Skip to main content
Top
Published in: Heart and Vessels 1/2022

Open Access 01-01-2022 | Myocardial Infarction | Original Article

SAHA could inhibit TGF-β1/p38 pathway in MI-induced cardiac fibrosis through DUSP4 overexpression

Authors: Kaihao Wang, Ruijie Tang, Siyuan Wang, Wenyao Wang, Kuo Zhang, Jun Li, Ping Li, Yi-Da Tang

Published in: Heart and Vessels | Issue 1/2022

Login to get access

Abstract

Growing evidences have revealed that a histone deacetylase inhibitor (HDACi), suberoylanilide hydroxamic acid (SAHA) has anti-fibrotic effect in different diseases. In this study, we first evaluated whether SAHA could suppress cardiac fibrosis. Mice with MI-induced cardiac fibrosis were treated with SAHA by intraperitoneal injection and their cardiac function was improved after SAHA treatment. Results of western blotting and qRT-PCR in heart tissues suggested that TGFβ1/P38 pathway was activated in MI mice, and this effect was reversed by SAHA. Cell proliferation assay suggested that SAHA could suppress TGF-β1-induced cardiac fibroblasts proliferation. Furthermore, results of western blotting and qRT-PCR in cardiac fibroblasts depicted that SAHA may exert its anti-fibrotic effect through inhibiting TGF-β1-induced P38 phosphorylation by promoting DUSP4 expression. Our findings may substantiate SAHA as a promising treatment for MI-induced cardiac fibrosis.
Literature
1.
go back to reference Leask A (2015) Getting to the heart of the matter: new insights into cardiac fibrosis. Circ Res 116(7):1269–1276CrossRef Leask A (2015) Getting to the heart of the matter: new insights into cardiac fibrosis. Circ Res 116(7):1269–1276CrossRef
2.
go back to reference Lin CY, Hsu YJ, Hsu SC, Chen Y, Lee HS, Lin SH (2015) CB1 cannibalised receptor antagonist attenuates left ventricular hypertrophy and Akt-mediated cardiac fibrosis in experimental uremia. J Mol Cell Cardiol 85:249–261CrossRef Lin CY, Hsu YJ, Hsu SC, Chen Y, Lee HS, Lin SH (2015) CB1 cannibalised receptor antagonist attenuates left ventricular hypertrophy and Akt-mediated cardiac fibrosis in experimental uremia. J Mol Cell Cardiol 85:249–261CrossRef
3.
go back to reference Tao X, Fan J, Kao G, Zhang X, Su L, Yin Y (2014) Angiotensin-(1–7) attenuates angiotensin II-induced signalling associated with activation of a tyrosine phosphatase in Sprague-Dawley rats cardiac fibroblasts. Biol Cell 106(6):182–192CrossRef Tao X, Fan J, Kao G, Zhang X, Su L, Yin Y (2014) Angiotensin-(1–7) attenuates angiotensin II-induced signalling associated with activation of a tyrosine phosphatase in Sprague-Dawley rats cardiac fibroblasts. Biol Cell 106(6):182–192CrossRef
4.
go back to reference Krishna M, Narang H (2008) The complexity of mitogen-activated protein kinases (MAPKs) made simple. Cell Mol Life Sci 65(22):3525–3544CrossRef Krishna M, Narang H (2008) The complexity of mitogen-activated protein kinases (MAPKs) made simple. Cell Mol Life Sci 65(22):3525–3544CrossRef
5.
go back to reference Cook SA, Sugden PH, Clerk A (1999) Activation of c-Jun N-terminal kinases and p38-mitogen-activated protein kinases in human heart failure secondary to ischaemic heart disease. J Mol Cell Cardiol 31(8):1429–1434CrossRef Cook SA, Sugden PH, Clerk A (1999) Activation of c-Jun N-terminal kinases and p38-mitogen-activated protein kinases in human heart failure secondary to ischaemic heart disease. J Mol Cell Cardiol 31(8):1429–1434CrossRef
