area. Pharmacol Biochem Behav 34:101–106PubMedCrossRef Shreve PE, Uretsky NJ (1989) AMPA, kainic acid, and N-methyl-D-aspartic acid stimulate locomotor activity after injection into the substantia innominata/lateral preoptic area. Pharmacol Biochem Behav 34:101–106PubMedCrossRef
go back to reference Shreve PE, Uretsky NJ (1991) GABA and glutamate interact in the substantia innominata/lateral preoptic area to modulate locomotor activity. Pharmacol Biochem Behav 38:385–388PubMedCrossRef Shreve PE, Uretsky NJ (1991) GABA and glutamate interact in the substantia innominata/lateral preoptic area to modulate locomotor activity. Pharmacol Biochem Behav 38:385–388PubMedCrossRef
go back to reference Simmonds MA (1982) Classification of GABA antagonists with regard to site of action and potency in slices of rat cuneate nucleus. Eur J Pharmacol 347–358 Simmonds MA (1982) Classification of GABA antagonists with regard to site of action and potency in slices of rat cuneate nucleus. Eur J Pharmacol 347–358
go back to reference Sinnamon HM (1992) Microstimulation mapping of the basal forebrain in the anesthetized rat: the “preoptic locomotor region”. Neuroscience 50:197–207PubMedCrossRef Sinnamon HM (1992) Microstimulation mapping of the basal forebrain in the anesthetized rat: the “preoptic locomotor region”. Neuroscience 50:197–207PubMedCrossRef
go back to reference Sinnamon HM (1993) Preoptic and hypothalamic neurons and the initiation of locomotion in the anesthetized rat. Progress in neurobiology 41:323–344PubMedCrossRef Sinnamon HM (1993) Preoptic and hypothalamic neurons and the initiation of locomotion in the anesthetized rat. Progress in neurobiology 41:323–344PubMedCrossRef
go back to reference Skinner RD, Garcia-Rill, E (1993) Mesolimbic interactions with mesopontine modulation of locomotion. In: (P. Kalivas, ed.) The mesolimbic motor circuit and its role in neuropsychiatric disorders, CRC Press, Boca Raton, FL, pgs. 155–191, 1993 Skinner RD, Garcia-Rill, E (1993) Mesolimbic interactions with mesopontine modulation of locomotion. In: (P. Kalivas, ed.) The mesolimbic motor circuit and its role in neuropsychiatric disorders, CRC Press, Boca Raton, FL, pgs. 155–191, 1993
go back to reference Skinner RD, Kinjo N, Henderson V, Garcia-Rill E (1990) Locomotor projections from the pedunculopontine nucleus to the spinal cord. Neuroreport 1:183–186PubMedCrossRef Skinner RD, Kinjo N, Henderson V, Garcia-Rill E (1990) Locomotor projections from the pedunculopontine nucleus to the spinal cord. Neuroreport 1:183–186PubMedCrossRef
go back to reference Smith KS, Berridge KC (2007) Opioid limbic circuit for reward: interaction between hedonic hotspots of nucleus accumbens and ventral pallidum. J Neurosci 27:1594–1605PubMedCrossRef Smith KS, Berridge KC (2007) Opioid limbic circuit for reward: interaction between hedonic hotspots of nucleus accumbens and ventral pallidum. J Neurosci 27:1594–1605PubMedCrossRef
go back to reference Smith KS, Tindell AJ, Aldridge JW, Berridge KC (2009) Ventral pallidum roles in reward and motivation. Behav Brain Res 196:155–167PubMedCrossRef Smith KS, Tindell AJ, Aldridge JW, Berridge KC (2009) Ventral pallidum roles in reward and motivation. Behav Brain Res 196:155–167PubMedCrossRef
go back to reference Sokoloff P, Giros B, Martres MP, Bouthenet ML, Schwartz JC (1990) Molecular cloning and characterization of a novel dopamine receptor (D3) as a target for neuroleptics. Nature 347:146–151PubMedCrossRef Sokoloff P, Giros B, Martres MP, Bouthenet ML, Schwartz JC (1990) Molecular cloning and characterization of a novel dopamine receptor (D3) as a target for neuroleptics. Nature 347:146–151PubMedCrossRef
