Skip to main content
Top
Published in: Pediatric Surgery International 2/2013

01-02-2013 | Review Article

The role of genetic and epigenetic alterations in neuroblastoma disease pathogenesis

Authors: Raquel Domingo-Fernandez, Karen Watters, Olga Piskareva, Raymond L. Stallings, Isabella Bray

Published in: Pediatric Surgery International | Issue 2/2013

Login to get access

Abstract

Neuroblastoma is a highly heterogeneous tumor accounting for 15 % of all pediatric cancer deaths. Clinical behavior ranges from the spontaneous regression of localized, asymptomatic tumors, as well as metastasized tumors in infants, to rapid progression and resistance to therapy. Genomic amplification of the MYCN oncogene has been used to predict outcome in neuroblastoma for over 30 years, however, recent methodological advances including miRNA and mRNA profiling, comparative genomic hybridization (array-CGH), and whole-genome sequencing have enabled the detailed analysis of the neuroblastoma genome, leading to the identification of new prognostic markers and better patient stratification. In this review, we will describe the main genetic factors responsible for these diverse clinical phenotypes in neuroblastoma, the chronology of their discovery, and the impact on patient prognosis.
Literature
1.
go back to reference Spix C et al (2006) Neuroblastoma incidence and survival in European children (1978–1997): report from the Automated Childhood Cancer Information System project. Eur J Cancer 42(13):2081–2091PubMedCrossRef Spix C et al (2006) Neuroblastoma incidence and survival in European children (1978–1997): report from the Automated Childhood Cancer Information System project. Eur J Cancer 42(13):2081–2091PubMedCrossRef
2.
go back to reference Gurney JG et al (1995) Incidence of cancer in children in the United States. Sex-, race-, and 1-year age-specific rates by histologic type. Cancer 75(8):2186–2195PubMedCrossRef Gurney JG et al (1995) Incidence of cancer in children in the United States. Sex-, race-, and 1-year age-specific rates by histologic type. Cancer 75(8):2186–2195PubMedCrossRef
3.
go back to reference Brodeur GM (2003) Neuroblastoma: biological insights into a clinical enigma. Nat Rev Cancer 3(3):203–216PubMedCrossRef Brodeur GM (2003) Neuroblastoma: biological insights into a clinical enigma. Nat Rev Cancer 3(3):203–216PubMedCrossRef
4.
go back to reference Brodeur GM et al (1984) Amplification of N-myc in untreated human neuroblastomas correlates with advanced disease stage. Science 224(4653):1121–1124PubMedCrossRef Brodeur GM et al (1984) Amplification of N-myc in untreated human neuroblastomas correlates with advanced disease stage. Science 224(4653):1121–1124PubMedCrossRef
5.
go back to reference Mosse YP et al (2004) Germline PHOX2B mutation in hereditary neuroblastoma. Am J Hum Genet 75(4):727–730PubMedCrossRef Mosse YP et al (2004) Germline PHOX2B mutation in hereditary neuroblastoma. Am J Hum Genet 75(4):727–730PubMedCrossRef
6.
go back to reference Mosse YP et al (2008) Identification of ALK as a major familial neuroblastoma predisposition gene. Nature 455(7215):930–935PubMedCrossRef Mosse YP et al (2008) Identification of ALK as a major familial neuroblastoma predisposition gene. Nature 455(7215):930–935PubMedCrossRef
7.
8.
go back to reference Stallings RL et al (2006) High-resolution analysis of chromosomal breakpoints and genomic instability identifies PTPRD as a candidate tumor suppressor gene in neuroblastoma. Cancer Res 66(7):3673–3680PubMedCrossRef Stallings RL et al (2006) High-resolution analysis of chromosomal breakpoints and genomic instability identifies PTPRD as a candidate tumor suppressor gene in neuroblastoma. Cancer Res 66(7):3673–3680PubMedCrossRef
9.
go back to reference Molenaar JJ et al (2012) Sequencing of neuroblastoma identifies chromothripsis and defects in neuritogenesis genes. Nature 483(7391):589–593PubMedCrossRef Molenaar JJ et al (2012) Sequencing of neuroblastoma identifies chromothripsis and defects in neuritogenesis genes. Nature 483(7391):589–593PubMedCrossRef
10.
go back to reference Asgharzadeh S et al (2006) Prognostic significance of gene expression profiles of metastatic neuroblastomas lacking MYCN gene amplification. J Natl Cancer Inst 98(17):1193–1203PubMedCrossRef Asgharzadeh S et al (2006) Prognostic significance of gene expression profiles of metastatic neuroblastomas lacking MYCN gene amplification. J Natl Cancer Inst 98(17):1193–1203PubMedCrossRef
11.
go back to reference Vermeulen J et al (2009) Predicting outcomes for children with neuroblastoma using a multigene-expression signature: a retrospective SIOPEN/COG/GPOH study. Lancet Oncol 10(7):663–671PubMedCrossRef Vermeulen J et al (2009) Predicting outcomes for children with neuroblastoma using a multigene-expression signature: a retrospective SIOPEN/COG/GPOH study. Lancet Oncol 10(7):663–671PubMedCrossRef
12.
go back to reference De Preter K et al (2010) Accurate outcome prediction in neuroblastoma across independent data sets using a multigene signature. Clin Cancer Res 16(5):1532–1541PubMedCrossRef De Preter K et al (2010) Accurate outcome prediction in neuroblastoma across independent data sets using a multigene signature. Clin Cancer Res 16(5):1532–1541PubMedCrossRef
13.
go back to reference Oberthuer A et al (2008) Subclassification and individual survival time prediction from gene expression data of neuroblastoma patients by using CASPAR. Clin Cancer Res 14(20):6590–6601PubMedCrossRef Oberthuer A et al (2008) Subclassification and individual survival time prediction from gene expression data of neuroblastoma patients by using CASPAR. Clin Cancer Res 14(20):6590–6601PubMedCrossRef
14.
go back to reference Ohira M, Nakagawara A (2010) Global genomic and RNA profiles for novel risk stratification of neuroblastoma. Cancer Sci 101(11):2295–2301PubMedCrossRef Ohira M, Nakagawara A (2010) Global genomic and RNA profiles for novel risk stratification of neuroblastoma. Cancer Sci 101(11):2295–2301PubMedCrossRef
15.
go back to reference Chen Y, Stallings RL (2007) Differential patterns of microRNA expression in neuroblastoma are correlated with prognosis, differentiation, and apoptosis. Cancer Res 67(3):976–983PubMedCrossRef Chen Y, Stallings RL (2007) Differential patterns of microRNA expression in neuroblastoma are correlated with prognosis, differentiation, and apoptosis. Cancer Res 67(3):976–983PubMedCrossRef
16.
go back to reference Bray I et al (2009) Widespread dysregulation of MiRNAs by MYCN amplification and chromosomal imbalances in neuroblastoma: association of miRNA expression with survival. PLoS One 4(11):e7850PubMedCrossRef Bray I et al (2009) Widespread dysregulation of MiRNAs by MYCN amplification and chromosomal imbalances in neuroblastoma: association of miRNA expression with survival. PLoS One 4(11):e7850PubMedCrossRef
17.
go back to reference Cohn SL et al (2009) The International Neuroblastoma Risk Group (INRG) classification system: an INRG Task Force report. J Clin Oncol 27(2):289–297PubMedCrossRef Cohn SL et al (2009) The International Neuroblastoma Risk Group (INRG) classification system: an INRG Task Force report. J Clin Oncol 27(2):289–297PubMedCrossRef
18.
go back to reference Kaneko Y et al (1987) Different karyotypic patterns in early and advanced stage neuroblastomas. Cancer Res 47(1):311–318PubMed Kaneko Y et al (1987) Different karyotypic patterns in early and advanced stage neuroblastomas. Cancer Res 47(1):311–318PubMed
19.
go back to reference Brodeur GM, Nakagawara A (1992) Molecular basis of clinical heterogeneity in neuroblastoma. Am J Pediatr Hematol Oncol 14(2):111–116PubMedCrossRef Brodeur GM, Nakagawara A (1992) Molecular basis of clinical heterogeneity in neuroblastoma. Am J Pediatr Hematol Oncol 14(2):111–116PubMedCrossRef
20.
go back to reference Kaneko Y, Knudson AG (2000) Mechanism and relevance of ploidy in neuroblastoma. Genes Chromosomes Cancer 29(2):89–95PubMedCrossRef Kaneko Y, Knudson AG (2000) Mechanism and relevance of ploidy in neuroblastoma. Genes Chromosomes Cancer 29(2):89–95PubMedCrossRef
21.
go back to reference Brodeur GM et al (1997) Biology and genetics of human neuroblastomas. J Pediatr Hematol Oncol 19(2):93–101PubMedCrossRef Brodeur GM et al (1997) Biology and genetics of human neuroblastomas. J Pediatr Hematol Oncol 19(2):93–101PubMedCrossRef
22.
go back to reference Schleiermacher G et al (2012) Segmental chromosomal alterations have prognostic impact in neuroblastoma: a report from the INRG project. Br J Cancer 107(8):1418–1422PubMedCrossRef Schleiermacher G et al (2012) Segmental chromosomal alterations have prognostic impact in neuroblastoma: a report from the INRG project. Br J Cancer 107(8):1418–1422PubMedCrossRef
23.
go back to reference Seeger RC et al (1985) Association of multiple copies of the N-myc oncogene with rapid progression of neuroblastomas. N Engl J Med 313(18):1111–1116PubMedCrossRef Seeger RC et al (1985) Association of multiple copies of the N-myc oncogene with rapid progression of neuroblastomas. N Engl J Med 313(18):1111–1116PubMedCrossRef
24.
go back to reference Lutz W et al (1996) Conditional expression of N-myc in human neuroblastoma cells increases expression of alpha-prothymosin and ornithine decarboxylase and accelerates progression into S-phase early after mitogenic stimulation of quiescent cells. Oncogene 13(4):803–812PubMed Lutz W et al (1996) Conditional expression of N-myc in human neuroblastoma cells increases expression of alpha-prothymosin and ornithine decarboxylase and accelerates progression into S-phase early after mitogenic stimulation of quiescent cells. Oncogene 13(4):803–812PubMed
25.
go back to reference Schweigerer L et al (1990) Augmented MYCN expression advances the malignant phenotype of human neuroblastoma cells: evidence for induction of autocrine growth factor activity. Cancer Res 50(14):4411–4416PubMed Schweigerer L et al (1990) Augmented MYCN expression advances the malignant phenotype of human neuroblastoma cells: evidence for induction of autocrine growth factor activity. Cancer Res 50(14):4411–4416PubMed
26.
go back to reference Knoepfler PS, Cheng PF, Eisenman RN (2002) N-myc is essential during neurogenesis for the rapid expansion of progenitor cell populations and the inhibition of neuronal differentiation. Genes Dev 16(20):2699–2712PubMedCrossRef Knoepfler PS, Cheng PF, Eisenman RN (2002) N-myc is essential during neurogenesis for the rapid expansion of progenitor cell populations and the inhibition of neuronal differentiation. Genes Dev 16(20):2699–2712PubMedCrossRef
27.