6.
go back to reference Turner NA, Blythe NM (2019) Cardiac fibroblast p38 MAPK: A critical regulator of myocardial remodeling. J Cardiovasc Dev Dis 6(3):27CrossRef Turner NA, Blythe NM (2019) Cardiac fibroblast p38 MAPK: A critical regulator of myocardial remodeling. J Cardiovasc Dev Dis 6(3):27CrossRef
7.
go back to reference Auger-Messier M, Accornero F, Goonasekera SA, Bueno OF, Lorenz JN, Berlo JH, v, Willette RN, Molkentin JD (2013) Unrestrained p38 MAPK activation in Dusp1/4 double-null mice induces cardiomyopathy. Circ Res 112(1):48–56CrossRef Auger-Messier M, Accornero F, Goonasekera SA, Bueno OF, Lorenz JN, Berlo JH, v, Willette RN, Molkentin JD (2013) Unrestrained p38 MAPK activation in Dusp1/4 double-null mice induces cardiomyopathy. Circ Res 112(1):48–56CrossRef
8.
go back to reference Rao SS, Zhang XY, Shi MJ, Xiao Y, Zhang YY, Wang YY, Zhang CZ, Shao SJ, Liu XM, Guo B (2016) Suberoylanilide hydroxamic acid attenuates paraquat-induced pulmonary fibrosis by preventing Smad7 from deacetylation in rats. J Thorac Dis 8(9):2485–2494CrossRef Rao SS, Zhang XY, Shi MJ, Xiao Y, Zhang YY, Wang YY, Zhang CZ, Shao SJ, Liu XM, Guo B (2016) Suberoylanilide hydroxamic acid attenuates paraquat-induced pulmonary fibrosis by preventing Smad7 from deacetylation in rats. J Thorac Dis 8(9):2485–2494CrossRef
9.
go back to reference Marks PA, Breslow R (2007) Dimethyl sulfoxide to vorinostat: development of this histone deacetylase inhibitor as an anticancer drug. Nat Biotechnol 25(1):84–90CrossRef Marks PA, Breslow R (2007) Dimethyl sulfoxide to vorinostat: development of this histone deacetylase inhibitor as an anticancer drug. Nat Biotechnol 25(1):84–90CrossRef
10.
go back to reference Zhang X, Liu H, Hock T (2013) Histone deacetylase inhibition downregulates collagen 3A1 in fbrotic lung fbroblasts. Int J Mol Sci 14(10):19605–19617CrossRef Zhang X, Liu H, Hock T (2013) Histone deacetylase inhibition downregulates collagen 3A1 in fbrotic lung fbroblasts. Int J Mol Sci 14(10):19605–19617CrossRef
11.
go back to reference Travers JG, Kamal FA, Robbins J, Yutzey KE, Blaxall BC (2016) Cardiac fibrosis: the fibroblast awakens. Circ Res 118(6):1021–1040CrossRef Travers JG, Kamal FA, Robbins J, Yutzey KE, Blaxall BC (2016) Cardiac fibrosis: the fibroblast awakens. Circ Res 118(6):1021–1040CrossRef
12.
go back to reference Santiago J-J, Dangerfield AL, Rattan SG, Bathe KL, Cunnington RH, Raizman JE, Bedosky KM, Freed DH, Kardami E, Dixon IMC (2010) Cardiac fibroblast to myofibroblast differentiation in vivo and in vitro: expression of focal adhesion components in neonatal and adult rat ventricular myofibroblasts. Dev Dyn 239(6):1573–1584CrossRef Santiago J-J, Dangerfield AL, Rattan SG, Bathe KL, Cunnington RH, Raizman JE, Bedosky KM, Freed DH, Kardami E, Dixon IMC (2010) Cardiac fibroblast to myofibroblast differentiation in vivo and in vitro: expression of focal adhesion components in neonatal and adult rat ventricular myofibroblasts. Dev Dyn 239(6):1573–1584CrossRef
