Skip to main content
Top
Published in: Archives of Orthopaedic and Trauma Surgery 6/2020

Open Access 01-06-2020 | Knee Arthroplasty

Accuracy of tibial positioning in the frontal plane: a prospective study comparing conventional and innovative techniques in total knee arthroplasty

Authors: R. K. Zahn, F. Graef, J. L. Conrad, L. Renner, C. Perka, H. Hommel

Published in: Archives of Orthopaedic and Trauma Surgery | Issue 6/2020

Login to get access

Abstract

Background

Coronal alignment of the tibial component determines functional outcome and survival in total knee arthroplasty (TKA). Innovative techniques for tibial instrumentation have been developed to improve accuracy and reduce the rate of outliers.

Methods

In a prospective study, 300 patients were allocated to four different groups using a randomization process (two innovative and two conventional) techniques of tibial instrumentation (conventional: extramedullary, intramedullary; innovative: navigation and patient-specific instrumentation (PSI); n = 75 for each group). The aims were to reconstruct the medial proximal tibial angle (MPTA) to 90° and the mechanical tibio-femoral axis (mTFA) to 0°. Both angles were evaluated and compared between all groups three months after the surgery. Patients who presented with a postoperative mTFA > 3° were classified as outliers.

Results

The navigation and intramedullary technique both demonstrated that they were significantly more precise in reconstructing a neutral mTFA and MPTA compared to the other two techniques. The odd’s ratio (OR) for producing outliers was highest for the PSI method (PSI OR = 5.5, p < 0.05; extramedullary positioning OR = 3.7, p > 0.05; intramedullary positioning OR = 1.7, p > 0.05; navigation OR = 0.04, p < 0.05). We could only observe significant differences between pre- and postoperative MPTA in the navigation and intramedullary group. The MPTA showed a significant negative correlation with the mTFA in all groups preoperatively and in the extramedullary, intramedullary and PSI postoperatively.