go back to reference Giannini G et al (2005) High mobility group A1 is a molecular target for MYCN in human neuroblastoma. Cancer Res 65(18):8308–8316PubMedCrossRef Giannini G et al (2005) High mobility group A1 is a molecular target for MYCN in human neuroblastoma. Cancer Res 65(18):8308–8316PubMedCrossRef
28.
go back to reference Shohet JM et al (2002) Minichromosome maintenance protein MCM7 is a direct target of the MYCN transcription factor in neuroblastoma. Cancer Res 62(4):1123–1128PubMed Shohet JM et al (2002) Minichromosome maintenance protein MCM7 is a direct target of the MYCN transcription factor in neuroblastoma. Cancer Res 62(4):1123–1128PubMed
29.
go back to reference Slack A et al (2005) The p53 regulatory gene MDM2 is a direct transcriptional target of MYCN in neuroblastoma. Proc Natl Acad Sci USA 102(3):731–736PubMedCrossRef Slack A et al (2005) The p53 regulatory gene MDM2 is a direct transcriptional target of MYCN in neuroblastoma. Proc Natl Acad Sci USA 102(3):731–736PubMedCrossRef
30.
go back to reference Chen L et al (2010) p53 is a direct transcriptional target of MYCN in neuroblastoma. Cancer Res 70(4):1377–1388PubMedCrossRef Chen L et al (2010) p53 is a direct transcriptional target of MYCN in neuroblastoma. Cancer Res 70(4):1377–1388PubMedCrossRef
31.
go back to reference Manohar CF et al (2004) MYCN-mediated regulation of the MRP1 promoter in human neuroblastoma. Oncogene 23(3):753–762PubMedCrossRef Manohar CF et al (2004) MYCN-mediated regulation of the MRP1 promoter in human neuroblastoma. Oncogene 23(3):753–762PubMedCrossRef
32.
go back to reference Weiss WA et al (1997) Targeted expression of MYCN causes neuroblastoma in transgenic mice. EMBO J 16(11):2985–2995PubMedCrossRef Weiss WA et al (1997) Targeted expression of MYCN causes neuroblastoma in transgenic mice. EMBO J 16(11):2985–2995PubMedCrossRef
33.
go back to reference Edsjo A et al (2004) Neuroblastoma cells with overexpressed MYCN retain their capacity to undergo neuronal differentiation. Lab Invest 84(4):406–417PubMedCrossRef Edsjo A et al (2004) Neuroblastoma cells with overexpressed MYCN retain their capacity to undergo neuronal differentiation. Lab Invest 84(4):406–417PubMedCrossRef
34.
go back to reference Chan HS et al (1997) MYCN protein expression as a predictor of neuroblastoma prognosis. Clin Cancer Res 3(10):1699–1706PubMed Chan HS et al (1997) MYCN protein expression as a predictor of neuroblastoma prognosis. Clin Cancer Res 3(10):1699–1706PubMed
35.
go back to reference Valentijn LJ et al (2012) Functional MYCN signature predicts outcome of neuroblastoma irrespective of MYCN amplification. Proc Natl Acad Sci USA 109(47):19190–19195PubMedCrossRef Valentijn LJ et al (2012) Functional MYCN signature predicts outcome of neuroblastoma irrespective of MYCN amplification. Proc Natl Acad Sci USA 109(47):19190–19195PubMedCrossRef
36.
go back to reference Brodeur GM, Fong CT (1989) Molecular biology and genetics of human neuroblastoma. Cancer Genet Cytogenet 41(2):153–174PubMedCrossRef Brodeur GM, Fong CT (1989) Molecular biology and genetics of human neuroblastoma. Cancer Genet Cytogenet 41(2):153–174PubMedCrossRef
37.
go back to reference Brodeur GM et al (1981) Cytogenetic features of human neuroblastomas and cell lines. Cancer Res 41(11 Pt 1):4678–4686PubMed Brodeur GM et al (1981) Cytogenetic features of human neuroblastomas and cell lines. Cancer Res 41(11 Pt 1):4678–4686PubMed
38.
go back to reference Fong CT et al (1989) Loss of heterozygosity for the short arm of chromosome 1 in human neuroblastomas: correlation with N-myc amplification. Proc Natl Acad Sci USA 86(10):3753–3757PubMedCrossRef Fong CT et al (1989) Loss of heterozygosity for the short arm of chromosome 1 in human neuroblastomas: correlation with N-myc amplification. Proc Natl Acad Sci USA 86(10):3753–3757PubMedCrossRef
39.
go back to reference Attiyeh EF et al (2005) Chromosome 1p and 11q deletions and outcome in neuroblastoma. N Engl J Med 353(21):2243–2253PubMedCrossRef Attiyeh EF et al (2005) Chromosome 1p and 11q deletions and outcome in neuroblastoma. N Engl J Med 353(21):2243–2253PubMedCrossRef
40.
go back to reference Martinsson T et al (1997) Delimitation of a critical tumour suppressor region at distal 1p in neuroblastoma tumours. Eur J Cancer 33(12):1997–2001PubMedCrossRef Martinsson T et al (1997) Delimitation of a critical tumour suppressor region at distal 1p in neuroblastoma tumours. Eur J Cancer 33(12):1997–2001PubMedCrossRef
41.
go back to reference Bauer A et al (2001) Smallest region of overlapping deletion in 1p36 in human neuroblastoma: a 1 Mbp cosmid and PAC contig. Genes Chromosomes Cancer 31(3):228–239PubMedCrossRef Bauer A et al (2001) Smallest region of overlapping deletion in 1p36 in human neuroblastoma: a 1 Mbp cosmid and PAC contig. Genes Chromosomes Cancer 31(3):228–239PubMedCrossRef
42.
go back to reference Ohira M et al (2000) Identification and characterization of a 500-kb homozygously deleted region at 1p36.2–p36.3 in a neuroblastoma cell line. Oncogene 19(37):4302–4307PubMedCrossRef Ohira M et al (2000) Identification and characterization of a 500-kb homozygously deleted region at 1p36.2–p36.3 in a neuroblastoma cell line. Oncogene 19(37):4302–4307PubMedCrossRef
43.
go back to reference Thompson PM et al (2003) CHD5, a new member of the chromodomain gene family, is preferentially expressed in the nervous system. Oncogene 22(7):1002–1011PubMedCrossRef Thompson PM et al (2003) CHD5, a new member of the chromodomain gene family, is preferentially expressed in the nervous system. Oncogene 22(7):1002–1011PubMedCrossRef
44.
go back to reference Fujita T et al (2008) CHD5, a tumor suppressor gene deleted from 1p36.31 in neuroblastomas. J Natl Cancer Inst 100(13):940–949PubMedCrossRef Fujita T et al (2008) CHD5, a tumor suppressor gene deleted from 1p36.31 in neuroblastomas. J Natl Cancer Inst 100(13):940–949PubMedCrossRef
45.
go back to reference Koyama H et al (2012) Mechanisms of CHD5 inactivation in neuroblastomas. Clin Cancer Res 18(6):1588–1597PubMedCrossRef Koyama H et al (2012) Mechanisms of CHD5 inactivation in neuroblastomas. Clin Cancer Res 18(6):1588–1597PubMedCrossRef
46.
go back to reference Henrich KO et al (2006) Reduced expression of CAMTA1 correlates with adverse outcome in neuroblastoma patients. Clin Cancer Res 12(1):131–138PubMedCrossRef Henrich KO et al (2006) Reduced expression of CAMTA1 correlates with adverse outcome in neuroblastoma patients. Clin Cancer Res 12(1):131–138PubMedCrossRef
47.
go back to reference Henrich KO et al (2011) CAMTA1, a 1p36 tumor suppressor candidate, inhibits growth and activates differentiation programs in neuroblastoma cells. Cancer Res 71(8):3142–3151PubMedCrossRef Henrich KO et al (2011) CAMTA1, a 1p36 tumor suppressor candidate, inhibits growth and activates differentiation programs in neuroblastoma cells. Cancer Res 71(8):3142–3151PubMedCrossRef
48.
go back to reference Liu Z et al (2011) CASZ1, a candidate tumor-suppressor gene, suppresses neuroblastoma tumor growth through reprogramming gene expression. Cell Death Differ 18(7):1174–1183PubMedCrossRef Liu Z et al (2011) CASZ1, a candidate tumor-suppressor gene, suppresses neuroblastoma tumor growth through reprogramming gene expression. Cell Death Differ 18(7):1174–1183PubMedCrossRef
49.
go back to reference Wang C et al (2012) EZH2 mediates epigenetic silencing of neuroblastoma suppressor genes CASZ1, CLU, RUNX3, and NGFR. Cancer Res 72(1):315–324PubMedCrossRef Wang C et al (2012) EZH2 mediates epigenetic silencing of neuroblastoma suppressor genes CASZ1, CLU, RUNX3, and NGFR. Cancer Res 72(1):315–324PubMedCrossRef
50.
go back to reference Krona C et al (2003) Screening for gene mutations in a 500 kb neuroblastoma tumor suppressor candidate region in chromosome 1p; mutation and stage-specific expression in UBE4B/UFD2. Oncogene 22(15):2343–2351PubMedCrossRef Krona C et al (2003) Screening for gene mutations in a 500 kb neuroblastoma tumor suppressor candidate region in chromosome 1p; mutation and stage-specific expression in UBE4B/UFD2. Oncogene 22(15):2343–2351PubMedCrossRef
51.
go back to reference Krona C et al (2004) A novel 1p36.2 located gene, APITD1, with tumour-suppressive properties and a putative p53-binding domain, shows low expression in neuroblastoma tumours. Br J Cancer 91(6):1119–1130PubMed Krona C et al (2004) A novel 1p36.2 located gene, APITD1, with tumour-suppressive properties and a putative p53-binding domain, shows low expression in neuroblastoma tumours. Br J Cancer 91(6):1119–1130PubMed
52.
go back to reference Guo C et al (1999) Allelic deletion at 11q23 is common in MYCN single copy neuroblastomas. Oncogene 18(35):4948–4957PubMedCrossRef Guo C et al (1999) Allelic deletion at 11q23 is common in MYCN single copy neuroblastomas. Oncogene 18(35):4948–4957PubMedCrossRef
53.
go back to reference Plantaz D et al (2001) Comparative genomic hybridization (CGH) analysis of stage 4 neuroblastoma reveals high frequency of 11q deletion in tumors lacking MYCN amplification. Int J Cancer 91(5):680–686PubMedCrossRef Plantaz D et al (2001) Comparative genomic hybridization (CGH) analysis of stage 4 neuroblastoma reveals high frequency of 11q deletion in tumors lacking MYCN amplification. Int J Cancer 91(5):680–686PubMedCrossRef
54.