13.
go back to reference Talman V, Ruskoaho H (2016) Cardiac fibrosis in myocardial infarction-from repair and remodeling to regeneration. Cell Tissue Res 365(3):563–581CrossRef Talman V, Ruskoaho H (2016) Cardiac fibrosis in myocardial infarction-from repair and remodeling to regeneration. Cell Tissue Res 365(3):563–581CrossRef
14.
go back to reference Tao H, Yang JJ, Shi KH (2015) Non-coding RNAs as direct and indirect modulators of epigenetic mechanism regulation of cardiac fibrosis. Expert Opin Ther Targets 19(5):707–716CrossRef Tao H, Yang JJ, Shi KH (2015) Non-coding RNAs as direct and indirect modulators of epigenetic mechanism regulation of cardiac fibrosis. Expert Opin Ther Targets 19(5):707–716CrossRef
15.
go back to reference Liu N, He S, Ma L, Ponnusamy M, Tang J, Tolbert E, Bayliss G, Zhao TC, Yan H, Zhuang S (2013) Blocking the class I histone deacetylase ameliorates renal fibrosis and inhibits renal fibroblast activation via modulating TGF-beta and EGFR signaling. PLoS ONE 8(1):e54001CrossRef Liu N, He S, Ma L, Ponnusamy M, Tang J, Tolbert E, Bayliss G, Zhao TC, Yan H, Zhuang S (2013) Blocking the class I histone deacetylase ameliorates renal fibrosis and inhibits renal fibroblast activation via modulating TGF-beta and EGFR signaling. PLoS ONE 8(1):e54001CrossRef
16.
go back to reference Wang Z, Chen C, Finger SN, Kwajah S, Jung M, Schwarz H, Swanson N, Lareu FF, Raghunath M (2009) Suberoylanilide hydroxamic acid: a potential epigenetic therapeutic agent for lung fibrosis? Eur Respir J 34(1):145–155CrossRef Wang Z, Chen C, Finger SN, Kwajah S, Jung M, Schwarz H, Swanson N, Lareu FF, Raghunath M (2009) Suberoylanilide hydroxamic acid: a potential epigenetic therapeutic agent for lung fibrosis? Eur Respir J 34(1):145–155CrossRef
17.
go back to reference Ramzy MM, Abdelghany HM, Zenhom NM, El-Tahawy NF (2018) Effect of histone deacetylase inhibitor on epithelial-mesenchymal transition of liver fibrosis. IUBMB Life 70(6):511–518CrossRef Ramzy MM, Abdelghany HM, Zenhom NM, El-Tahawy NF (2018) Effect of histone deacetylase inhibitor on epithelial-mesenchymal transition of liver fibrosis. IUBMB Life 70(6):511–518CrossRef
18.
go back to reference Mishra N, Reilly CM, Brown DR, Ruiz P, Gilkeson GS (2003) Histone deacetylase inhibitors modulate renal disease in the MRL-lpr/lpr mouse. J Clin Invest 111(4):539–552CrossRef Mishra N, Reilly CM, Brown DR, Ruiz P, Gilkeson GS (2003) Histone deacetylase inhibitors modulate renal disease in the MRL-lpr/lpr mouse. J Clin Invest 111(4):539–552CrossRef
19.
go back to reference Turner NA (2011) Therapeutic regulation of cardiac fibroblast function: targeting stress-activated protein kinase pathways. Future Cardiol 7(5):673–691CrossRef Turner NA (2011) Therapeutic regulation of cardiac fibroblast function: targeting stress-activated protein kinase pathways. Future Cardiol 7(5):673–691CrossRef
20.