go back to reference Sotty F, Brun P, Leonetti M, Steinberg R, Soubrie P, Renaud B, Suaud-Chagny MF (2000) Comparative effects of neurotensin, neurotensin(8–13) and [D-Tyr(11)]neurotensin applied into the ventral tegmental area on extracellular dopamine in the rat prefrontal cortex and nucleus accumbens. Neuroscience 98:485–492PubMedCrossRef Sotty F, Brun P, Leonetti M, Steinberg R, Soubrie P, Renaud B, Suaud-Chagny MF (2000) Comparative effects of neurotensin, neurotensin(8–13) and [D-Tyr(11)]neurotensin applied into the ventral tegmental area on extracellular dopamine in the rat prefrontal cortex and nucleus accumbens. Neuroscience 98:485–492PubMedCrossRef
go back to reference Stratford TR, Wirtshafter D (2012) Evidence that the nucleus accumbens shell, ventral pallidum, and lateral hypothalamus are components of a lateralized feeding circuit. Behav Brain Res 226:548–554PubMedCrossRef Stratford TR, Wirtshafter D (2012) Evidence that the nucleus accumbens shell, ventral pallidum, and lateral hypothalamus are components of a lateralized feeding circuit. Behav Brain Res 226:548–554PubMedCrossRef
go back to reference Stratford TR, Wirtshafter D (2013) Lateral hypothalamic involvement in feeding elicited from the ventral pallidum. Eur J Neurosci 37:648–653PubMedCrossRef Stratford TR, Wirtshafter D (2013) Lateral hypothalamic involvement in feeding elicited from the ventral pallidum. Eur J Neurosci 37:648–653PubMedCrossRef
go back to reference Stratford TR, Kelley AE, Simansky KJ (1999) Blockade of GABAA receptors in the medial ventral pallidum elicits feeding in satiated rats. Brain Res 825:199–203PubMedCrossRef Stratford TR, Kelley AE, Simansky KJ (1999) Blockade of GABAA receptors in the medial ventral pallidum elicits feeding in satiated rats. Brain Res 825:199–203PubMedCrossRef
go back to reference Strombom UH, Liedman B (1982) Role of dopaminergic neurotransmission in locomotor stimulation by dexamphetamine and ethanol. Psychopharmacology (Berl) 78:271–276CrossRef Strombom UH, Liedman B (1982) Role of dopaminergic neurotransmission in locomotor stimulation by dexamphetamine and ethanol. Psychopharmacology (Berl) 78:271–276CrossRef
go back to reference Swanson, L.W., 1976. An autoradiographic study of the efferent connections of the preoptic region in the rat. J Comp Neurol 167, 227–256PubMedCrossRef Swanson, L.W., 1976. An autoradiographic study of the efferent connections of the preoptic region in the rat. J Comp Neurol 167, 227–256PubMedCrossRef
go back to reference Swerdlow NR, Koob GF (1984) The neural substrates of apomorphine-stimulated locomotor activity following denervation of the nucleus accumbens. Life Sci 35:2537–2544PubMedCrossRef Swerdlow NR, Koob GF (1984) The neural substrates of apomorphine-stimulated locomotor activity following denervation of the nucleus accumbens. Life Sci 35:2537–2544PubMedCrossRef
go back to reference Troiano, R., Siegel, A., 1975. The ascending and descending connections of the hypothalamus in the cat. Exp Neurol 49, 161–173PubMedCrossRef Troiano, R., Siegel, A., 1975. The ascending and descending connections of the hypothalamus in the cat. Exp Neurol 49, 161–173PubMedCrossRef
go back to reference Troiano, R., Siegel, A., 1978. Efferent connections of the basal forebrain in the cat: the substantia innominata. Exp Neurol 61, 198–213PubMedCrossRef Troiano, R., Siegel, A., 1978. Efferent connections of the basal forebrain in the cat: the substantia innominata. Exp Neurol 61, 198–213PubMedCrossRef
