Skip to main content
Top
Published in: Graefe's Archive for Clinical and Experimental Ophthalmology 10/2017

01-10-2017 | Retinal Disorders

Characteristics of retinal vessels in surgically closed macular hole: an optical coherence tomography angiography study

Authors: Cheolmin Yun, Jaemoon Ahn, Mingue Kim, Jee Taek Kim, Soon-Young Hwang, Seong-Woo Kim, Jaeryung Oh

Published in: Graefe's Archive for Clinical and Experimental Ophthalmology | Issue 10/2017

Login to get access

Abstract

Purpose

The purpose of our study was to investigate characteristics of retinal vessels in eyes with surgically closed macular holes (MH).

Methods

We included patients who underwent surgery for idiopathic MH and a follow-up examination using optical coherence tomography angiography (OCTA). The area of the foveal avascular zone (FAZ) and retinal vascular densities of the superficial capillary plexus (SCP) and deep capillary plexus (DCP) were calculated on the postoperative OCTA images and compared with those of age-matched normal controls.

Results

Twenty-eight patients with MH and 28 controls were included. Mean postoperative FAZ areas of SCP and DCP (0.317 ± 0.129 mm2 and 0.500 ± 0.174 mm2) were smaller than those of normal controls (0.406 ± 0.131 mm2 and 0.687 ± 0.147 mm2) (P = 0.013 and P < 0.001, respectively). Retinal vascular densities of SCP and DCP in the MH group (32.23 ± 1.45% and 31.85 ± 1.28%) were lower than those of the control group (33.26 ± 1.71% and 33.18 ± 1.89%) (P = 0.019 and P = 0.003, respectively). The retinal vascular densities of SCP and DCP were associated with postoperative mean ganglion cell–inner plexiform layer (GC-IPL) thickness (P = 0.033 and P = 0.035, respectively). The vascular densities were horizontally asymmetric and related to asymmetric distribution of GC-IPL thickness in the MH group.