Conclusion

The navigation and intramedullary instrumentation provided the precise positioning of the tibial component. Outliers were most common within the PSI and extramedullary technique. Optimal alignment is dependent on the technique of tibial instrumentation and tibial component positioning determines the accuracy in TKA since mTFA correlated with MPTA pre- and postoperatively.
Literature
1.
go back to reference Kim Y-H, Park J-W, Kim J-S, Park S-D (2014) The relationship between the survival of total knee arthroplasty and postoperative coronal, sagittal and rotational alignment of knee prosthesis. Int Orthop 38:379–385PubMedCrossRef Kim Y-H, Park J-W, Kim J-S, Park S-D (2014) The relationship between the survival of total knee arthroplasty and postoperative coronal, sagittal and rotational alignment of knee prosthesis. Int Orthop 38:379–385PubMedCrossRef
2.
go back to reference Slevin O, Hirschmann A, Schiapparelli FF, Amsler F, Huegli RW, Hirschmann MT (2018) Neutral alignment leads to higher knee society scores after total knee arthroplasty in preoperatively non-varus patients: a prospective clinical study using 3D-CT. Knee Surg Sport Traumatol Arthrosc 26:1602–1609CrossRef Slevin O, Hirschmann A, Schiapparelli FF, Amsler F, Huegli RW, Hirschmann MT (2018) Neutral alignment leads to higher knee society scores after total knee arthroplasty in preoperatively non-varus patients: a prospective clinical study using 3D-CT. Knee Surg Sport Traumatol Arthrosc 26:1602–1609CrossRef
3.
go back to reference Huang NFR, Dowsey MM, Ee E, Stoney JD, Babazadeh S, Choong PF (2012) Coronal alignment correlates with outcome after total knee arthroplasty: five-year follow-up of a randomized controlled trial. J Arthroplast 27:1737–1741CrossRef Huang NFR, Dowsey MM, Ee E, Stoney JD, Babazadeh S, Choong PF (2012) Coronal alignment correlates with outcome after total knee arthroplasty: five-year follow-up of a randomized controlled trial. J Arthroplast 27:1737–1741CrossRef
4.
go back to reference Li Z, Esposito CI, Koch CN, Lee Y, Padgett DE, Wright TM (2017) Polyethylene damage increases with varus implant alignment in posterior-stabilized and constrained condylar knee arthroplasty. Clin Orthop Relat Res 475:2981–2991PubMedPubMedCentralCrossRef Li Z, Esposito CI, Koch CN, Lee Y, Padgett DE, Wright TM (2017) Polyethylene damage increases with varus implant alignment in posterior-stabilized and constrained condylar knee arthroplasty. Clin Orthop Relat Res 475:2981–2991PubMedPubMedCentralCrossRef
5.
go back to reference Srivastava A, Lee GY, Steklov N, Colwell CW, Ezzet KA, D’Lima DD (2012) Effect of tibial component varus on wear in total knee arthroplasty. Knee 19:560–563PubMedCrossRef Srivastava A, Lee GY, Steklov N, Colwell CW, Ezzet KA, D’Lima DD (2012) Effect of tibial component varus on wear in total knee arthroplasty. Knee 19:560–563PubMedCrossRef
6.
go back to reference Zeng HB, Ying XZ, Chen GJ, Yang XQ, Lin DD, Li ZJ, Liu HX (2015) Extramedullary versus intramedullary tibial alignment technique in total knee arthroplasty: a meta-analysis of randomized controlled trials. Clinics 70:714–719PubMedPubMedCentralCrossRef Zeng HB, Ying XZ, Chen GJ, Yang XQ, Lin DD, Li ZJ, Liu HX (2015) Extramedullary versus intramedullary tibial alignment technique in total knee arthroplasty: a meta-analysis of randomized controlled trials. Clinics 70:714–719PubMedPubMedCentralCrossRef
7.
go back to reference Caillouette JT, Anzel SH (1990) Fat embolism syndrome following the intramedullary alignment guide in total knee arthroplasty. Clin Orthop Relat Res. 251:198–199 Caillouette JT, Anzel SH (1990) Fat embolism syndrome following the intramedullary alignment guide in total knee arthroplasty. Clin Orthop Relat Res. 251:198–199
8.
go back to reference Maestro A, Harwin SF, Sandoval MG, Vaquero DH, Murcia A (1998) Influence of intramedullary versus extramedullary alignment guides on final total knee arthroplasty component position: a radiographic analysis. J Arthroplast 13:552–558CrossRef Maestro A, Harwin SF, Sandoval MG, Vaquero DH, Murcia A (1998) Influence of intramedullary versus extramedullary alignment guides on final total knee arthroplasty component position: a radiographic analysis. J Arthroplast 13:552–558CrossRef
