Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

MiR-27b targets PPARγ to inhibit growth, tumor progression and the inflammatory response in neuroblastoma cells

Abstract

The peroxisome proliferators-activated receptor (PPAR)γ pathway is involved in cancer, but it appears to have both tumor suppressor and oncogenic functions. In neuroblastoma cells, miR-27b targets the 3′ untranslated region of PPARγ and inhibits its mRNA and protein expression. miR-27b overexpression or PPARγ inhibition blocks cell growth in vitro and tumor growth in mouse xenografts. PPARγ activates expression of the pH regulator NHE1, which is associated with tumor progression. Lastly, miR-27b through PPARγ regulates nuclear factor-κB activity and transcription of inflammatory target genes. Thus, in neuroblastoma, miR-27b functions as a tumor suppressor by inhibiting the tumor-promoting function of PPARγ, which triggers an increased inflammatory response. In contrast, in breast cancer cells, PPARγ inhibits NHE1 expression and the inflammatory response, and it functions as a tumor suppressor. We suggest that the ability of PPARγ to promote or suppress tumor formation is linked to cell type-specific differences in regulation of NHE1 and other target genes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Abe A, Kiriyama Y, Hirano M, Miura T, Kamiya H, Harashima H et al. (2002). Troglitazone suppresses cell growth of KU812 cells independently of PPARgamma. Eur J Pharmacol 436: 7–13.

    Article  CAS  PubMed  Google Scholar 

  • Aziz N, Cherwinski H, McMahon M . (1999). Complementation of defective colony-stimulating factor 1 receptor signaling and mitogenesis by Raf and v-Src. Mol Cell Biol 19: 1101–1115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Balkwill F, Mantovani A . (2001). Inflammation and cancer: back to Virchow? Lancet 357: 539–545.

    Article  CAS  PubMed  Google Scholar 

  • Bartel DP . (2009). MicroRNAs: target recognition and regulatory functions. Cell 136: 215–233.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Braun J, Hoang-Vu C, Dralle H, Huttelmaier S . (2010). Downregulation of microRNAs directs the EMT and invasive potential of anaplastic thyroid carcinomas. Oncogene 29: 4237–4244.

    Article  CAS  PubMed  Google Scholar 

  • Burton JD, Goldenberg DM, Blumenthal RD . (2008). Potential of peroxisome proliferator-activated receptor gamma antagonist compounds as therapeutic agents for a wide range of cancer types. PPAR Res 2008: 494161.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cellai I, Benvenuti S, Luciani P, Galli A, Ceni E, Simi L et al. (2006). Antineoplastic effects of rosiglitazone and PPARgamma transactivation in neuroblastoma cells. Br J Cancer 95: 879–888.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cellai I, Petrangolini G, Tortoreto M, Pratesi G, Luciani P, Deledda C et al. (2010). In vivo effects of rosiglitazone in a human neuroblastoma xenograft. Br J Cancer 102: 685–692.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chattopadhyay N, Singh DP, Heese O, Godbole MM, Sinohara T, Black PM et al. (2000). Expression of peroxisome proliferator-activated receptors (PPARS) in human astrocytic cells: PPARgamma agonists as inducers of apoptosis. J Neurosci Res 61: 67–74.

    Article  CAS  PubMed  Google Scholar 

  • Chung SW, Kang BY, Kim SH, Pak YK, Cho D, Trinchieri G et al. (2000). Oxidized low density lipoprotein inhibits interleukin-12 production in lipopolysaccharide-activated mouse macrophages via direct interactions between peroxisome proliferator-activated receptor-gamma and nuclear factor-kappa B. J Biol Chem 275: 32681–32687.

    Article  CAS  PubMed  Google Scholar 

  • Croce CM . (2009). Causes and consequences of microRNA dysregulation in cancer. Nat Rev Genet 10: 704–714.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cui Y, Miyoshi K, Claudio E, Siebenlist UK, Gonzalez FJ, Flaws J et al. (2002). Loss of the peroxisome proliferation-activated receptor gamma (PPARgamma) does not affect mammary development and propensity for tumor formation but leads to reduced fertility. J Biol Chem 277: 17830–17835.