Conclusions

Surgically closed MH eyes had remodeled retinal vascular patterns, which were related to morphologic changes in the inner retinal layer. The healing process after MH surgery may be involved in asymmetric change in anatomy and hemodynamics of the inner retina.
Appendix
Available only for authorised users
Literature
1.
go back to reference Kelly NE, Wendel RT (1991) Vitreous surgery for idiopathic macular holes. Results of a pilot study. Arch Ophthalmol 109:654–659CrossRefPubMed Kelly NE, Wendel RT (1991) Vitreous surgery for idiopathic macular holes. Results of a pilot study. Arch Ophthalmol 109:654–659CrossRefPubMed
2.
go back to reference Wendel RT, Patel AC, Kelly NE, Salzano TC, Wells JW, Novack GD (1993) Vitreous surgery for macular holes. Ophthalmology 100:1671–1676CrossRefPubMed Wendel RT, Patel AC, Kelly NE, Salzano TC, Wells JW, Novack GD (1993) Vitreous surgery for macular holes. Ophthalmology 100:1671–1676CrossRefPubMed
3.
go back to reference Duker JS, Kaiser PK, Binder S, de Smet MD, Gaudric A, Reichel E, Sadda SR, Sebag J, Spaide RF, Stalmans P (2013) The international Vitreomacular traction study group classification of vitreomacular adhesion, traction, and macular hole. Ophthalmology 120:2611–2619. doi:10.1016/j.ophtha.2013.07.042 CrossRefPubMed Duker JS, Kaiser PK, Binder S, de Smet MD, Gaudric A, Reichel E, Sadda SR, Sebag J, Spaide RF, Stalmans P (2013) The international Vitreomacular traction study group classification of vitreomacular adhesion, traction, and macular hole. Ophthalmology 120:2611–2619. doi:10.​1016/​j.​ophtha.​2013.​07.​042 CrossRefPubMed
4.
go back to reference Kusuhara S, Teraoka Escano MF, Fujii S, Nakanishi Y, Tamura Y, Nagai A, Yamamoto H, Tsukahara Y, Negi A (2004) Prediction of postoperative visual outcome based on hole configuration by optical coherence tomography in eyes with idiopathic macular holes. Am J Ophthalmol 138:709–716. doi:10.1016/j.ajo.2004.04.063 CrossRefPubMed Kusuhara S, Teraoka Escano MF, Fujii S, Nakanishi Y, Tamura Y, Nagai A, Yamamoto H, Tsukahara Y, Negi A (2004) Prediction of postoperative visual outcome based on hole configuration by optical coherence tomography in eyes with idiopathic macular holes. Am J Ophthalmol 138:709–716. doi:10.​1016/​j.​ajo.​2004.​04.​063 CrossRefPubMed
5.
go back to reference Matet A, Savastano MC, Rispoli M, Bergin C, Moulin A, Crisanti P, Behar-Cohen F, Lumbroso B (2015) En face optical coherence tomography of foveal microstructure in full-thickness macular hole: a model to study perifoveal Muller cells. Am J Ophthalmol 159(1142–1151):e1143. doi:10.1016/j.ajo.2015.02.013 Matet A, Savastano MC, Rispoli M, Bergin C, Moulin A, Crisanti P, Behar-Cohen F, Lumbroso B (2015) En face optical coherence tomography of foveal microstructure in full-thickness macular hole: a model to study perifoveal Muller cells. Am J Ophthalmol 159(1142–1151):e1143. doi:10.​1016/​j.​ajo.​2015.​02.​013
6.
go back to reference Tanner V, Chauhan DS, Jackson TL, Williamson TH (2001) Optical coherence tomography of the vitreoretinal interface in macular hole formation. Br J Ophthalmol 85:1092–1097CrossRefPubMedPubMedCentral Tanner V, Chauhan DS, Jackson TL, Williamson TH (2001) Optical coherence tomography of the vitreoretinal interface in macular hole formation. Br J Ophthalmol 85:1092–1097CrossRefPubMedPubMedCentral
7.
go back to reference Woon WH, Greig D, Savage MD, Wilson MC, Grant CA, Mokete B, Bishop F (2015) Movement of the inner retina complex during the development of primary full-thickness macular holes: implications for hypotheses of pathogenesis. Graefes Arch Clin Exp Ophthalmol 253:2103–2109. doi:10.1007/s00417-015-2951-0 CrossRefPubMed Woon WH, Greig D, Savage MD, Wilson MC, Grant CA, Mokete B, Bishop F (2015) Movement of the inner retina complex during the development of primary full-thickness macular holes: implications for hypotheses of pathogenesis. Graefes Arch Clin Exp Ophthalmol 253:2103–2109. doi:10.​1007/​s00417-015-2951-0 CrossRefPubMed
9.
go back to reference Michalewska Z, Michalewski J, Nawrocki J (2010) Continuous changes in macular morphology after macular hole closure visualized with spectral optical coherence tomography. Graefes Arch Clin Exp Ophthalmol 248:1249–1255. doi:10.1007/s00417-010-1370-5 CrossRefPubMed Michalewska Z, Michalewski J, Nawrocki J (2010) Continuous changes in macular morphology after macular hole closure visualized with spectral optical coherence tomography. Graefes Arch Clin Exp Ophthalmol 248:1249–1255. doi:10.​1007/​s00417-010-1370-5 CrossRefPubMed
13.