9.
go back to reference Todesca A, Garro L, Penna M, Bejui-Hugues J (2017) Conventional versus computer-navigated TKA: a prospective randomized study. Knee Surg Sport Traumatol Arthrosc 25:1778–1783CrossRef Todesca A, Garro L, Penna M, Bejui-Hugues J (2017) Conventional versus computer-navigated TKA: a prospective randomized study. Knee Surg Sport Traumatol Arthrosc 25:1778–1783CrossRef
10.
go back to reference Anderl W, Pauzenberger L, Kölblinger R, Kiesselbach G, Brandl G, Laky B, Kriegleder B, Heuberer P, Schwameis E (2016) Patient-specific instrumentation improved mechanical alignment, while early clinical outcome was comparable to conventional instrumentation in TKA. Knee Surg Sport Traumatol Arthrosc 24:102–111CrossRef Anderl W, Pauzenberger L, Kölblinger R, Kiesselbach G, Brandl G, Laky B, Kriegleder B, Heuberer P, Schwameis E (2016) Patient-specific instrumentation improved mechanical alignment, while early clinical outcome was comparable to conventional instrumentation in TKA. Knee Surg Sport Traumatol Arthrosc 24:102–111CrossRef
11.
go back to reference Woon JTK, Zeng ISL, Calliess T, Windhagen H, Ettinger M, Waterson HB, Toms AD, Young SW (2018) Outcome of kinematic alignment using patient-specific instrumentation versus mechanical alignment in TKA: a meta-analysis and subgroup analysis of randomised trials. Arch Orthop Trauma Surg 138:1293–1303PubMedCrossRef Woon JTK, Zeng ISL, Calliess T, Windhagen H, Ettinger M, Waterson HB, Toms AD, Young SW (2018) Outcome of kinematic alignment using patient-specific instrumentation versus mechanical alignment in TKA: a meta-analysis and subgroup analysis of randomised trials. Arch Orthop Trauma Surg 138:1293–1303PubMedCrossRef
12.
go back to reference Hommel H, Perka C (2015) Gap-balancing technique combined with patient-specific instrumentation in TKA. Arch Orthop Trauma Surg 135:1603–1608PubMedCrossRef Hommel H, Perka C (2015) Gap-balancing technique combined with patient-specific instrumentation in TKA. Arch Orthop Trauma Surg 135:1603–1608PubMedCrossRef
13.
go back to reference Tsukeoka T, Lee TH, Tsuneizumi Y, Suzuki M (2014) The tibial crest as a practical useful landmark in total knee arthroplasty. Knee 21:283–289PubMedCrossRef Tsukeoka T, Lee TH, Tsuneizumi Y, Suzuki M (2014) The tibial crest as a practical useful landmark in total knee arthroplasty. Knee 21:283–289PubMedCrossRef
14.
go back to reference Weiser L, Ruppel AA, Nüchtern JV, Sellenschloh K, Zeichen J, Püschel K, Morlock MM, Lehmann W (2015) Extra- vs. intramedullary treatment of pertrochanteric fractures: a biomechanical in vitro study comparing dynamic hip screw and intramedullary nail. Arch Orthop Trauma Surg 135:1101–1106PubMedCrossRef Weiser L, Ruppel AA, Nüchtern JV, Sellenschloh K, Zeichen J, Püschel K, Morlock MM, Lehmann W (2015) Extra- vs. intramedullary treatment of pertrochanteric fractures: a biomechanical in vitro study comparing dynamic hip screw and intramedullary nail. Arch Orthop Trauma Surg 135:1101–1106PubMedCrossRef
15.
go back to reference Cheng T, Zhao S, Peng X, Zhang X (2012) Does computer-assisted surgery improve postoperative leg alignment and implant positioning following total knee arthroplasty? a meta-analysis of randomized controlled trials? Knee Surg Sport Traumatol Arthrosc 20:1307–1322CrossRef Cheng T, Zhao S, Peng X, Zhang X (2012) Does computer-assisted surgery improve postoperative leg alignment and implant positioning following total knee arthroplasty? a meta-analysis of randomized controlled trials? Knee Surg Sport Traumatol Arthrosc 20:1307–1322CrossRef
16.
go back to reference Thienpont E, Schwab P-E, Fennema P (2017) Efficacy of patient-specific instruments in total knee arthroplasty. J Bone Jt Surg 99:521–530CrossRef Thienpont E, Schwab P-E, Fennema P (2017) Efficacy of patient-specific instruments in total knee arthroplasty. J Bone Jt Surg 99:521–530CrossRef
17.
go back to reference Paley D, Herzenberg JE, Tetsworth K, McKie J, Bhave A (1994) Deformity planning for frontal and sagittal plane corrective osteotomies. Orthop Clin N Am 25:425–465 Paley D, Herzenberg JE, Tetsworth K, McKie J, Bhave A (1994) Deformity planning for frontal and sagittal plane corrective osteotomies. Orthop Clin N Am 25:425–465