    Article  CAS  PubMed  Google Scholar 

  • Girnun GD, Smith WM, Drori S, Sarraf P, Mueller E, Eng C et al. (2002). APC-dependent suppression of colon carcinogenesis by PPARgamma. Proc Natl Acad Sci USA 99: 13771–13776.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hagag N, Lacal JC, Graber M, Aaronson S, Viola MV . (1987). Microinjection of ras p21 induces a rapid rise in intracellular pH. Mol Cell Biol 7: 1984–1988.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han S, Roman J . (2007). Peroxisome proliferator-activated receptor gamma: a novel target for cancer therapeutics? Anticancer Drugs 18: 237–244.

    Article  CAS  PubMed  Google Scholar 

  • Han SW, Greene ME, Pitts J, Wada RK, Sidell N . (2001). Novel expression and function of peroxisome proliferator-activated receptor gamma (PPARgamma) in human neuroblastoma cells. Clin Cancer Res 7: 98–104.

    CAS  PubMed  Google Scholar 

  • Hirsch HA, Iliopoulos D, Joshi A, Zhang Y, Jaeger SA, Bulyk M et al. (2010). A transcriptional signature and common gene networks link cancer with lipid metabolism and diverse human diseases. Cancer Cell 17: 348–361.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hirsch HA, Iliopoulos D, Tsichlis PN, Struhl K . (2009). Metformin selectively targets cancer stem cells and acts together with chemotherapy to blocks tumor growth and prolong remission. Cancer Res 69: 7507–7511.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iliopoulos D, Hirsch HA, Struhl K . (2009). An epigenetic switch involving NF-kB, lin 28, let-7 microRNA, and IL6 links inflammation to cell transformation. Cell 139: 693–706.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jennewein C, von Knethen A, Schmid T, Brune B . (2010). MicroRNA-27b contributes to lipopolysaccharide-mediated peroxisome proliferator-activated receptor gamma (PPARgamma) mRNA destabilization. J Biol Chem 285: 11846–11853.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karbiener M, Fischer C, Nowitsch S, Opriessnig P, Papak C, Ailhaud G et al. (2009). microRNA miR-27b impairs human adipocyte differentiation and targets PPARgamma. Biochem Biophys Res Commun 390: 247–251.

    Article  CAS  PubMed  Google Scholar 

  • Karin M . (2006). Nuclear factor-kappaB in cancer development and progression. Nature 441: 431–436.

    Article  CAS  PubMed  Google Scholar 

  • Kim KY, Kim SS, Cheon HG . (2006). Differential anti-proliferative actions of peroxisome proliferator-activated receptor-gamma agonists in MCF-7 breast cancer cells. Biochem Pharmacol 72: 530–540.

    Article  CAS  PubMed  Google Scholar 

  • Kim SY, Kim AY, Lee HW, Son YH, Lee GY, Lee JW et al. (2010). miR-27a is a negative regulator of adipocyte differentiation via suppressing PPARgamma expression. Biochem Biophys Res Commun 392: 323–328.

    Article  CAS  PubMed  Google Scholar 

  • Kumar AP, Quake AL, Chang MK, Zhou T, Lim KS, Singh R et al. (2009). Repression of NHE1 expression by PPARgamma activation is a potential new approach for specific inhibition of the growth of tumor cells in vitro and in vivo. Cancer Res 69: 8636–8644.

    Article  CAS  PubMed  Google Scholar 

  • Lecomte J, Flament S, Salamone S, Boisbrun M, Mazerbourg S, Chapleur Y et al. (2008). Disruption of ERalpha signalling pathway by PPARgamma agonists: evidences of PPARgamma-independent events in two hormone-dependent breast cancer cell lines. Breast Cancer Res Treat 112: 437–451.

    Article  CAS  PubMed  Google Scholar 

  • Lefebvre AM, Chen I, Desreumaux P, Najib J, Fruchart JC, Geboes K et al. (1998). Activation of the peroxisome proliferator-activated receptor gamma promotes the development of colon tumors in C57BL/6J-APCMin/+ mice. Nat Med 4: 1053–1057.

    Article  CAS  PubMed  Google Scholar 

  • Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D et al. (2005). MicroRNA expression profiles classify human cancers. Nature 435: 834–838.

    Article  CAS  PubMed  Google Scholar 

  • Mehta RG, Williamson E, Patel MK, Koeffler HP . (2000). A ligand of peroxisome proliferator-activated receptor gamma, retinoids, and prevention of preneoplastic mammary lesions. J Natl Cancer Inst 92: 418–423.