go back to reference Kawano K, Ito Y, Kondo M, Ishikawa K, Kachi S, Ueno S, Iguchi Y, Terasaki H (2013) Displacement of foveal area toward optic disc after macular hole surgery with internal limiting membrane peeling. Eye (Lond) 27:871–877. doi:10.1038/eye.2013.99 CrossRef Kawano K, Ito Y, Kondo M, Ishikawa K, Kachi S, Ueno S, Iguchi Y, Terasaki H (2013) Displacement of foveal area toward optic disc after macular hole surgery with internal limiting membrane peeling. Eye (Lond) 27:871–877. doi:10.​1038/​eye.​2013.​99 CrossRef
15.
go back to reference Kumagai K, Hangai M, Larson E, Ogino N (2013) Progressive changes of regional macular thickness after macular hole surgery with internal limiting membrane peeling. Invest Ophthalmol Vis Sci 54:4491–4497. doi:10.1167/iovs.13-11662 CrossRefPubMed Kumagai K, Hangai M, Larson E, Ogino N (2013) Progressive changes of regional macular thickness after macular hole surgery with internal limiting membrane peeling. Invest Ophthalmol Vis Sci 54:4491–4497. doi:10.​1167/​iovs.​13-11662 CrossRefPubMed
18.
go back to reference Oh J, Smiddy WE, Flynn HW Jr, Gregori G, Lujan B (2010) Photoreceptor inner/outer segment defect imaging by spectral domain OCT and visual prognosis after macular hole surgery. Invest Ophthalmol Vis Sci 51:1651–1658. doi:10.1167/iovs.09-4420 CrossRefPubMed Oh J, Smiddy WE, Flynn HW Jr, Gregori G, Lujan B (2010) Photoreceptor inner/outer segment defect imaging by spectral domain OCT and visual prognosis after macular hole surgery. Invest Ophthalmol Vis Sci 51:1651–1658. doi:10.​1167/​iovs.​09-4420 CrossRefPubMed
19.
20.
21.
go back to reference Ooka E, Mitamura Y, Baba T, Kitahashi M, Oshitari T, Yamamoto S (2011) Foveal microstructure on spectral-domain optical coherence tomographic images and visual function after macular hole surgery. Am J Ophthalmol 152(283–290):e281. doi:10.1016/j.ajo.2011.02.001 Ooka E, Mitamura Y, Baba T, Kitahashi M, Oshitari T, Yamamoto S (2011) Foveal microstructure on spectral-domain optical coherence tomographic images and visual function after macular hole surgery. Am J Ophthalmol 152(283–290):e281. doi:10.​1016/​j.​ajo.​2011.​02.​001
25.
go back to reference Teng Y, Yu M, Wang Y, Liu X, You Q, Liu W (2017) OCT angiography quantifying choriocapillary circulation in idiopathic macular hole before and after surgery. Graefes Arch Clin Exp Ophthalmol. doi:10.1007/s00417-017-3586-0 Teng Y, Yu M, Wang Y, Liu X, You Q, Liu W (2017) OCT angiography quantifying choriocapillary circulation in idiopathic macular hole before and after surgery. Graefes Arch Clin Exp Ophthalmol. doi:10.​1007/​s00417-017-3586-0
26.
go back to reference Michalewska Z, Michalewski J, Cisiecki S, Adelman R, Nawrocki J (2008) Correlation between foveal structure and visual outcome following macular hole surgery: a spectral optical coherence tomography study. Graefes Arch Clin Exp Ophthalmol 246:823–830. doi:10.1007/s00417-007-0764-5 CrossRefPubMed Michalewska Z, Michalewski J, Cisiecki S, Adelman R, Nawrocki J (2008) Correlation between foveal structure and visual outcome following macular hole surgery: a spectral optical coherence tomography study. Graefes Arch Clin Exp Ophthalmol 246:823–830. doi:10.​1007/​s00417-007-0764-5 CrossRefPubMed
27.
go back to reference Theodossiadis PG, Grigoropoulos VG, Theodossiadis GP (2011) The significance of the external limiting membrane in the recovery of photoreceptor layer after successful macular hole closure: a study by spectral domain optical coherence tomography. Ophthalmologica 225:176–184. doi:10.1159/000323322 CrossRefPubMed Theodossiadis PG, Grigoropoulos VG, Theodossiadis GP (2011) The significance of the external limiting membrane in the recovery of photoreceptor layer after successful macular hole closure: a study by spectral domain optical coherence tomography. Ophthalmologica 225:176–184. doi:10.​1159/​000323322 CrossRefPubMed
32.
go back to reference Baba T, Yamamoto S, Kimoto R, Oshitari T, Sato E (2012) Reduction of thickness of ganglion cell complex after internal limiting membrane peeling during vitrectomy for idiopathic macular hole. Eye (Lond) 26:1173–1180. doi:10.1038/eye.2012.170 CrossRef Baba T, Yamamoto S, Kimoto R, Oshitari T, Sato E (2012) Reduction of thickness of ganglion cell complex after internal limiting membrane peeling during vitrectomy for idiopathic macular hole. Eye (Lond) 26:1173–1180. doi:10.​1038/​eye.​2012.​170 CrossRef
34.
go back to reference Haritoglou C, Gass CA, Schaumberger M, Ehrt O, Gandorfer A, Kampik A (2001) Macular changes after peeling of the internal limiting membrane in macular hole surgery. Am J Ophthalmol 132:363–368CrossRefPubMed Haritoglou C, Gass CA, Schaumberger M, Ehrt O, Gandorfer A, Kampik A (2001) Macular changes after peeling of the internal limiting membrane in macular hole surgery. Am J Ophthalmol 132:363–368CrossRefPubMed
38.