go back to reference Maris JM et al (2001) Allelic deletion at chromosome bands 11q14–23 is common in neuroblastoma. Med Pediatr Oncol 36(1):24–27PubMedCrossRef Maris JM et al (2001) Allelic deletion at chromosome bands 11q14–23 is common in neuroblastoma. Med Pediatr Oncol 36(1):24–27PubMedCrossRef
55.
go back to reference Spitz R et al (2006) Loss in chromosome 11q identifies tumors with increased risk for metastatic relapses in localized and 4S neuroblastoma. Clin Cancer Res 12(11 Pt 1):3368–3373PubMedCrossRef Spitz R et al (2006) Loss in chromosome 11q identifies tumors with increased risk for metastatic relapses in localized and 4S neuroblastoma. Clin Cancer Res 12(11 Pt 1):3368–3373PubMedCrossRef
56.
go back to reference Michels E et al (2007) ArrayCGH-based classification of neuroblastoma into genomic subgroups. Genes Chromosomes Cancer 46(12):1098–1108PubMedCrossRef Michels E et al (2007) ArrayCGH-based classification of neuroblastoma into genomic subgroups. Genes Chromosomes Cancer 46(12):1098–1108PubMedCrossRef
57.
go back to reference Luttikhuis ME et al (2001) Neuroblastomas with chromosome 11q loss and single copy MYCN comprise a biologically distinct group of tumours with adverse prognosis. Br J Cancer 85(4):531–537PubMedCrossRef Luttikhuis ME et al (2001) Neuroblastomas with chromosome 11q loss and single copy MYCN comprise a biologically distinct group of tumours with adverse prognosis. Br J Cancer 85(4):531–537PubMedCrossRef
58.
go back to reference Caren H et al (2010) High-risk neuroblastoma tumors with 11q− deletion display a poor prognostic, chromosome instability phenotype with later onset. Proc Natl Acad Sci USA 107(9):4323–4328PubMedCrossRef Caren H et al (2010) High-risk neuroblastoma tumors with 11q− deletion display a poor prognostic, chromosome instability phenotype with later onset. Proc Natl Acad Sci USA 107(9):4323–4328PubMedCrossRef
59.
go back to reference Celeste A et al (2003) H2AX haploinsufficiency modifies genomic stability and tumor susceptibility. Cell 114(3):371–383PubMedCrossRef Celeste A et al (2003) H2AX haploinsufficiency modifies genomic stability and tumor susceptibility. Cell 114(3):371–383PubMedCrossRef
60.
go back to reference Nowacki S et al (2008) Expression of the tumour suppressor gene CADM1 is associated with favourable outcome and inhibits cell survival in neuroblastoma. Oncogene 27(23):3329–3338PubMedCrossRef Nowacki S et al (2008) Expression of the tumour suppressor gene CADM1 is associated with favourable outcome and inhibits cell survival in neuroblastoma. Oncogene 27(23):3329–3338PubMedCrossRef
61.
go back to reference Michels E et al (2008) CADM1 is a strong neuroblastoma candidate gene that maps within a 3.72 Mb critical region of loss on 11q23. BMC Cancer 8:173PubMedCrossRef Michels E et al (2008) CADM1 is a strong neuroblastoma candidate gene that maps within a 3.72 Mb critical region of loss on 11q23. BMC Cancer 8:173PubMedCrossRef
62.
go back to reference Ando K et al (2008) Expression of TSLC1, a candidate tumor suppressor gene mapped to chromosome 11q23, is downregulated in unfavorable neuroblastoma without promoter hypermethylation. Int J Cancer 123(9):2087–2094PubMedCrossRef Ando K et al (2008) Expression of TSLC1, a candidate tumor suppressor gene mapped to chromosome 11q23, is downregulated in unfavorable neuroblastoma without promoter hypermethylation. Int J Cancer 123(9):2087–2094PubMedCrossRef
63.
go back to reference Bown NP, Pearson AD, Reid MM (1993) High incidence of constitutional balanced translocations in neuroblastoma. Cancer Genet Cytogenet 69(2):166–167PubMedCrossRef Bown NP, Pearson AD, Reid MM (1993) High incidence of constitutional balanced translocations in neuroblastoma. Cancer Genet Cytogenet 69(2):166–167PubMedCrossRef
64.
go back to reference Koiffmann CP et al (1995) Neuroblastoma in a boy with MCA/MR syndrome, deletion 11q, and duplication 12q. Am J Med Genet 58(1):46–49PubMedCrossRef Koiffmann CP et al (1995) Neuroblastoma in a boy with MCA/MR syndrome, deletion 11q, and duplication 12q. Am J Med Genet 58(1):46–49PubMedCrossRef
65.
go back to reference Schulte JH et al (2010) Accurate prediction of neuroblastoma outcome based on miRNA expression profiles. Int J Cancer 127(10):2374–2385PubMedCrossRef Schulte JH et al (2010) Accurate prediction of neuroblastoma outcome based on miRNA expression profiles. Int J Cancer 127(10):2374–2385PubMedCrossRef
66.
go back to reference Meddeb M et al (1996) Additional copies of a 25 Mb chromosomal region originating from 17q23.1–17qter are present in 90 % of high-grade neuroblastomas. Genes Chromosomes Cancer 17(3):156–165PubMedCrossRef Meddeb M et al (1996) Additional copies of a 25 Mb chromosomal region originating from 17q23.1–17qter are present in 90 % of high-grade neuroblastomas. Genes Chromosomes Cancer 17(3):156–165PubMedCrossRef
67.
go back to reference Caron H (1995) Allelic loss of chromosome 1 and additional chromosome 17 material are both unfavourable prognostic markers in neuroblastoma. Med Pediatr Oncol 24(4):215–221PubMedCrossRef Caron H (1995) Allelic loss of chromosome 1 and additional chromosome 17 material are both unfavourable prognostic markers in neuroblastoma. Med Pediatr Oncol 24(4):215–221PubMedCrossRef
68.
go back to reference Bown N et al (1999) Gain of chromosome arm 17q and adverse outcome in patients with neuroblastoma. N Engl J Med 340(25):1954–1961PubMedCrossRef Bown N et al (1999) Gain of chromosome arm 17q and adverse outcome in patients with neuroblastoma. N Engl J Med 340(25):1954–1961PubMedCrossRef
69.
go back to reference Van Roy N et al (1995) Molecular cytogenetic analysis of 1;17 translocations in neuroblastoma. Eur J Cancer 31A(4):530–535PubMed Van Roy N et al (1995) Molecular cytogenetic analysis of 1;17 translocations in neuroblastoma. Eur J Cancer 31A(4):530–535PubMed
70.
go back to reference Lastowska M et al (1997) Promiscuous translocations of chromosome arm 17q in human neuroblastomas. Genes Chromosomes Cancer 19(3):143–149PubMedCrossRef Lastowska M et al (1997) Promiscuous translocations of chromosome arm 17q in human neuroblastomas. Genes Chromosomes Cancer 19(3):143–149PubMedCrossRef
71.
go back to reference Savelyeva L, Corvi R, Schwab M (1994) Translocation involving 1p and 17q is a recurrent genetic alteration of human neuroblastoma cells. Am J Hum Genet 55(2):334–340PubMed Savelyeva L, Corvi R, Schwab M (1994) Translocation involving 1p and 17q is a recurrent genetic alteration of human neuroblastoma cells. Am J Hum Genet 55(2):334–340PubMed
72.
go back to reference McConville CM et al (2001) Molecular cytogenetic characterization of two non-MYCN amplified neuroblastoma cell lines with complex t(11;17). Cancer Genet Cytogenet 130(2):133–140PubMedCrossRef McConville CM et al (2001) Molecular cytogenetic characterization of two non-MYCN amplified neuroblastoma cell lines with complex t(11;17). Cancer Genet Cytogenet 130(2):133–140PubMedCrossRef
73.
go back to reference Stark B et al (2003) der(11)t(11;17): a distinct cytogenetic pathway of advanced stage neuroblastoma (NBL)—detected by spectral karyotyping (SKY). Cancer Lett 197(1–2):75–79PubMedCrossRef Stark B et al (2003) der(11)t(11;17): a distinct cytogenetic pathway of advanced stage neuroblastoma (NBL)—detected by spectral karyotyping (SKY). Cancer Lett 197(1–2):75–79PubMedCrossRef
74.
go back to reference Stallings RL et al (2004) Molecular cytogenetic analysis of recurrent unbalanced t(11;17) in neuroblastoma. Cancer Genet Cytogenet 154(1):44–51PubMedCrossRef Stallings RL et al (2004) Molecular cytogenetic analysis of recurrent unbalanced t(11;17) in neuroblastoma. Cancer Genet Cytogenet 154(1):44–51PubMedCrossRef
75.
go back to reference Schleiermacher G et al (2004) Variety and complexity of chromosome 17 translocations in neuroblastoma. Genes Chromosomes Cancer 39(2):143–150PubMedCrossRef Schleiermacher G et al (2004) Variety and complexity of chromosome 17 translocations in neuroblastoma. Genes Chromosomes Cancer 39(2):143–150PubMedCrossRef
76.
go back to reference Spitz R et al (2003) Gain of distal chromosome arm 17q is not associated with poor prognosis in neuroblastoma. Clin Cancer Res 9(13):4835–4840PubMed Spitz R et al (2003) Gain of distal chromosome arm 17q is not associated with poor prognosis in neuroblastoma. Clin Cancer Res 9(13):4835–4840PubMed
77.
go back to reference Brinkschmidt C et al (1997) Comparative genomic hybridization (CGH) analysis of neuroblastomas—an important methodological approach in paediatric tumour pathology. J Pathol 181(4):394–400PubMedCrossRef Brinkschmidt C et al (1997) Comparative genomic hybridization (CGH) analysis of neuroblastomas—an important methodological approach in paediatric tumour pathology. J Pathol 181(4):394–400PubMedCrossRef
78.
go back to reference Buckley PG et al (2010) Chromosomal and microRNA expression patterns reveal biologically distinct subgroups of 11q− neuroblastoma. Clin Cancer Res 16(11):2971–2978PubMedCrossRef Buckley PG et al (2010) Chromosomal and microRNA expression patterns reveal biologically distinct subgroups of 11q− neuroblastoma. Clin Cancer Res 16(11):2971–2978PubMedCrossRef
79.
go back to reference Claviez A et al (2004) Low occurrence of familial neuroblastomas and ganglioneuromas in five consecutive GPOH neuroblastoma treatment studies. Eur J Cancer 40(18):2760–2765PubMedCrossRef Claviez A et al (2004) Low occurrence of familial neuroblastomas and ganglioneuromas in five consecutive GPOH neuroblastoma treatment studies. Eur J Cancer 40(18):2760–2765PubMedCrossRef
80.
go back to reference Maris JM et al (1997) Molecular genetic analysis of familial neuroblastoma. Eur J Cancer 33(12):1923–1928PubMedCrossRef Maris JM et al (1997) Molecular genetic analysis of familial neuroblastoma. Eur J Cancer 33(12):1923–1928PubMedCrossRef
81.
go back to reference Pattyn A et al (2000) Control of hindbrain motor neuron differentiation by the homeobox gene Phox2b. Development 127(7):1349–1358PubMed Pattyn A et al (2000) Control of hindbrain motor neuron differentiation by the homeobox gene Phox2b. Development 127(7):1349–1358PubMed
82.
go back to reference Raabe EH et al (2008) Prevalence and functional consequence of PHOX2B mutations in neuroblastoma. Oncogene 27(4):469–476PubMedCrossRef Raabe EH et al (2008) Prevalence and functional consequence of PHOX2B mutations in neuroblastoma. Oncogene 27(4):469–476PubMedCrossRef
83.
go back to reference van Limpt V et al (2004) The Phox2B homeobox gene is mutated in sporadic neuroblastomas. Oncogene 23(57):9280–9288PubMed van Limpt V et al (2004) The Phox2B homeobox gene is mutated in sporadic neuroblastomas. Oncogene 23(57):9280–9288PubMed
84.