18.
go back to reference Gbejuade HO, White P, Hassaballa M, Porteous AJ, Robinson JR, Murray JR (2014) Do long leg supine CT scanograms correlate with weight-bearing full-length radiographs to measure lower limb coronal alignment? Knee 21:549–552PubMedCrossRef Gbejuade HO, White P, Hassaballa M, Porteous AJ, Robinson JR, Murray JR (2014) Do long leg supine CT scanograms correlate with weight-bearing full-length radiographs to measure lower limb coronal alignment? Knee 21:549–552PubMedCrossRef
19.
go back to reference Kannan A, Hawdon G, McMahon S (2012) Effect of flexion and rotation on measures of coronal alignment after TKA. J Knee Surg 25:407–410PubMedCrossRef Kannan A, Hawdon G, McMahon S (2012) Effect of flexion and rotation on measures of coronal alignment after TKA. J Knee Surg 25:407–410PubMedCrossRef
20.
go back to reference Radtke K, Becher C, Noll Y, Ostermeier S (2010) Effect of limb rotation on radiographic alignment in total knee arthroplasties. Arch Orthop Trauma Surg 130:451–457PubMedCrossRef Radtke K, Becher C, Noll Y, Ostermeier S (2010) Effect of limb rotation on radiographic alignment in total knee arthroplasties. Arch Orthop Trauma Surg 130:451–457PubMedCrossRef
21.
go back to reference Schoenmakers DAL, Feczko PZ, Boonen B, Schotanus MGM, Kort NP, Emans PJ (2017) Measurement of lower limb alignment: there are within-person differences between weight-bearing and non-weight-bearing measurement modalities. Knee Surg Sport Traumatol Arthrosc 25:3569–3575CrossRef Schoenmakers DAL, Feczko PZ, Boonen B, Schotanus MGM, Kort NP, Emans PJ (2017) Measurement of lower limb alignment: there are within-person differences between weight-bearing and non-weight-bearing measurement modalities. Knee Surg Sport Traumatol Arthrosc 25:3569–3575CrossRef
22.
go back to reference Zahn RK, Fussi J, von Roth P, Perka CF, Hommel H (2016) Postoperative increased loading leads to an alteration in the radiological mechanical axis after total knee arthroplasty. J Arthroplast 31:1803–1807CrossRef Zahn RK, Fussi J, von Roth P, Perka CF, Hommel H (2016) Postoperative increased loading leads to an alteration in the radiological mechanical axis after total knee arthroplasty. J Arthroplast 31:1803–1807CrossRef
23.
go back to reference Chang CB, Choi J-Y, Koh IJ, Seo ES, Seong SC, Kim TK (2010) What should be considered in using standard knee radiographs to estimate mechanical alignment of the knee? Osteoarthr Cartil 18:530–538PubMedCrossRef Chang CB, Choi J-Y, Koh IJ, Seo ES, Seong SC, Kim TK (2010) What should be considered in using standard knee radiographs to estimate mechanical alignment of the knee? Osteoarthr Cartil 18:530–538PubMedCrossRef
24.
go back to reference Sobti A, Maniar S, Chaudhari S, Shetty V (2015) Reliable and reproducible technique to mark center of ankle in total knee arthroplasty. J Clin Orthop Trauma 6:144–146PubMedPubMedCentralCrossRef Sobti A, Maniar S, Chaudhari S, Shetty V (2015) Reliable and reproducible technique to mark center of ankle in total knee arthroplasty. J Clin Orthop Trauma 6:144–146PubMedPubMedCentralCrossRef
25.
go back to reference Tsukeoka T, Tsuneizumi Y, Lee TH (2013) The effect of rotational fixation error of the tibial cutting guide and the distance between the guide and the bone on the tibial osteotomy in total knee arthroplasty. J Arthroplast 28:1094–1098CrossRef Tsukeoka T, Tsuneizumi Y, Lee TH (2013) The effect of rotational fixation error of the tibial cutting guide and the distance between the guide and the bone on the tibial osteotomy in total knee arthroplasty. J Arthroplast 28:1094–1098CrossRef
26.
go back to reference Cashman JP, Carty FL, Synnott K, Kenny PJ (2011) Intramedullary versus extramedullary alignment of the tibial component in the Triathlon knee. J Orthop Surg Res 6:44PubMedPubMedCentralCrossRef Cashman JP, Carty FL, Synnott K, Kenny PJ (2011) Intramedullary versus extramedullary alignment of the tibial component in the Triathlon knee. J Orthop Surg Res 6:44PubMedPubMedCentralCrossRef
27.