go back to reference Uchida T, Adachi K, Fujita S, Lee J, Gionhaku N, Cools AR, Koshikawa N (2005) Role of GABA(A) receptors in the retrorubral field and ventral pallidum in rat jaw movements elicited by dopaminergic stimulation of the nucleus accumbens shell. Eur J Pharmacol 510:39–47PubMedCrossRef Uchida T, Adachi K, Fujita S, Lee J, Gionhaku N, Cools AR, Koshikawa N (2005) Role of GABA(A) receptors in the retrorubral field and ventral pallidum in rat jaw movements elicited by dopaminergic stimulation of the nucleus accumbens shell. Eur J Pharmacol 510:39–47PubMedCrossRef
go back to reference Usuda I, Tanaka K, Chiba T. 1998. Efferent projections of the nucleus accumbens in the rat with special reference to subdivision of the nucleus: biotinylated dextran amine study. Brain Res 797:73–93PubMedCrossRef Usuda I, Tanaka K, Chiba T. 1998. Efferent projections of the nucleus accumbens in the rat with special reference to subdivision of the nucleus: biotinylated dextran amine study. Brain Res 797:73–93PubMedCrossRef
go back to reference van den Bos R, Cools AR (1989) Involvement of the substantia innominata/ventral pallidum complex in transmitting forelimb muscular rigidity evoked from the nucleus accumbens in rats. Neurosci Lett 103:303–308PubMedCrossRef van den Bos R, Cools AR (1989) Involvement of the substantia innominata/ventral pallidum complex in transmitting forelimb muscular rigidity evoked from the nucleus accumbens in rats. Neurosci Lett 103:303–308PubMedCrossRef
go back to reference van den Bos R, Cools AR (1991) Motor activity and the GABAA-receptor in the ventral pallidum/substantia innominata complex. Neurosci Lett 124:246–250PubMedCrossRef van den Bos R, Cools AR (1991) Motor activity and the GABAA-receptor in the ventral pallidum/substantia innominata complex. Neurosci Lett 124:246–250PubMedCrossRef
go back to reference Veenman CL, Reiner A (1994) The distribution of GABA-containing perikarya, fibers, and terminals in the forebrain and midbrain of pigeons, with particular reference to the basal ganglia and its projection targets. J Comp Neurol 339:209–250PubMedCrossRef Veenman CL, Reiner A (1994) The distribution of GABA-containing perikarya, fibers, and terminals in the forebrain and midbrain of pigeons, with particular reference to the basal ganglia and its projection targets. J Comp Neurol 339:209–250PubMedCrossRef
go back to reference Vertes RP (2004) Differential projections of the infralimbic and prelimbic cortex in the rat. Synapse 51:32–58PubMedCrossRef Vertes RP (2004) Differential projections of the infralimbic and prelimbic cortex in the rat. Synapse 51:32–58PubMedCrossRef
go back to reference Wakita M, Shin MC, Iwata S, Nonaka K, Akaike N (2012) Effects of ethanol on GABA(A) receptors in GABAergic and glutamatergic presynaptic nerve terminals. J Pharmacol exp Ther 341:809–819PubMedCrossRef Wakita M, Shin MC, Iwata S, Nonaka K, Akaike N (2012) Effects of ethanol on GABA(A) receptors in GABAergic and glutamatergic presynaptic nerve terminals. J Pharmacol exp Ther 341:809–819PubMedCrossRef
go back to reference Wallace LJ, Uretsky NJ (1991) Effect of GABAergic and glutamatergic drugs injected into the ventral pallidum on locomotor activity. Adv Exp Med Biol 295:307–314PubMedCrossRef Wallace LJ, Uretsky NJ (1991) Effect of GABAergic and glutamatergic drugs injected into the ventral pallidum on locomotor activity. Adv Exp Med Biol 295:307–314PubMedCrossRef