85.
go back to reference Azarova AM, Gautam G, George RE (2011) Emerging importance of ALK in neuroblastoma. Semin Cancer Biol 21(4):267–275PubMedCrossRef Azarova AM, Gautam G, George RE (2011) Emerging importance of ALK in neuroblastoma. Semin Cancer Biol 21(4):267–275PubMedCrossRef
86.
go back to reference Heukamp LC et al (2012) Targeted Expression of Mutated ALK Induces Neuroblastoma in Transgenic Mice. Sci Transl Med 4(141):141ra91 Heukamp LC et al (2012) Targeted Expression of Mutated ALK Induces Neuroblastoma in Transgenic Mice. Sci Transl Med 4(141):141ra91
87.
go back to reference Capasso M et al (2009) Common variations in BARD1 influence susceptibility to high-risk neuroblastoma. Nat Genet 41(6):718–723PubMedCrossRef Capasso M et al (2009) Common variations in BARD1 influence susceptibility to high-risk neuroblastoma. Nat Genet 41(6):718–723PubMedCrossRef
88.
go back to reference Wang K et al (2011) Integrative genomics identifies LMO1 as a neuroblastoma oncogene. Nature 469(7329):216–220PubMedCrossRef Wang K et al (2011) Integrative genomics identifies LMO1 as a neuroblastoma oncogene. Nature 469(7329):216–220PubMedCrossRef
89.
go back to reference Maris JM et al (2008) Chromosome 6p22 locus associated with clinically aggressive neuroblastoma. N Engl J Med 358(24):2585–2593PubMedCrossRef Maris JM et al (2008) Chromosome 6p22 locus associated with clinically aggressive neuroblastoma. N Engl J Med 358(24):2585–2593PubMedCrossRef
90.
go back to reference Wu LC et al (1996) Identification of a RING protein that can interact in vivo with the BRCA1 gene product. Nat Genet 14(4):430–440PubMedCrossRef Wu LC et al (1996) Identification of a RING protein that can interact in vivo with the BRCA1 gene product. Nat Genet 14(4):430–440PubMedCrossRef
91.
go back to reference Stephens PJ et al (2011) Massive genomic rearrangement acquired in a single catastrophic event during cancer development. Cell 144(1):27–40PubMedCrossRef Stephens PJ et al (2011) Massive genomic rearrangement acquired in a single catastrophic event during cancer development. Cell 144(1):27–40PubMedCrossRef
92.
go back to reference Diskin SJ et al (2012) Common variation at 6q16 within HACE1 and LIN28B influences susceptibility to neuroblastoma. Nat Genet 44(10):1126–1130PubMedCrossRef Diskin SJ et al (2012) Common variation at 6q16 within HACE1 and LIN28B influences susceptibility to neuroblastoma. Nat Genet 44(10):1126–1130PubMedCrossRef
93.
go back to reference Molenaar JJ et al (2012) LIN28B induces neuroblastoma and enhances MYCN levels via let-7 suppression. Nat Genet 44(11):1199–1206PubMedCrossRef Molenaar JJ et al (2012) LIN28B induces neuroblastoma and enhances MYCN levels via let-7 suppression. Nat Genet 44(11):1199–1206PubMedCrossRef
94.
go back to reference Fischer M et al (2006) Differential expression of neuronal genes defines subtypes of disseminated neuroblastoma with favorable and unfavorable outcome. Clin Cancer Res 12(17):5118–5128PubMedCrossRef Fischer M et al (2006) Differential expression of neuronal genes defines subtypes of disseminated neuroblastoma with favorable and unfavorable outcome. Clin Cancer Res 12(17):5118–5128PubMedCrossRef
95.
go back to reference Berwanger B et al (2002) Loss of a FYN-regulated differentiation and growth arrest pathway in advanced stage neuroblastoma. Cancer Cell 2(5):377–386PubMedCrossRef Berwanger B et al (2002) Loss of a FYN-regulated differentiation and growth arrest pathway in advanced stage neuroblastoma. Cancer Cell 2(5):377–386PubMedCrossRef
96.
go back to reference Oberthuer A et al (2006) Customized oligonucleotide microarray gene expression-based classification of neuroblastoma patients outperforms current clinical risk stratification. J Clin Oncol 24(31):5070–5078PubMedCrossRef Oberthuer A et al (2006) Customized oligonucleotide microarray gene expression-based classification of neuroblastoma patients outperforms current clinical risk stratification. J Clin Oncol 24(31):5070–5078PubMedCrossRef
97.
go back to reference Ohira M et al (2005) Expression profiling using a tumor-specific cDNA microarray predicts the prognosis of intermediate risk neuroblastomas. Cancer Cell 7(4):337–350PubMedCrossRef Ohira M et al (2005) Expression profiling using a tumor-specific cDNA microarray predicts the prognosis of intermediate risk neuroblastomas. Cancer Cell 7(4):337–350PubMedCrossRef
98.
go back to reference Wang Q et al (2006) Integrative genomics identifies distinct molecular classes of neuroblastoma and shows that multiple genes are targeted by regional alterations in DNA copy number. Cancer Res 66(12):6050–6062PubMedCrossRef Wang Q et al (2006) Integrative genomics identifies distinct molecular classes of neuroblastoma and shows that multiple genes are targeted by regional alterations in DNA copy number. Cancer Res 66(12):6050–6062PubMedCrossRef
99.
go back to reference Abel F et al (2011) A 6-gene signature identifies four molecular subgroups of neuroblastoma. Cancer Cell Int 11:9PubMedCrossRef Abel F et al (2011) A 6-gene signature identifies four molecular subgroups of neuroblastoma. Cancer Cell Int 11:9PubMedCrossRef
100.
go back to reference Fischer M et al (2009) Integrated genomic profiling identifies two distinct molecular subtypes with divergent outcome in neuroblastoma with loss of chromosome 11q. Oncogene 29:865–875PubMedCrossRef Fischer M et al (2009) Integrated genomic profiling identifies two distinct molecular subtypes with divergent outcome in neuroblastoma with loss of chromosome 11q. Oncogene 29:865–875PubMedCrossRef
101.
go back to reference Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75(5):843–854PubMedCrossRef Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75(5):843–854PubMedCrossRef
102.
go back to reference Hebert SS, De Strooper B (2007) Molecular biology. miRNAs in neurodegeneration. Science 317(5842):1179–1180 Hebert SS, De Strooper B (2007) Molecular biology. miRNAs in neurodegeneration. Science 317(5842):1179–1180
103.
go back to reference Iorio MV et al (2005) MicroRNA gene expression deregulation in human breast cancer. Cancer Res 65(16):7065–7070PubMedCrossRef Iorio MV et al (2005) MicroRNA gene expression deregulation in human breast cancer. Cancer Res 65(16):7065–7070PubMedCrossRef
104.
go back to reference Miska EA (2005) How microRNAs control cell division, differentiation and death. Curr Opin Genet Dev 15(5):563–568PubMedCrossRef Miska EA (2005) How microRNAs control cell division, differentiation and death. Curr Opin Genet Dev 15(5):563–568PubMedCrossRef
105.
go back to reference Kapsimali M et al (2007) MicroRNAs show a wide diversity of expression profiles in the developing and mature central nervous system. Genome Biol 8(8):R173PubMedCrossRef Kapsimali M et al (2007) MicroRNAs show a wide diversity of expression profiles in the developing and mature central nervous system. Genome Biol 8(8):R173PubMedCrossRef
106.
107.
go back to reference Schulte JH et al (2008) MYCN regulates oncogenic microRNAs in neuroblastoma. Int J Cancer 122(3):699–704PubMedCrossRef Schulte JH et al (2008) MYCN regulates oncogenic microRNAs in neuroblastoma. Int J Cancer 122(3):699–704PubMedCrossRef
108.
go back to reference Fontana L et al (2008) Antagomir-17-5p abolishes the growth of therapy-resistant neuroblastoma through p21 and BIM. PLoS One 3(5):e2236PubMedCrossRef Fontana L et al (2008) Antagomir-17-5p abolishes the growth of therapy-resistant neuroblastoma through p21 and BIM. PLoS One 3(5):e2236PubMedCrossRef
109.
go back to reference Mestdagh P et al (2010) The miR-17-92 microRNA cluster regulates multiple components of the TGF-beta pathway in neuroblastoma. Mol Cell 40(5):762–773PubMedCrossRef Mestdagh P et al (2010) The miR-17-92 microRNA cluster regulates multiple components of the TGF-beta pathway in neuroblastoma. Mol Cell 40(5):762–773PubMedCrossRef
110.
go back to reference De Brouwer S et al (2012) Dickkopf-3 is regulated by the MYCN-induced miR-17-92 cluster in neuroblastoma. Int J Cancer 130(11):2591–2598PubMedCrossRef De Brouwer S et al (2012) Dickkopf-3 is regulated by the MYCN-induced miR-17-92 cluster in neuroblastoma. Int J Cancer 130(11):2591–2598PubMedCrossRef
111.
go back to reference Buechner J et al (2011) Tumour-suppressor microRNAs let-7 and mir-101 target the proto-oncogene MYCN and inhibit cell proliferation in MYCN-amplified neuroblastoma. Br J Cancer 105(2):296–303PubMedCrossRef Buechner J et al (2011) Tumour-suppressor microRNAs let-7 and mir-101 target the proto-oncogene MYCN and inhibit cell proliferation in MYCN-amplified neuroblastoma. Br J Cancer 105(2):296–303PubMedCrossRef
112.
go back to reference Welch C, Chen Y, Stallings RL (2007) MicroRNA-34a functions as a potential tumor suppressor by inducing apoptosis in neuroblastoma cells. Oncogene 26(34):5017–5022PubMedCrossRef Welch C, Chen Y, Stallings RL (2007) MicroRNA-34a functions as a potential tumor suppressor by inducing apoptosis in neuroblastoma cells. Oncogene 26(34):5017–5022PubMedCrossRef
113.
go back to reference Tivnan A et al (2011) MicroRNA-34a is a potent tumor suppressor molecule in vivo in neuroblastoma. BMC Cancer 11:33PubMedCrossRef Tivnan A et al (2011) MicroRNA-34a is a potent tumor suppressor molecule in vivo in neuroblastoma. BMC Cancer 11:33PubMedCrossRef
114.