go back to reference Feeley I, Hegarty A, Hickey A, Glynn A (2016) Impact of use of intramedullary and extramedullary guides on tibial component geometry in total knee replacements: a systematic review and meta-analysis. J Knee Surg 29:487–496PubMed Feeley I, Hegarty A, Hickey A, Glynn A (2016) Impact of use of intramedullary and extramedullary guides on tibial component geometry in total knee replacements: a systematic review and meta-analysis. J Knee Surg 29:487–496PubMed
28.
go back to reference Rahm S, Camenzind RS, Hingsammer A, Lenz C, Bauer DE, Farshad M, Fucentese SF (2017) Postoperative alignment of TKA in patients with severe preoperative varus or valgus deformity: is there a difference between surgical techniques? BMC Musculoskelet Disord 18(1):272PubMedPubMedCentralCrossRef Rahm S, Camenzind RS, Hingsammer A, Lenz C, Bauer DE, Farshad M, Fucentese SF (2017) Postoperative alignment of TKA in patients with severe preoperative varus or valgus deformity: is there a difference between surgical techniques? BMC Musculoskelet Disord 18(1):272PubMedPubMedCentralCrossRef
29.
go back to reference Jung W-H, Seo J-G, Kim DH, Balabadra S, Mandot U, Kumar D (2020) Optimal rotational positioning of tibial component in total knee arthroplasty: determined by linker surgical technique using a high definition CT. Arch Orthop Trauma Surg 140(3):401–408PubMedCrossRef Jung W-H, Seo J-G, Kim DH, Balabadra S, Mandot U, Kumar D (2020) Optimal rotational positioning of tibial component in total knee arthroplasty: determined by linker surgical technique using a high definition CT. Arch Orthop Trauma Surg 140(3):401–408PubMedCrossRef
30.
go back to reference Blakeney WG, Khan RJK, Wall SJ (2011) Computer-assisted techniques versus conventional guides for component alignment in total knee arthroplasty: a randomized controlled trial. J Bone Jt Surg—Ser A 93:1377–1384CrossRef Blakeney WG, Khan RJK, Wall SJ (2011) Computer-assisted techniques versus conventional guides for component alignment in total knee arthroplasty: a randomized controlled trial. J Bone Jt Surg—Ser A 93:1377–1384CrossRef
32.
go back to reference Huang T-W, Peng K-T, Huang K-C, Lee MS, Hsu RW-W (2014) Differences in component and limb alignment between computer-assisted and conventional surgery total knee arthroplasty. Knee Surg Sport Traumatol Arthrosc. 22:2954–2961CrossRef Huang T-W, Peng K-T, Huang K-C, Lee MS, Hsu RW-W (2014) Differences in component and limb alignment between computer-assisted and conventional surgery total knee arthroplasty. Knee Surg Sport Traumatol Arthrosc. 22:2954–2961CrossRef
33.
go back to reference Loh B, Chen JY, Yew AKS, Pang HN, Tay DKJ, Chia SL, Lo NN, Yeo SJ (2017) The accuracy of a hand-held navigation system in total knee arthroplasty. Arch Orthop Trauma Surg 137:381–386PubMedCrossRef Loh B, Chen JY, Yew AKS, Pang HN, Tay DKJ, Chia SL, Lo NN, Yeo SJ (2017) The accuracy of a hand-held navigation system in total knee arthroplasty. Arch Orthop Trauma Surg 137:381–386PubMedCrossRef
34.
go back to reference Petursson G, Fenstad AM, Gøthesen Ø, Dyrhovden GS, Hallan G, Röhrl SM, Aamodt A, Furnes O (2018) Computer-assisted compared with conventional total knee replacement. J Bone Jt Surg 100:1265–1274CrossRef Petursson G, Fenstad AM, Gøthesen Ø, Dyrhovden GS, Hallan G, Röhrl SM, Aamodt A, Furnes O (2018) Computer-assisted compared with conventional total knee replacement. J Bone Jt Surg 100:1265–1274CrossRef
35.
go back to reference Kim Y-H, Park J-W, Kim J-S (2018) 2017 Chitranjan S Ranawat Award. Clin Orthop Relat Res 476:6–15PubMedCrossRef Kim Y-H, Park J-W, Kim J-S (2018) 2017 Chitranjan S Ranawat Award. Clin Orthop Relat Res 476:6–15PubMedCrossRef
36.
go back to reference Kosse NM, Heesterbeek PJC, Schimmel JJP, van Hellemondt GG, Wymenga AB, Defoort KC (2018) Stability and alignment do not improve by using patient-specific instrumentation in total knee arthroplasty: a randomized controlled trial. Knee Surg Sports Traumatol Arthrosc 26:1792–1799PubMedCrossRef Kosse NM, Heesterbeek PJC, Schimmel JJP, van Hellemondt GG, Wymenga AB, Defoort KC (2018) Stability and alignment do not improve by using patient-specific instrumentation in total knee arthroplasty: a randomized controlled trial. Knee Surg Sports Traumatol Arthrosc 26:1792–1799PubMedCrossRef
37.