go back to reference Seo KH, Yu SY, Kwak HW (2015) Topographic changes in macular ganglion cell-inner plexiform layer thickness after vitrectomy with Indocyanine green-guided internal limiting membrane peeling for idiopathic macular hole. Retina 35:1828–1835. doi:10.1097/IAE.0000000000000563 CrossRefPubMed Seo KH, Yu SY, Kwak HW (2015) Topographic changes in macular ganglion cell-inner plexiform layer thickness after vitrectomy with Indocyanine green-guided internal limiting membrane peeling for idiopathic macular hole. Retina 35:1828–1835. doi:10.​1097/​IAE.​0000000000000563​ CrossRefPubMed
39.
go back to reference Treumer F, Wacker N, Junge O, Hedderich J, Roider J, Hillenkamp J (2011) Foveal structure and thickness of retinal layers long-term after surgical peeling of idiopathic epiretinal membrane. Invest Ophthalmol Vis Sci 52:744–750. doi:10.1167/iovs.10-6310 CrossRefPubMed Treumer F, Wacker N, Junge O, Hedderich J, Roider J, Hillenkamp J (2011) Foveal structure and thickness of retinal layers long-term after surgical peeling of idiopathic epiretinal membrane. Invest Ophthalmol Vis Sci 52:744–750. doi:10.​1167/​iovs.​10-6310 CrossRefPubMed
44.
go back to reference Schumann RG, Schaumberger MM, Rohleder M, Haritoglou C, Kampik A, Gandorfer A (2006) Ultrastructure of the vitreomacular interface in full-thickness idiopathic macular holes: a consecutive analysis of 100 cases. Am J Ophthalmol 141:1112–1119. doi:10.1016/j.ajo.2006.01.074 CrossRefPubMed Schumann RG, Schaumberger MM, Rohleder M, Haritoglou C, Kampik A, Gandorfer A (2006) Ultrastructure of the vitreomacular interface in full-thickness idiopathic macular holes: a consecutive analysis of 100 cases. Am J Ophthalmol 141:1112–1119. doi:10.​1016/​j.​ajo.​2006.​01.​074 CrossRefPubMed
45.
go back to reference Spiteri Cornish K, Lois N, Scott NW, Burr J, Cook J, Boachie C, Tadayoni R, la Cour M, Christensen U, Kwok AK (2014) Vitrectomy with internal limiting membrane peeling versus no peeling for idiopathic full-thickness macular hole. Ophthalmology 121:649–655. doi:10.1016/j.ophtha.2013.10.020 CrossRefPubMed Spiteri Cornish K, Lois N, Scott NW, Burr J, Cook J, Boachie C, Tadayoni R, la Cour M, Christensen U, Kwok AK (2014) Vitrectomy with internal limiting membrane peeling versus no peeling for idiopathic full-thickness macular hole. Ophthalmology 121:649–655. doi:10.​1016/​j.​ophtha.​2013.​10.​020 CrossRefPubMed
47.
48.
go back to reference Coscas F, Sellam A, Glacet-Bernard A, Jung C, Goudot M, Miere A, Souied EH (2016) Normative data for vascular density in superficial and deep capillary plexuses of healthy adults assessed by optical coherence tomography angiography. Invest Ophthalmol Vis Sci 57:OCT211–OCT223. doi:10.1167/iovs.15-18793 CrossRefPubMed Coscas F, Sellam A, Glacet-Bernard A, Jung C, Goudot M, Miere A, Souied EH (2016) Normative data for vascular density in superficial and deep capillary plexuses of healthy adults assessed by optical coherence tomography angiography. Invest Ophthalmol Vis Sci 57:OCT211–OCT223. doi:10.​1167/​iovs.​15-18793 CrossRefPubMed
49.
go back to reference Iafe NA, Phasukkijwatana N, Chen X, Sarraf D (2016) Retinal capillary density and foveal avascular zone area are age-dependent: quantitative analysis using optical coherence tomography angiography. Invest Ophthalmol Vis Sci 57:5780–5787. doi:10.1167/iovs.16-20045 CrossRefPubMed Iafe NA, Phasukkijwatana N, Chen X, Sarraf D (2016) Retinal capillary density and foveal avascular zone area are age-dependent: quantitative analysis using optical coherence tomography angiography. Invest Ophthalmol Vis Sci 57:5780–5787. doi:10.​1167/​iovs.​16-20045 CrossRefPubMed
50.
go back to reference Chhablani J, Kumar K, Ali TR, Narayanan R (2014) Spectral-domain optical coherence tomography features in fellow eyes of patients with idiopathic macular hole. Eur J Ophthalmol 24:382–386. doi:10.5301/ejo.5000386 CrossRefPubMed Chhablani J, Kumar K, Ali TR, Narayanan R (2014) Spectral-domain optical coherence tomography features in fellow eyes of patients with idiopathic macular hole. Eur J Ophthalmol 24:382–386. doi:10.​5301/​ejo.​5000386 CrossRefPubMed
Metadata
Title
Characteristics of retinal vessels in surgically closed macular hole: an optical coherence tomography angiography study
Authors
Cheolmin Yun
Jaemoon Ahn
Mingue Kim
Jee Taek Kim
Soon-Young Hwang
Seong-Woo Kim
Jaeryung Oh
Publication date
01-10-2017
Publisher
Springer Berlin Heidelberg
Published in
Graefe's Archive for Clinical and Experimental Ophthalmology / Issue 10/2017
Print ISSN: 0721-832X
Electronic ISSN: 1435-702X
DOI
https://doi.org/10.1007/s00417-017-3742-6

Other articles of this Issue 10/2017

Graefe's Archive for Clinical and Experimental Ophthalmology 10/2017 Go to the issue