    Article  CAS  PubMed  Google Scholar 

  • Michalik L, Desvergne B, Wahli W . (2004). Peroxisome-proliferator-activated receptors and cancers: complex stories. Nat Rev Cancer 4: 61–70.

    Article  CAS  PubMed  Google Scholar 

  • Morosetti R, Servidei T, Mirabella M, Rutella S, Mangiola A, Maira G et al. (2004). The PPARgamma ligands PGJ2 and rosiglitazone show a differential ability to inhibit proliferation and to induce apoptosis and differentiation of human glioblastoma cell lines. Int J Oncol 25: 493–502.

    CAS  PubMed  Google Scholar 

  • Mueller E, Sarraf P, Tontonoz P, Evans RM, Martin KJ, Zhang M et al. (1998). Terminal differentiation of human breast cancer through PPAR gamma. Mol Cell 1: 465–470.

    Article  CAS  PubMed  Google Scholar 

  • Naugler WE, Karin M . (2008). NF-kappaB and cancer-identifying targets and mechanisms. Curr Opin Genet Dev 18: 19–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nwankwo JO, Robbins ME . (2001). Peroxisome proliferator-activated receptor- gamma expression in human malignant and normal brain, breast and prostate-derived cells. Prostaglandins Leukot Essent Fatty Acids 64: 241–245.

    Article  CAS  PubMed  Google Scholar 

  • Ober SS, Pardee AB . (1987). Intracellular pH is increased after transformation of Chinese hamster embryo fibroblasts. Proc Natl Acad Sci USA 84: 2766–2770.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reshkin SJ, Bellizzi A, Caldeira S, Albarani V, Malanchi I, Poignee M et al. (2000). Na+/H+ exchanger-dependent intracellular alkalinization is an early event in malignant transformation and plays an essential role in the development of subsequent transformation-associated phenotypes. FASEB J 14: 2185–2197.

    Article  CAS  PubMed  Google Scholar 

  • Saez E, Tontonoz P, Nelson MC, Alvarez JG, Ming UT, Baird SM et al. (1998). Activators of the nuclear receptor PPARgamma enhance colon polyp formation. Nat Med 4: 1058–1061.

    Article  CAS  PubMed  Google Scholar 

  • Sarraf P, Mueller E, Jones D, King FJ, DeAngelo DJ, Partridge JB et al. (1998). Differentiation and reversal of malignant changes in colon cancer through PPARgamma. Nat Med 4: 1046–1052.

    Article  CAS  PubMed  Google Scholar 

  • Siczkowski M, Davies JE, Ng LL . (1994). Activity and density of the Na+/H+ antiporter in normal and transformed human lymphocytes and fibroblasts. Am J Physiol 267: C745–C752.

    Article  CAS  PubMed  Google Scholar 

  • Soule HD, Maloney TM, Wolman SR, Peterson WD, Brenz R, McGrath CM et al. (1990). Isolation and characterization of a spontaneously immortallized human breast epithelial cell line, MCF10. Cancer Res 50: 6075–6086.

    CAS  PubMed  Google Scholar 

  • Tontonoz P, Singer S, Forman BM, Sarraf P, Fletcher JA, Fletcher CD et al. (1997). Terminal differentiation of human liposarcoma cells induced by ligands for peroxisome proliferator-activated receptor gamma and the retinoid X receptor. Proc Natl Acad Sci USA 94: 237–241.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsuchiya Y, Nakajima M, Takagi S, Taniya T, Yokoi T . (2006). MicroRNA regulates the expression of human cytochrome P450 1B1. Cancer Res 66: 9090–9098.

    Article  CAS  PubMed  Google Scholar 

  • Venkatachalam G, Kumar AP, Yue LS, Pervaiz S, Clement MV, Sakharkar MK . (2009). Computational identification and experimental validation of PPRE motifs in NHE1 and MnSOD genes of human. BMC Genomics 10(Suppl 3): S5.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ventura A, Jacks T . (2009). MicroRNAs and cancer: short RNAs go a long way. Cell 136: 586–591.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by start-up funds to DI from the Dana Farber Cancer Institute and by a research grant to KS from the National Institutes of Health (CA 107486).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K Struhl.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, JJ., Drakaki, A., Iliopoulos, D. et al. MiR-27b targets PPARγ to inhibit growth, tumor progression and the inflammatory response in neuroblastoma cells. Oncogene 31, 3818–3825 (2012). https://doi.org/10.1038/onc.2011.543

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2011.543

Keywords

This article is cited by

Search

Quick links