go back to reference Wamsley JK, Hunt ME, McQuade RD, Alburges ME (1991) [3H]SCH39166, a D1 dopamine receptor antagonist: binding characteristics and localization. Exp Neurol 111:145–151PubMedCrossRef Wamsley JK, Hunt ME, McQuade RD, Alburges ME (1991) [3H]SCH39166, a D1 dopamine receptor antagonist: binding characteristics and localization. Exp Neurol 111:145–151PubMedCrossRef
go back to reference Westerink BH, Tuntler J, Damsma G, Rollema H, de Vries JB (1987) The use of tetrodotoxin for the characterization of drug-enhanced dopamine release in conscious rats studied by brain dialysis. Naunyn-Schmiedeberg’s Arch Pharmacol 336:502–507CrossRef Westerink BH, Tuntler J, Damsma G, Rollema H, de Vries JB (1987) The use of tetrodotoxin for the characterization of drug-enhanced dopamine release in conscious rats studied by brain dialysis. Naunyn-Schmiedeberg’s Arch Pharmacol 336:502–507CrossRef
go back to reference Willins DL, Wallace LJ, Miller DD, Uretsky NJ (1992) alpha-Amino-3-hydroxy-5-methylisoxazole-4-propionate/kainate receptor antagonists in the nucleus accumbens and ventral pallidum decrease the hypermotility response to psychostimulant drugs. J Pharmacol Exp Ther 260:1145–1151PubMed Willins DL, Wallace LJ, Miller DD, Uretsky NJ (1992) alpha-Amino-3-hydroxy-5-methylisoxazole-4-propionate/kainate receptor antagonists in the nucleus accumbens and ventral pallidum decrease the hypermotility response to psychostimulant drugs. J Pharmacol Exp Ther 260:1145–1151PubMed
go back to reference Yamamoto S, Yoshimura M, Shin MC, Wakita M, Nonaka K, Akaike N (2011) GABA(A) receptor-mediated presynaptic inhibition on glutamatergic transmission. Brain Res Bull 84:22–30PubMedCrossRef Yamamoto S, Yoshimura M, Shin MC, Wakita M, Nonaka K, Akaike N (2011) GABA(A) receptor-mediated presynaptic inhibition on glutamatergic transmission. Brain Res Bull 84:22–30PubMedCrossRef
go back to reference Yetnikoff L, Cheng AY, Lavezzi HN, Parsley KP, Zahm DS (2015) Sources of input to the rostromedial tegmental nucleus, ventral tegmental area, and lateral habenula compared: a study in rat. J Comp Neurol 523:2426–2456PubMedPubMedCentralCrossRef Yetnikoff L, Cheng AY, Lavezzi HN, Parsley KP, Zahm DS (2015) Sources of input to the rostromedial tegmental nucleus, ventral tegmental area, and lateral habenula compared: a study in rat. J Comp Neurol 523:2426–2456PubMedPubMedCentralCrossRef
go back to reference Zahm DS (1992) Subsets of neurotensin-immunoreactive neurons revealed following antagonism of the dopamine-mediated suppression of neurotensin immunoreactivity in the rat striatum. Neuroscience 46:335–350PubMedCrossRef Zahm DS (1992) Subsets of neurotensin-immunoreactive neurons revealed following antagonism of the dopamine-mediated suppression of neurotensin immunoreactivity in the rat striatum. Neuroscience 46:335–350PubMedCrossRef
go back to reference Zahm DS (1999) Functional-anatomical implications of the nucleus accumbens core and shell subterritories. Ann NY Acad Sci 877:113–128PubMedCrossRef Zahm DS (1999) Functional-anatomical implications of the nucleus accumbens core and shell subterritories. Ann NY Acad Sci 877:113–128PubMedCrossRef
go back to reference Zahm DS (2006) The evolving theory of basal forebrain functional-anatomical ‘macrosystems’. Neurosci Biobehav Rev 30:148–172PubMedCrossRef Zahm DS (2006) The evolving theory of basal forebrain functional-anatomical ‘macrosystems’. Neurosci Biobehav Rev 30:148–172PubMedCrossRef