go back to reference Cole KA et al (2008) A functional screen identifies miR-34a as a candidate neuroblastoma tumor suppressor gene. Mol Cancer Res 6(5):735–742PubMedCrossRef Cole KA et al (2008) A functional screen identifies miR-34a as a candidate neuroblastoma tumor suppressor gene. Mol Cancer Res 6(5):735–742PubMedCrossRef
115.
go back to reference Lynch J et al (2012) MiRNA-335 suppresses neuroblastoma cell invasiveness by direct targeting of multiple genes from the non-canonical TGF-beta signalling pathway. Carcinogenesis 33(5):976–985PubMedCrossRef Lynch J et al (2012) MiRNA-335 suppresses neuroblastoma cell invasiveness by direct targeting of multiple genes from the non-canonical TGF-beta signalling pathway. Carcinogenesis 33(5):976–985PubMedCrossRef
116.
go back to reference Bray I et al (2011) MicroRNA-542-5p as a novel tumor suppressor in neuroblastoma. Cancer Lett 303(1):56–64PubMedCrossRef Bray I et al (2011) MicroRNA-542-5p as a novel tumor suppressor in neuroblastoma. Cancer Lett 303(1):56–64PubMedCrossRef
117.
go back to reference Laneve P et al (2007) The interplay between microRNAs and the neurotrophin receptor tropomyosin-related kinase C controls proliferation of human neuroblastoma cells. Proc Natl Acad Sci USA 104(19):7957–7962PubMedCrossRef Laneve P et al (2007) The interplay between microRNAs and the neurotrophin receptor tropomyosin-related kinase C controls proliferation of human neuroblastoma cells. Proc Natl Acad Sci USA 104(19):7957–7962PubMedCrossRef
118.
go back to reference Le MT et al (2009) MicroRNA-125b promotes neuronal differentiation in human cells by repressing multiple targets. Mol Cell Biol 29(19):5290–5305PubMedCrossRef Le MT et al (2009) MicroRNA-125b promotes neuronal differentiation in human cells by repressing multiple targets. Mol Cell Biol 29(19):5290–5305PubMedCrossRef
119.
go back to reference Foley NH et al (2011) MicroRNAs 10a and 10b are potent inducers of neuroblastoma cell differentiation through targeting of nuclear receptor corepressor 2. Cell Death Differ 18(7):1089–1098PubMedCrossRef Foley NH et al (2011) MicroRNAs 10a and 10b are potent inducers of neuroblastoma cell differentiation through targeting of nuclear receptor corepressor 2. Cell Death Differ 18(7):1089–1098PubMedCrossRef
120.
go back to reference Ryan J et al (2012) MicroRNA-204 increases sensitivity of neuroblastoma cells to cisplatin and is associated with a favourable clinical outcome. Br J Cancer 107(6):967–976PubMedCrossRef Ryan J et al (2012) MicroRNA-204 increases sensitivity of neuroblastoma cells to cisplatin and is associated with a favourable clinical outcome. Br J Cancer 107(6):967–976PubMedCrossRef
121.
go back to reference Calin GA et al (2004) Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci USA 101(9):2999–3004PubMedCrossRef Calin GA et al (2004) Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci USA 101(9):2999–3004PubMedCrossRef
122.
go back to reference Chang TC et al (2007) Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis. Mol Cell 26(5):745–752PubMedCrossRef Chang TC et al (2007) Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis. Mol Cell 26(5):745–752PubMedCrossRef
123.
124.
go back to reference Tivnan A et al (2012) Inhibition of neuroblastoma tumor growth by targeted delivery of microRNA-34a using anti-disialoganglioside GD2 coated nanoparticles. PLoS One 7(5):e38129PubMedCrossRef Tivnan A et al (2012) Inhibition of neuroblastoma tumor growth by targeted delivery of microRNA-34a using anti-disialoganglioside GD2 coated nanoparticles. PLoS One 7(5):e38129PubMedCrossRef
125.
go back to reference Bommer GT et al (2007) p53-mediated activation of miRNA34 candidate tumor-suppressor genes. Curr Biol 17(15):1298–1307PubMedCrossRef Bommer GT et al (2007) p53-mediated activation of miRNA34 candidate tumor-suppressor genes. Curr Biol 17(15):1298–1307PubMedCrossRef
126.
go back to reference Sun F et al (2008) Downregulation of CCND1 and CDK6 by miR-34a induces cell cycle arrest. FEBS Lett 582(10):1564–1568PubMedCrossRef Sun F et al (2008) Downregulation of CCND1 and CDK6 by miR-34a induces cell cycle arrest. FEBS Lett 582(10):1564–1568PubMedCrossRef
127.
go back to reference Atroshchenko ES et al (1991) Effect of xanthinol niacinate on the autoimmunity and capillary permeability in patients with stable stenocardia. Kardiologiia 31(3):18–21PubMed Atroshchenko ES et al (1991) Effect of xanthinol niacinate on the autoimmunity and capillary permeability in patients with stable stenocardia. Kardiologiia 31(3):18–21PubMed
128.
go back to reference Pang RT et al (2010) MicroRNA-34a suppresses invasion through downregulation of Notch1 and Jagged1 in cervical carcinoma and choriocarcinoma cells. Carcinogenesis 31(6):1037–1044PubMedCrossRef Pang RT et al (2010) MicroRNA-34a suppresses invasion through downregulation of Notch1 and Jagged1 in cervical carcinoma and choriocarcinoma cells. Carcinogenesis 31(6):1037–1044PubMedCrossRef
129.
go back to reference Brodeur GM et al (1988) International criteria for diagnosis, staging, and response to treatment in patients with neuroblastoma. J Clin Oncol 6(12):1874–1881PubMed Brodeur GM et al (1988) International criteria for diagnosis, staging, and response to treatment in patients with neuroblastoma. J Clin Oncol 6(12):1874–1881PubMed
130.
go back to reference Mestdagh P et al (2010) MYCN/c-MYC-induced microRNAs repress coding gene networks associated with poor outcome in MYCN/c-MYC-activated tumors. Oncogene 29(9):1394–1404PubMedCrossRef Mestdagh P et al (2010) MYCN/c-MYC-induced microRNAs repress coding gene networks associated with poor outcome in MYCN/c-MYC-activated tumors. Oncogene 29(9):1394–1404PubMedCrossRef
131.
go back to reference Murphy DM et al (2009) Global MYCN transcription factor binding analysis in neuroblastoma reveals association with distinct E-box motifs and regions of DNA hypermethylation. PLoS One 4(12):e8154PubMedCrossRef Murphy DM et al (2009) Global MYCN transcription factor binding analysis in neuroblastoma reveals association with distinct E-box motifs and regions of DNA hypermethylation. PLoS One 4(12):e8154PubMedCrossRef
132.
go back to reference Corcoran DL et al (2009) Features of mammalian microRNA promoters emerge from polymerase II chromatin immunoprecipitation data. PLoS One 4(4):e5279PubMedCrossRef Corcoran DL et al (2009) Features of mammalian microRNA promoters emerge from polymerase II chromatin immunoprecipitation data. PLoS One 4(4):e5279PubMedCrossRef
133.
go back to reference Shohet JM et al (2011) A genome-wide search for promoters that respond to increased MYCN reveals both new oncogenic and tumor suppressor microRNAs associated with aggressive neuroblastoma. Cancer Res 71(11):3841–3851PubMedCrossRef Shohet JM et al (2011) A genome-wide search for promoters that respond to increased MYCN reveals both new oncogenic and tumor suppressor microRNAs associated with aggressive neuroblastoma. Cancer Res 71(11):3841–3851PubMedCrossRef
134.
go back to reference Hayashita Y et al (2005) A polycistronic microRNA cluster, miR-17-92, is overexpressed in human lung cancers and enhances cell proliferation. Cancer Res 65(21):9628–9632PubMedCrossRef Hayashita Y et al (2005) A polycistronic microRNA cluster, miR-17-92, is overexpressed in human lung cancers and enhances cell proliferation. Cancer Res 65(21):9628–9632PubMedCrossRef
135.
go back to reference Busacca S et al (2009) MicroRNA signature of malignant mesothelioma with potential diagnostic and prognostic implications. Am J Respir Cell Mol Biol 42:312–319 Busacca S et al (2009) MicroRNA signature of malignant mesothelioma with potential diagnostic and prognostic implications. Am J Respir Cell Mol Biol 42:312–319
136.
go back to reference Yu Z et al (2008) A cyclin D1/microRNA 17/20 regulatory feedback loop in control of breast cancer cell proliferation. J Cell Biol 182(3):509–517PubMedCrossRef Yu Z et al (2008) A cyclin D1/microRNA 17/20 regulatory feedback loop in control of breast cancer cell proliferation. J Cell Biol 182(3):509–517PubMedCrossRef
137.
go back to reference Mraz M et al (2009) MicroRNAs in chronic lymphocytic leukemia pathogenesis and disease subtypes. Leuk Lymphoma 50(3):506–509PubMedCrossRef Mraz M et al (2009) MicroRNAs in chronic lymphocytic leukemia pathogenesis and disease subtypes. Leuk Lymphoma 50(3):506–509PubMedCrossRef
138.
go back to reference Takakura S et al (2008) Oncogenic role of miR-17-92 cluster in anaplastic thyroid cancer cells. Cancer Sci 99(6):1147–1154PubMedCrossRef Takakura S et al (2008) Oncogenic role of miR-17-92 cluster in anaplastic thyroid cancer cells. Cancer Sci 99(6):1147–1154PubMedCrossRef
139.
go back to reference O’Donnell KA et al (2005) c-Myc-regulated microRNAs modulate E2F1 expression. Nature 435(7043):839–843PubMedCrossRef O’Donnell KA et al (2005) c-Myc-regulated microRNAs modulate E2F1 expression. Nature 435(7043):839–843PubMedCrossRef
140.
go back to reference He L et al (2007) A microRNA component of the p53 tumour suppressor network. Nature 447(7148):1130–1134PubMedCrossRef He L et al (2007) A microRNA component of the p53 tumour suppressor network. Nature 447(7148):1130–1134PubMedCrossRef
141.
go back to reference Braun CJ et al (2008) p53-Responsive microRNAs 192 and 215 are capable of inducing cell cycle arrest. Cancer Res 68(24):10094–10104PubMedCrossRef Braun CJ et al (2008) p53-Responsive microRNAs 192 and 215 are capable of inducing cell cycle arrest. Cancer Res 68(24):10094–10104PubMedCrossRef
142.
go back to reference Sachdeva M et al (2009) p53 represses c-Myc through induction of the tumor suppressor miR-145. Proc Natl Acad Sci USA 106(9):3207–3212PubMedCrossRef Sachdeva M et al (2009) p53 represses c-Myc through induction of the tumor suppressor miR-145. Proc Natl Acad Sci USA 106(9):3207–3212PubMedCrossRef
143.
go back to reference Georges SA et al (2008) Coordinated regulation of cell cycle transcripts by p53-inducible microRNAs, miR-192 and miR-215. Cancer Res 68(24):10105–10112PubMedCrossRef Georges SA et al (2008) Coordinated regulation of cell cycle transcripts by p53-inducible microRNAs, miR-192 and miR-215. Cancer Res 68(24):10105–10112PubMedCrossRef
144.