go back to reference Maus U, Marques CJ, Scheunemann D, Lampe F, Lazovic D, Hommel H, Vogel D, Haunschild M, Pfitzner T (2018) No improvement in reducing outliers in coronal axis alignment with patient-specific instrumentation. Knee Surg Sport Traumatol Arthrosc 26:2788–2796CrossRef Maus U, Marques CJ, Scheunemann D, Lampe F, Lazovic D, Hommel H, Vogel D, Haunschild M, Pfitzner T (2018) No improvement in reducing outliers in coronal axis alignment with patient-specific instrumentation. Knee Surg Sport Traumatol Arthrosc 26:2788–2796CrossRef
38.
go back to reference Lustig S, Scholes CJ, Oussedik SI, Kinzel V, Coolican MRJ, Parker DA (2013) Unsatisfactory accuracy as determined by computer navigation of VISIONAIRE patient-specific instrumentation for total knee arthroplasty. J Arthroplast 28:469–473CrossRef Lustig S, Scholes CJ, Oussedik SI, Kinzel V, Coolican MRJ, Parker DA (2013) Unsatisfactory accuracy as determined by computer navigation of VISIONAIRE patient-specific instrumentation for total knee arthroplasty. J Arthroplast 28:469–473CrossRef
39.
go back to reference Sassoon A, Nam D, Nunley R, Barrack R (2015) Systematic review of patient-specific instrumentation in total knee arthroplasty: new but not improved. Clin Orthop Relat Res 473:151–158PubMedCrossRef Sassoon A, Nam D, Nunley R, Barrack R (2015) Systematic review of patient-specific instrumentation in total knee arthroplasty: new but not improved. Clin Orthop Relat Res 473:151–158PubMedCrossRef
40.
go back to reference Cavaignac E, Pailhé R, Laumond G, Murgier J, Reina N, Laffosse JM, Bérard E, Chiron P (2015) Evaluation of the accuracy of patient-specific cutting blocks for total knee arthroplasty: a meta-analysis. Int Orthop 39:1541–1552PubMedCrossRef Cavaignac E, Pailhé R, Laumond G, Murgier J, Reina N, Laffosse JM, Bérard E, Chiron P (2015) Evaluation of the accuracy of patient-specific cutting blocks for total knee arthroplasty: a meta-analysis. Int Orthop 39:1541–1552PubMedCrossRef
41.
go back to reference Anwar R, Kini SG, Sait S, Bruce WJM (2016) Early clinical and radiological results of total knee arthroplasty using patient-specific guides in obese patients. Arch Orthop Trauma Surg 136:265–270PubMedCrossRef Anwar R, Kini SG, Sait S, Bruce WJM (2016) Early clinical and radiological results of total knee arthroplasty using patient-specific guides in obese patients. Arch Orthop Trauma Surg 136:265–270PubMedCrossRef
42.
go back to reference Huijbregts HJTAM, Khan RJK, Sorensen E, Fick DP, Haebich S (2016) Patient-specific instrumentation does not improve radiographic alignment or clinical outcomes after total knee arthroplasty. Acta Orthop 87:386–394PubMedPubMedCentralCrossRef Huijbregts HJTAM, Khan RJK, Sorensen E, Fick DP, Haebich S (2016) Patient-specific instrumentation does not improve radiographic alignment or clinical outcomes after total knee arthroplasty. Acta Orthop 87:386–394PubMedPubMedCentralCrossRef
43.
go back to reference Yamamura K, Minoda Y, Mizokawa S, Ohta Y, Sugama R, Nakamura S, Ueyama H, Nakamura H (2017) Novel alignment measurement technique for total knee arthroplasty using patient specific instrumentation. Arch Orthop Trauma Surg 137:401–407PubMedCrossRef Yamamura K, Minoda Y, Mizokawa S, Ohta Y, Sugama R, Nakamura S, Ueyama H, Nakamura H (2017) Novel alignment measurement technique for total knee arthroplasty using patient specific instrumentation. Arch Orthop Trauma Surg 137:401–407PubMedCrossRef
44.
go back to reference Heyse TJ, Tibesku CO (2015) Improved tibial component rotation in TKA using patient-specific instrumentation. Arch Orthop Trauma Surg 135:697–701PubMedCrossRef Heyse TJ, Tibesku CO (2015) Improved tibial component rotation in TKA using patient-specific instrumentation. Arch Orthop Trauma Surg 135:697–701PubMedCrossRef
Metadata
Title
Accuracy of tibial positioning in the frontal plane: a prospective study comparing conventional and innovative techniques in total knee arthroplasty
Authors
R. K. Zahn
F. Graef
J. L. Conrad
L. Renner
C. Perka
H. Hommel
Publication date
01-06-2020
Publisher
Springer Berlin Heidelberg
Published in
Archives of Orthopaedic and Trauma Surgery / Issue 6/2020
Print ISSN: 0936-8051
Electronic ISSN: 1434-3916
DOI
https://doi.org/10.1007/s00402-020-03389-4

Other articles of this Issue 6/2020

Archives of Orthopaedic and Trauma Surgery 6/2020 Go to the issue