go back to reference Zahm, DS (2016) Chap. 26. Rostromedial tegmental nucleus: connections with the basal ganglia, in: Handbook of Basal Ganglia structure and function, Steiner, H., Tseng, K.-Y. (Eds.) 2 Edition. Elsevier, Amsterdam, pp. 513–534 Zahm, DS (2016) Chap. 26. Rostromedial tegmental nucleus: connections with the basal ganglia, in: Handbook of Basal Ganglia structure and function, Steiner, H., Tseng, K.-Y. (Eds.) 2 Edition. Elsevier, Amsterdam, pp. 513–534
go back to reference Zahm DS, Brog JS (1992) On the significance of subterritories in the “accumbens” part of the rat ventral striatum. Neuroscience 50:751–767PubMedCrossRef Zahm DS, Brog JS (1992) On the significance of subterritories in the “accumbens” part of the rat ventral striatum. Neuroscience 50:751–767PubMedCrossRef
go back to reference Zahm DS, Heimer L (1993) Specificity in the efferent projections of the nucleus accumbens in the rat: comparison of the rostral pole projection patterns with those of the core and shell. J Comp Neurol 327:220–232PubMedCrossRef Zahm DS, Heimer L (1993) Specificity in the efferent projections of the nucleus accumbens in the rat: comparison of the rostral pole projection patterns with those of the core and shell. J Comp Neurol 327:220–232PubMedCrossRef
go back to reference Zahm DS, Zaborszky L, Alheid GF, Heimer L (1987) The ventral striatopallidothalamic projection: II. The ventral pallidothalamic link. J Comp Neurol 255:592–605PubMedCrossRef Zahm DS, Zaborszky L, Alheid GF, Heimer L (1987) The ventral striatopallidothalamic projection: II. The ventral pallidothalamic link. J Comp Neurol 255:592–605PubMedCrossRef
go back to reference Zahm DS, Parsley KP, Schwartz ZM, Cheng AY (2013) On lateral septum-like characteristics of outputs from the accumbal hedonic “hotspot” of Pecina and Berridge with commentary on the transitional nature of basal forebrain “boundaries”. J Comp Neurol 521:50–68PubMedPubMedCentralCrossRef Zahm DS, Parsley KP, Schwartz ZM, Cheng AY (2013) On lateral septum-like characteristics of outputs from the accumbal hedonic “hotspot” of Pecina and Berridge with commentary on the transitional nature of basal forebrain “boundaries”. J Comp Neurol 521:50–68PubMedPubMedCentralCrossRef
go back to reference Zahm DS, Schwartz ZM, Lavezzi HN, Yetnikoff L, Parsley KP (2014) Comparison of the locomotor-activating effects of bicuculline infusions into the preoptic area and ventral pallidum. Brain Struct Funct 219(2):511–526PubMedCrossRef Zahm DS, Schwartz ZM, Lavezzi HN, Yetnikoff L, Parsley KP (2014) Comparison of the locomotor-activating effects of bicuculline infusions into the preoptic area and ventral pallidum. Brain Struct Funct 219(2):511–526PubMedCrossRef
go back to reference Zukin SR, Young AB, Snyder SH (1974) Gamma-aminobutyric acid binding to receptor sites in the rat central nervous system. Proc Natl Acad Sci USA 71:4802PubMedPubMedCentralCrossRef Zukin SR, Young AB, Snyder SH (1974) Gamma-aminobutyric acid binding to receptor sites in the rat central nervous system. Proc Natl Acad Sci USA 71:4802PubMedPubMedCentralCrossRef
Metadata
Title
Lateral preoptic and ventral pallidal roles in locomotion and other movements
Authors
Suriya Subramanian
Rhett A. Reichard
Hunter S. Stevenson
Zachary M. Schwartz
Kenneth P. Parsley
Daniel S. Zahm
Publication date
01-07-2018
Publisher
Springer Berlin Heidelberg
Published in
Brain Structure and Function / Issue 6/2018
Print ISSN: 1863-2653
Electronic ISSN: 1863-2661
DOI
https://doi.org/10.1007/s00429-018-1669-2

Other articles of this Issue 6/2018

Brain Structure and Function 6/2018 Go to the issue