145.
146.
go back to reference Carr-Wilkinson J et al (2010) High frequency of p53/MDM2/p14ARF pathway abnormalities in relapsed neuroblastoma. Clin Cancer Res 16(4):1108–1118PubMedCrossRef Carr-Wilkinson J et al (2010) High frequency of p53/MDM2/p14ARF pathway abnormalities in relapsed neuroblastoma. Clin Cancer Res 16(4):1108–1118PubMedCrossRef
147.
go back to reference Momand J et al (1992) The mdm-2 oncogene product forms a complex with the p53 protein and inhibits p53-mediated transactivation. Cell 69(7):1237–1245PubMedCrossRef Momand J et al (1992) The mdm-2 oncogene product forms a complex with the p53 protein and inhibits p53-mediated transactivation. Cell 69(7):1237–1245PubMedCrossRef
148.
go back to reference Slack A, Shohet JM (2005) MDM2 as a critical effector of the MYCN oncogene in tumorigenesis. Cell Cycle 4(7):857–860PubMedCrossRef Slack A, Shohet JM (2005) MDM2 as a critical effector of the MYCN oncogene in tumorigenesis. Cell Cycle 4(7):857–860PubMedCrossRef
149.
go back to reference Alaminos M et al (2004) Clustering of gene hypermethylation associated with clinical risk groups in neuroblastoma. J Natl Cancer Inst 96(16):1208–1219PubMedCrossRef Alaminos M et al (2004) Clustering of gene hypermethylation associated with clinical risk groups in neuroblastoma. J Natl Cancer Inst 96(16):1208–1219PubMedCrossRef
150.
go back to reference Astuti D et al (2001) RASSF1A promoter region CpG island hypermethylation in phaeochromocytomas and neuroblastoma tumours. Oncogene 20(51):7573–7577PubMedCrossRef Astuti D et al (2001) RASSF1A promoter region CpG island hypermethylation in phaeochromocytomas and neuroblastoma tumours. Oncogene 20(51):7573–7577PubMedCrossRef
151.
go back to reference Banelli B et al (2002) Expression and methylation of CASP8 in neuroblastoma: identification of a promoter region. Nat Med 8(12):1333–1335 (author reply 1335) Banelli B et al (2002) Expression and methylation of CASP8 in neuroblastoma: identification of a promoter region. Nat Med 8(12):1333–1335 (author reply 1335)
152.
go back to reference Yang Q et al (2007) Methylation of CASP8, DCR2, and HIN-1 in neuroblastoma is associated with poor outcome. Clin Cancer Res 13(11):3191–3197PubMedCrossRef Yang Q et al (2007) Methylation of CASP8, DCR2, and HIN-1 in neuroblastoma is associated with poor outcome. Clin Cancer Res 13(11):3191–3197PubMedCrossRef
153.
go back to reference van Noesel MM et al (2003) Clustering of hypermethylated genes in neuroblastoma. Genes Chromosomes Cancer 38(3):226–233PubMedCrossRef van Noesel MM et al (2003) Clustering of hypermethylated genes in neuroblastoma. Genes Chromosomes Cancer 38(3):226–233PubMedCrossRef
154.
go back to reference Decock A et al (2011) Neuroblastoma epigenetics: from candidate gene approaches to genome-wide screenings. Epigenetics 6(8):962–970PubMedCrossRef Decock A et al (2011) Neuroblastoma epigenetics: from candidate gene approaches to genome-wide screenings. Epigenetics 6(8):962–970PubMedCrossRef
155.
go back to reference Grau E et al (2011) Hypermethylation of apoptotic genes as independent prognostic factor in neuroblastoma disease. Mol Carcinog 50(3):153–162PubMedCrossRef Grau E et al (2011) Hypermethylation of apoptotic genes as independent prognostic factor in neuroblastoma disease. Mol Carcinog 50(3):153–162PubMedCrossRef
156.
go back to reference Michalowski MB et al (2008) Methylation of tumor-suppressor genes in neuroblastoma: the RASSF1A gene is almost always methylated in primary tumors. Pediatr Blood Cancer 50(1):29–32PubMedCrossRef Michalowski MB et al (2008) Methylation of tumor-suppressor genes in neuroblastoma: the RASSF1A gene is almost always methylated in primary tumors. Pediatr Blood Cancer 50(1):29–32PubMedCrossRef
157.
go back to reference Yagyu S et al (2008) Circulating methylated-DCR2 gene in serum as an indicator of prognosis and therapeutic efficacy in patients with MYCN nonamplified neuroblastoma. Clin Cancer Res 14(21):7011–7019PubMedCrossRef Yagyu S et al (2008) Circulating methylated-DCR2 gene in serum as an indicator of prognosis and therapeutic efficacy in patients with MYCN nonamplified neuroblastoma. Clin Cancer Res 14(21):7011–7019PubMedCrossRef
158.
go back to reference Das S et al (2010) MicroRNA mediates DNA demethylation events triggered by retinoic acid during neuroblastoma cell differentiation. Cancer Res 70(20):7874–7881PubMedCrossRef Das S et al (2010) MicroRNA mediates DNA demethylation events triggered by retinoic acid during neuroblastoma cell differentiation. Cancer Res 70(20):7874–7881PubMedCrossRef
159.
go back to reference Kunej T et al (2011) Epigenetic regulation of microRNAs in cancer: an integrated review of literature. Mutat Res 717(1–2):77–84PubMed Kunej T et al (2011) Epigenetic regulation of microRNAs in cancer: an integrated review of literature. Mutat Res 717(1–2):77–84PubMed
160.
go back to reference Das S et al (2012) Modulation of neuroblastoma disease pathogenesis by an extensive network of epigenetically regulated microRNAs. Oncogene Das S et al (2012) Modulation of neuroblastoma disease pathogenesis by an extensive network of epigenetically regulated microRNAs. Oncogene
161.
go back to reference Michlewski G et al (2008) Posttranscriptional regulation of miRNAs harboring conserved terminal loops. Mol Cell 32(3):383–393PubMedCrossRef Michlewski G et al (2008) Posttranscriptional regulation of miRNAs harboring conserved terminal loops. Mol Cell 32(3):383–393PubMedCrossRef
162.
go back to reference Moss EG, Lee RC, Ambros V (1997) The cold shock domain protein LIN-28 controls developmental timing in C. elegans and is regulated by the lin-4 RNA. Cell 88(5):637–646PubMedCrossRef Moss EG, Lee RC, Ambros V (1997) The cold shock domain protein LIN-28 controls developmental timing in C. elegans and is regulated by the lin-4 RNA. Cell 88(5):637–646PubMedCrossRef
163.
go back to reference Boyerinas B et al (2008) Identification of let-7-regulated oncofetal genes. Cancer Res 68(8):2587–2591PubMedCrossRef Boyerinas B et al (2008) Identification of let-7-regulated oncofetal genes. Cancer Res 68(8):2587–2591PubMedCrossRef
164.
go back to reference Rybak A et al (2008) A feedback loop comprising lin-28 and let-7 controls pre-let-7 maturation during neural stem-cell commitment. Nat Cell Biol 10(8):987–993PubMedCrossRef Rybak A et al (2008) A feedback loop comprising lin-28 and let-7 controls pre-let-7 maturation during neural stem-cell commitment. Nat Cell Biol 10(8):987–993PubMedCrossRef
165.
go back to reference Richards M et al (2004) The transcriptome profile of human embryonic stem cells as defined by SAGE. Stem Cells 22(1):51–64PubMedCrossRef Richards M et al (2004) The transcriptome profile of human embryonic stem cells as defined by SAGE. Stem Cells 22(1):51–64PubMedCrossRef
166.
go back to reference Viswanathan SR, Daley GQ, Gregory RI (2008) Selective blockade of microRNA processing by Lin28. Science 320(5872):97–100PubMedCrossRef Viswanathan SR, Daley GQ, Gregory RI (2008) Selective blockade of microRNA processing by Lin28. Science 320(5872):97–100PubMedCrossRef
167.
go back to reference Newman MA, Thomson JM, Hammond SM (2008) Lin-28 interaction with the Let-7 precursor loop mediates regulated microRNA processing. RNA 14(8):1539–1549PubMedCrossRef Newman MA, Thomson JM, Hammond SM (2008) Lin-28 interaction with the Let-7 precursor loop mediates regulated microRNA processing. RNA 14(8):1539–1549PubMedCrossRef
168.
go back to reference Piskounova E et al (2011) Lin28A and Lin28B inhibit let-7 microRNA biogenesis by distinct mechanisms. Cell 147(5):1066–1079PubMedCrossRef Piskounova E et al (2011) Lin28A and Lin28B inhibit let-7 microRNA biogenesis by distinct mechanisms. Cell 147(5):1066–1079PubMedCrossRef
169.
go back to reference Heo I et al (2009) TUT4 in concert with Lin28 suppresses microRNA biogenesis through pre-microRNA uridylation. Cell 138(4):696–708PubMedCrossRef Heo I et al (2009) TUT4 in concert with Lin28 suppresses microRNA biogenesis through pre-microRNA uridylation. Cell 138(4):696–708PubMedCrossRef
170.
go back to reference Lehrbach NJ et al (2009) LIN-28 and the poly(U) polymerase PUP-2 regulate let-7 microRNA processing in Caenorhabditis elegans. Nat Struct Mol Biol 16(10):1016–1020PubMedCrossRef Lehrbach NJ et al (2009) LIN-28 and the poly(U) polymerase PUP-2 regulate let-7 microRNA processing in Caenorhabditis elegans. Nat Struct Mol Biol 16(10):1016–1020PubMedCrossRef
171.
go back to reference Hagan JP, Piskounova E, Gregory RI (2009) Lin28 recruits the TUTase Zcchc11 to inhibit let-7 maturation in mouse embryonic stem cells. Nat Struct Mol Biol 16(10):1021–1025PubMedCrossRef Hagan JP, Piskounova E, Gregory RI (2009) Lin28 recruits the TUTase Zcchc11 to inhibit let-7 maturation in mouse embryonic stem cells. Nat Struct Mol Biol 16(10):1021–1025PubMedCrossRef
172.
go back to reference Yu J et al (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318(5858):1917–1920PubMedCrossRef Yu J et al (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318(5858):1917–1920PubMedCrossRef
173.
go back to reference Viswanathan SR et al (2009) Lin28 promotes transformation and is associated with advanced human malignancies. Nat Genet 41(7):843–848PubMedCrossRef Viswanathan SR et al (2009) Lin28 promotes transformation and is associated with advanced human malignancies. Nat Genet 41(7):843–848PubMedCrossRef
174.
go back to reference Iliopoulos D, Hirsch HA, Struhl K (2009) An epigenetic switch involving NF-kappaB, Lin28, Let-7 MicroRNA, and IL6 links inflammation to cell transformation. Cell 139(4):693–706PubMedCrossRef Iliopoulos D, Hirsch HA, Struhl K (2009) An epigenetic switch involving NF-kappaB, Lin28, Let-7 MicroRNA, and IL6 links inflammation to cell transformation. Cell 139(4):693–706PubMedCrossRef
175.
go back to reference King CE et al (2011) LIN28B promotes colon cancer progression and metastasis. Cancer Res 71(12):4260–4268PubMedCrossRef King CE et al (2011) LIN28B promotes colon cancer progression and metastasis. Cancer Res 71(12):4260–4268PubMedCrossRef
176.
177.
go back to reference Calin GA et al (2007) Ultraconserved regions encoding ncRNAs are altered in human leukemias and carcinomas. Cancer Cell 12(3):215–229PubMedCrossRef Calin GA et al (2007) Ultraconserved regions encoding ncRNAs are altered in human leukemias and carcinomas. Cancer Cell 12(3):215–229PubMedCrossRef
178.
go back to reference Mestdagh P et al (2010) An integrative genomics screen uncovers ncRNA T-UCR functions in neuroblastoma tumours. Oncogene 29(24):3583–3592PubMedCrossRef Mestdagh P et al (2010) An integrative genomics screen uncovers ncRNA T-UCR functions in neuroblastoma tumours. Oncogene 29(24):3583–3592PubMedCrossRef
179.
go back to reference Scaruffi P et al (2009) Transcribed-ultra conserved region expression is associated with outcome in high-risk neuroblastoma. BMC Cancer 9:441PubMedCrossRef Scaruffi P et al (2009) Transcribed-ultra conserved region expression is associated with outcome in high-risk neuroblastoma. BMC Cancer 9:441PubMedCrossRef
180.
go back to reference Yu M et al (2009) High expression of ncRAN, a novel non-coding RNA mapped to chromosome 17q25.1, is associated with poor prognosis in neuroblastoma. Int J Oncol 34(4):931–938PubMed Yu M et al (2009) High expression of ncRAN, a novel non-coding RNA mapped to chromosome 17q25.1, is associated with poor prognosis in neuroblastoma. Int J Oncol 34(4):931–938PubMed
181.
go back to reference Voth H et al (2007) Identification of DEIN, a novel gene with high expression levels in stage IVS neuroblastoma. Mol Cancer Res 5(12):1276–1284PubMedCrossRef Voth H et al (2007) Identification of DEIN, a novel gene with high expression levels in stage IVS neuroblastoma. Mol Cancer Res 5(12):1276–1284PubMedCrossRef
182.
go back to reference Chooniedass-Kothari S et al (2004) The steroid receptor RNA activator is the first functional RNA encoding a protein. FEBS Lett 566(1–3):43–47PubMedCrossRef Chooniedass-Kothari S et al (2004) The steroid receptor RNA activator is the first functional RNA encoding a protein. FEBS Lett 566(1–3):43–47PubMedCrossRef
183.
go back to reference Candeias MM et al (2008) P53 mRNA controls p53 activity by managing Mdm2 functions. Nat Cell Biol 10(9):1098–1105PubMedCrossRef Candeias MM et al (2008) P53 mRNA controls p53 activity by managing Mdm2 functions. Nat Cell Biol 10(9):1098–1105PubMedCrossRef
184.
go back to reference Gupta RA et al (2010) Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature 464(7291):1071–1076PubMedCrossRef Gupta RA et al (2010) Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature 464(7291):1071–1076PubMedCrossRef
185.
go back to reference Rinn JL et al (2007) Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell 129(7):1311–1323PubMedCrossRef Rinn JL et al (2007) Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell 129(7):1311–1323PubMedCrossRef
186.
go back to reference Abel F et al (2004) Mutations in the N-terminal domain of DFF45 in a primary germ cell tumor and in neuroblastoma tumors. Int J Oncol 25(5):1297–1302PubMed Abel F et al (2004) Mutations in the N-terminal domain of DFF45 in a primary germ cell tumor and in neuroblastoma tumors. Int J Oncol 25(5):1297–1302PubMed
187.
go back to reference le Nguyen B et al (2011) Phenotype restricted genome-wide association study using a gene-centric approach identifies three low-risk neuroblastoma susceptibility loci. PLoS Genet 7(3):e1002026CrossRef le Nguyen B et al (2011) Phenotype restricted genome-wide association study using a gene-centric approach identifies three low-risk neuroblastoma susceptibility loci. PLoS Genet 7(3):e1002026CrossRef
188.
go back to reference Duijkers FA et al (2012) High anaplastic lymphoma kinase immunohistochemical staining in neuroblastoma and ganglioneuroblastoma is an independent predictor of poor outcome. Am J Pathol 180(3):1223–1231PubMedCrossRef Duijkers FA et al (2012) High anaplastic lymphoma kinase immunohistochemical staining in neuroblastoma and ganglioneuroblastoma is an independent predictor of poor outcome. Am J Pathol 180(3):1223–1231PubMedCrossRef
189.
go back to reference Bourdeaut F et al (2012) ALK germline mutations in patients with neuroblastoma: a rare and weakly penetrant syndrome. Eur J Hum Genet 20(3):291–297PubMedCrossRef Bourdeaut F et al (2012) ALK germline mutations in patients with neuroblastoma: a rare and weakly penetrant syndrome. Eur J Hum Genet 20(3):291–297PubMedCrossRef
190.
go back to reference de Pontual L et al (2011) Germline gain-of-function mutations of ALK disrupt central nervous system development. Hum Mutat 32(3):272–276PubMedCrossRef de Pontual L et al (2011) Germline gain-of-function mutations of ALK disrupt central nervous system development. Hum Mutat 32(3):272–276PubMedCrossRef
191.
go back to reference Devoto M et al (2011) Genome-wide linkage analysis to identify genetic modifiers of ALK mutation penetrance in familial neuroblastoma. Hum Hered 71(2):135–139PubMedCrossRef Devoto M et al (2011) Genome-wide linkage analysis to identify genetic modifiers of ALK mutation penetrance in familial neuroblastoma. Hum Hered 71(2):135–139PubMedCrossRef
192.
go back to reference Passoni L et al (2009) Mutation-independent anaplastic lymphoma kinase overexpression in poor prognosis neuroblastoma patients. Cancer Res 69(18):7338–7346PubMedCrossRef Passoni L et al (2009) Mutation-independent anaplastic lymphoma kinase overexpression in poor prognosis neuroblastoma patients. Cancer Res 69(18):7338–7346PubMedCrossRef
193.
go back to reference Caren H et al (2008) High incidence of DNA mutations and gene amplifications of the ALK gene in advanced sporadic neuroblastoma tumours. Biochem J 416(2):153–159PubMedCrossRef Caren H et al (2008) High incidence of DNA mutations and gene amplifications of the ALK gene in advanced sporadic neuroblastoma tumours. Biochem J 416(2):153–159PubMedCrossRef
194.
go back to reference Janoueix-Lerosey I et al (2008) Somatic and germline activating mutations of the ALK kinase receptor in neuroblastoma. Nature 455(7215):967–970PubMedCrossRef Janoueix-Lerosey I et al (2008) Somatic and germline activating mutations of the ALK kinase receptor in neuroblastoma. Nature 455(7215):967–970PubMedCrossRef
195.
go back to reference George RE et al (2007) Genome-wide analysis of neuroblastomas using high-density single nucleotide polymorphism arrays. PLoS One 2(2):e255PubMedCrossRef George RE et al (2007) Genome-wide analysis of neuroblastomas using high-density single nucleotide polymorphism arrays. PLoS One 2(2):e255PubMedCrossRef
196.
go back to reference Schulte JH et al (2011) High ALK receptor tyrosine kinase expression supersedes ALK mutation as a determining factor of an unfavorable phenotype in primary neuroblastoma. Clin Cancer Res 17(15):5082–5092PubMedCrossRef Schulte JH et al (2011) High ALK receptor tyrosine kinase expression supersedes ALK mutation as a determining factor of an unfavorable phenotype in primary neuroblastoma. Clin Cancer Res 17(15):5082–5092PubMedCrossRef
197.
go back to reference Shukla N et al (2012) Oncogene mutation profiling of pediatric solid tumors reveals significant subsets of embryonal rhabdomyosarcoma and neuroblastoma with mutated genes in growth signaling pathways. Clin Cancer Res 18(3):748–757PubMedCrossRef Shukla N et al (2012) Oncogene mutation profiling of pediatric solid tumors reveals significant subsets of embryonal rhabdomyosarcoma and neuroblastoma with mutated genes in growth signaling pathways. Clin Cancer Res 18(3):748–757PubMedCrossRef
198.
go back to reference Perri P et al (2005) PHOX2B mutations and genetic predisposition to neuroblastoma. Oncogene 24(18):3050–3053PubMedCrossRef Perri P et al (2005) PHOX2B mutations and genetic predisposition to neuroblastoma. Oncogene 24(18):3050–3053PubMedCrossRef
199.
go back to reference Bourdeaut F et al (2005) Germline mutations of the paired-like homeobox 2B (PHOX2B) gene in neuroblastoma. Cancer Lett 228(1–2):51–58PubMedCrossRef Bourdeaut F et al (2005) Germline mutations of the paired-like homeobox 2B (PHOX2B) gene in neuroblastoma. Cancer Lett 228(1–2):51–58PubMedCrossRef
200.
go back to reference McConville C et al (2006) PHOX2B analysis in non-syndromic neuroblastoma cases shows novel mutations and genotype-phenotype associations. Am J Med Genet A 140(12):1297–1301PubMed McConville C et al (2006) PHOX2B analysis in non-syndromic neuroblastoma cases shows novel mutations and genotype-phenotype associations. Am J Med Genet A 140(12):1297–1301PubMed
201.
go back to reference Ghiorzo P et al (2006) Impact of E27X, a novel CDKN2A germ line mutation, on p16 and p14ARF expression in Italian melanoma families displaying pancreatic cancer and neuroblastoma. Hum Mol Genet 15(18):2682–2689PubMedCrossRef Ghiorzo P et al (2006) Impact of E27X, a novel CDKN2A germ line mutation, on p16 and p14ARF expression in Italian melanoma families displaying pancreatic cancer and neuroblastoma. Hum Mol Genet 15(18):2682–2689PubMedCrossRef
202.
go back to reference Obana K et al (2003) Aberrations of p16INK4A, p14ARF and p15INK4B genes in pediatric solid tumors. Int J Oncol 23(4):1151–1157PubMed Obana K et al (2003) Aberrations of p16INK4A, p14ARF and p15INK4B genes in pediatric solid tumors. Int J Oncol 23(4):1151–1157PubMed
203.
go back to reference Caren H et al (2008) High-resolution array copy number analyses for detection of deletion, gain, amplification and copy-neutral LOH in primary neuroblastoma tumors: four cases of homozygous deletions of the CDKN2A gene. BMC Genomics 9:353PubMedCrossRef Caren H et al (2008) High-resolution array copy number analyses for detection of deletion, gain, amplification and copy-neutral LOH in primary neuroblastoma tumors: four cases of homozygous deletions of the CDKN2A gene. BMC Genomics 9:353PubMedCrossRef
204.
go back to reference Omura-Minamisawa M et al (2001) p16/p14(ARF) cell cycle regulatory pathways in primary neuroblastoma: p16 expression is associated with advanced stage disease. Clin Cancer Res 7(11):3481–3490PubMed Omura-Minamisawa M et al (2001) p16/p14(ARF) cell cycle regulatory pathways in primary neuroblastoma: p16 expression is associated with advanced stage disease. Clin Cancer Res 7(11):3481–3490PubMed
205.
go back to reference Molenaar JJ et al (2003) Rearrangements and increased expression of cyclin D1 (CCND1) in neuroblastoma. Genes Chromosomes Cancer 36(3):242–249PubMedCrossRef Molenaar JJ et al (2003) Rearrangements and increased expression of cyclin D1 (CCND1) in neuroblastoma. Genes Chromosomes Cancer 36(3):242–249PubMedCrossRef
206.
go back to reference Martinelli S et al (2006) Activating PTPN11 mutations play a minor role in pediatric and adult solid tumors. Cancer Genet Cytogenet 166(2):124–129PubMedCrossRef Martinelli S et al (2006) Activating PTPN11 mutations play a minor role in pediatric and adult solid tumors. Cancer Genet Cytogenet 166(2):124–129PubMedCrossRef
207.
go back to reference Mutesa L et al (2008) Germline PTPN11 missense mutation in a case of Noonan syndrome associated with mediastinal and retroperitoneal neuroblastic tumors. Cancer Genet Cytogenet 182(1):40–42PubMedCrossRef Mutesa L et al (2008) Germline PTPN11 missense mutation in a case of Noonan syndrome associated with mediastinal and retroperitoneal neuroblastic tumors. Cancer Genet Cytogenet 182(1):40–42PubMedCrossRef
208.
go back to reference Origone P et al (2003) Homozygous inactivation of NF1 gene in a patient with familial NF1 and disseminated neuroblastoma. Am J Med Genet A 118A(4):309–313PubMedCrossRef Origone P et al (2003) Homozygous inactivation of NF1 gene in a patient with familial NF1 and disseminated neuroblastoma. Am J Med Genet A 118A(4):309–313PubMedCrossRef
209.
go back to reference Kong XT et al (1997) Expression and mutational analysis of the DCC, DPC4, and MADR2/JV18-1 genes in neuroblastoma. Cancer Res 57(17):3772–3778PubMed Kong XT et al (1997) Expression and mutational analysis of the DCC, DPC4, and MADR2/JV18-1 genes in neuroblastoma. Cancer Res 57(17):3772–3778PubMed
210.
go back to reference Foley NH et al (2010) MicroRNA-184 inhibits neuroblastoma cell survival through targeting the serine/threonine kinase AKT2. Mol Cancer 9:83PubMedCrossRef Foley NH et al (2010) MicroRNA-184 inhibits neuroblastoma cell survival through targeting the serine/threonine kinase AKT2. Mol Cancer 9:83PubMedCrossRef
211.
212.
go back to reference Evangelisti C et al (2009) MiR-128 up-regulation inhibits Reelin and DCX expression and reduces neuroblastoma cell motility and invasiveness. FASEB J 23(12):4276–4287PubMedCrossRef Evangelisti C et al (2009) MiR-128 up-regulation inhibits Reelin and DCX expression and reduces neuroblastoma cell motility and invasiveness. FASEB J 23(12):4276–4287PubMedCrossRef
213.
go back to reference Lin RJ, Lin YC, Yu AL (2010) miR-149* induces apoptosis by inhibiting Akt1 and E2F1 in human cancer cells. Mol Carcinog 49(8):719–727PubMed Lin RJ, Lin YC, Yu AL (2010) miR-149* induces apoptosis by inhibiting Akt1 and E2F1 in human cancer cells. Mol Carcinog 49(8):719–727PubMed
214.
go back to reference Chen H et al (2010) miR-7 and miR-214 are specifically expressed during neuroblastoma differentiation, cortical development and embryonic stem cells differentiation, and control neurite outgrowth in vitro. Biochem Biophys Res Commun 394(4):921–927PubMedCrossRef Chen H et al (2010) miR-7 and miR-214 are specifically expressed during neuroblastoma differentiation, cortical development and embryonic stem cells differentiation, and control neurite outgrowth in vitro. Biochem Biophys Res Commun 394(4):921–927PubMedCrossRef
215.
go back to reference Meseguer S et al (2011) MicroRNAs-10a and -10b contribute to retinoic acid-induced differentiation of neuroblastoma cells and target the alternative splicing regulatory factor SFRS1 (SF2/ASF). J Biol Chem 286(6):4150–4164PubMedCrossRef Meseguer S et al (2011) MicroRNAs-10a and -10b contribute to retinoic acid-induced differentiation of neuroblastoma cells and target the alternative splicing regulatory factor SFRS1 (SF2/ASF). J Biol Chem 286(6):4150–4164PubMedCrossRef
216.
go back to reference Haug BH et al (2011) MYCN-regulated miRNA-92 inhibits secretion of the tumor suppressor DICKKOPF-3 (DKK3) in neuroblastoma. Carcinogenesis 32(7):1005–1012PubMedCrossRef Haug BH et al (2011) MYCN-regulated miRNA-92 inhibits secretion of the tumor suppressor DICKKOPF-3 (DKK3) in neuroblastoma. Carcinogenesis 32(7):1005–1012PubMedCrossRef
217.
go back to reference Huang TC et al (2011) Silencing of miR-124 induces neuroblastoma SK-N-SH cell differentiation, cell cycle arrest and apoptosis through promoting AHR. FEBS Lett 585(22):3582–3586PubMedCrossRef Huang TC et al (2011) Silencing of miR-124 induces neuroblastoma SK-N-SH cell differentiation, cell cycle arrest and apoptosis through promoting AHR. FEBS Lett 585(22):3582–3586PubMedCrossRef
218.
go back to reference Makeyev EV et al (2007) The microRNA miR-124 promotes neuronal differentiation by triggering brain-specific alternative pre-mRNA splicing. Mol Cell 27(3):435–448PubMedCrossRef Makeyev EV et al (2007) The microRNA miR-124 promotes neuronal differentiation by triggering brain-specific alternative pre-mRNA splicing. Mol Cell 27(3):435–448PubMedCrossRef
219.
go back to reference Lee JJ et al (2012) MiR-27b targets PPARgamma to inhibit growth, tumor progression and the inflammatory response in neuroblastoma cells. Oncogene 31(33):3818–3825PubMedCrossRef Lee JJ et al (2012) MiR-27b targets PPARgamma to inhibit growth, tumor progression and the inflammatory response in neuroblastoma cells. Oncogene 31(33):3818–3825PubMedCrossRef
220.
go back to reference Xu H et al (2009) MicroRNA miR-29 modulates expression of immunoinhibitory molecule B7–H3: potential implications for immune based therapy of human solid tumors. Cancer Res 69(15):6275–6281PubMedCrossRef Xu H et al (2009) MicroRNA miR-29 modulates expression of immunoinhibitory molecule B7–H3: potential implications for immune based therapy of human solid tumors. Cancer Res 69(15):6275–6281PubMedCrossRef
221.
go back to reference Annibali D et al (2012) A new module in neural differentiation control: two microRNAs upregulated by retinoic acid, miR-9 and -103, target the differentiation inhibitor ID2. PLoS One 7(7):e40269PubMedCrossRef Annibali D et al (2012) A new module in neural differentiation control: two microRNAs upregulated by retinoic acid, miR-9 and -103, target the differentiation inhibitor ID2. PLoS One 7(7):e40269PubMedCrossRef
222.
go back to reference Zhang H et al (2012) MicroRNA-9 targets matrix metalloproteinase 14 to inhibit invasion, metastasis, and angiogenesis of neuroblastoma cells. Mol Cancer Ther 11(7):1454–1466PubMedCrossRef Zhang H et al (2012) MicroRNA-9 targets matrix metalloproteinase 14 to inhibit invasion, metastasis, and angiogenesis of neuroblastoma cells. Mol Cancer Ther 11(7):1454–1466PubMedCrossRef
223.
go back to reference Moncini S et al (2011) The role of miR-103 and miR-107 in regulation of CDK5R1 expression and in cellular migration. PLoS ONE 6(5):e20038PubMedCrossRef Moncini S et al (2011) The role of miR-103 and miR-107 in regulation of CDK5R1 expression and in cellular migration. PLoS ONE 6(5):e20038PubMedCrossRef
224.
go back to reference Afanasyeva EA et al (2011) MicroRNA miR-885-5p targets CDK2 and MCM5, activates p53 and inhibits proliferation and survival. Cell Death Differ 18(6):974–984PubMedCrossRef Afanasyeva EA et al (2011) MicroRNA miR-885-5p targets CDK2 and MCM5, activates p53 and inhibits proliferation and survival. Cell Death Differ 18(6):974–984PubMedCrossRef
225.
go back to reference Beveridge NJ et al (2009) Down-regulation of miR-17 family expression in response to retinoic acid induced neuronal differentiation. Cell Signal 21(12):1837–1845PubMedCrossRef Beveridge NJ et al (2009) Down-regulation of miR-17 family expression in response to retinoic acid induced neuronal differentiation. Cell Signal 21(12):1837–1845PubMedCrossRef
226.
go back to reference Loven J et al (2010) MYCN-regulated microRNAs repress estrogen receptor-alpha (ESR1) expression and neuronal differentiation in human neuroblastoma. Proc Natl Acad Sci USA 107(4):1553–1558PubMedCrossRef Loven J et al (2010) MYCN-regulated microRNAs repress estrogen receptor-alpha (ESR1) expression and neuronal differentiation in human neuroblastoma. Proc Natl Acad Sci USA 107(4):1553–1558PubMedCrossRef
227.
go back to reference Chayka O et al (2009) Clusterin, a haploinsufficient tumor suppressor gene in neuroblastomas. J Natl Cancer Inst 101(9):663–677PubMedCrossRef Chayka O et al (2009) Clusterin, a haploinsufficient tumor suppressor gene in neuroblastomas. J Natl Cancer Inst 101(9):663–677PubMedCrossRef
Metadata
Title
The role of genetic and epigenetic alterations in neuroblastoma disease pathogenesis
Authors
Raquel Domingo-Fernandez
Karen Watters
Olga Piskareva
Raymond L. Stallings
Isabella Bray
Publication date
01-02-2013
Publisher
Springer-Verlag
Published in
Pediatric Surgery International / Issue 2/2013
Print ISSN: 0179-0358
Electronic ISSN: 1437-9813
DOI
https://doi.org/10.1007/s00383-012-3239-7

Other articles of this Issue 2/2013

Pediatric Surgery International 2/2013 Go to the issue

Letter to the Editor

Our response to Letter