go back to reference See F, Thomas W, Way K, Tzanidis A, Kompa A, Lewis D, Itescu S, Krum H (2004) p38 mitogen-activated protein kinase inhibition improves cardiac function and attenuates left ventricular remodeling following myocardial infarction in the rat. J Am Coll Cardiol 44(8):1679–1689CrossRef See F, Thomas W, Way K, Tzanidis A, Kompa A, Lewis D, Itescu S, Krum H (2004) p38 mitogen-activated protein kinase inhibition improves cardiac function and attenuates left ventricular remodeling following myocardial infarction in the rat. J Am Coll Cardiol 44(8):1679–1689CrossRef
21.
go back to reference Tang M, Zhong M, Shang Y, Lin H, Deng J, Jiang H, Lu H, Zhang Y, Zhang W (2008) Differential regulation of collagen types I and III expression in cardiac fibroblasts by AGEs through TRB3/MAPK signaling pathway. Cell Mol Life Sci 65(18):2924–2932CrossRef Tang M, Zhong M, Shang Y, Lin H, Deng J, Jiang H, Lu H, Zhang Y, Zhang W (2008) Differential regulation of collagen types I and III expression in cardiac fibroblasts by AGEs through TRB3/MAPK signaling pathway. Cell Mol Life Sci 65(18):2924–2932CrossRef
22.
go back to reference Marber MS, Rose B, Wang Y (2011) The p38 mitogen-activated protein kinase pathway–a potential target for intervention in infarction, hypertrophy, and heart failure. J Mol Cell Cardiol 51(4):485–490CrossRef Marber MS, Rose B, Wang Y (2011) The p38 mitogen-activated protein kinase pathway–a potential target for intervention in infarction, hypertrophy, and heart failure. J Mol Cell Cardiol 51(4):485–490CrossRef
23.
go back to reference Li W-M, Zhao Y-F, Zhu G-F, Peng W-H, Zhu M-Y, Yu X-J, Chen W, Xu D-C, Xu Y-W (2017) Dual specific phosphatase 12 ameliorates cardiac hypertrophy in response to pressure overload. Clin Sci (Lond) 131(2):141–154CrossRef Li W-M, Zhao Y-F, Zhu G-F, Peng W-H, Zhu M-Y, Yu X-J, Chen W, Xu D-C, Xu Y-W (2017) Dual specific phosphatase 12 ameliorates cardiac hypertrophy in response to pressure overload. Clin Sci (Lond) 131(2):141–154CrossRef
24.
go back to reference Valente AJ, Yoshida T, Gardner JD, Somanna N, Delafontaine P, Chandrasekar B (2012) Interleukin-17A stimulates cardiac fibroblast proliferation and migration via negative regulation of the dual-specificity phosphatase MKP-1/DUSP-1. Cell Signal 24(2):560–568CrossRef Valente AJ, Yoshida T, Gardner JD, Somanna N, Delafontaine P, Chandrasekar B (2012) Interleukin-17A stimulates cardiac fibroblast proliferation and migration via negative regulation of the dual-specificity phosphatase MKP-1/DUSP-1. Cell Signal 24(2):560–568CrossRef
25.
go back to reference McCollum LT, Gallagher PE, Tallant EA (2012) Angiotensin-(1–7) attenuates angiotensin II-induced cardiac remodeling associated with upregulation of dual-specificity phosphatase 1. Am J Physiol Heart Circ Physiol 302(3):H801-810CrossRef McCollum LT, Gallagher PE, Tallant EA (2012) Angiotensin-(1–7) attenuates angiotensin II-induced cardiac remodeling associated with upregulation of dual-specificity phosphatase 1. Am J Physiol Heart Circ Physiol 302(3):H801-810CrossRef
26.
go back to reference Denhez B, Rousseau M, Dancosst D-A, Lizotte F, Guay A, Auger-Messier M, Côté AM, Geraldes P (2019) Diabetes-induced DUSP4 reduction promotes podocyte dysfunction and progression of diabetic nephropathy. Diabetes 68(5):1026–1039CrossRef Denhez B, Rousseau M, Dancosst D-A, Lizotte F, Guay A, Auger-Messier M, Côté AM, Geraldes P (2019) Diabetes-induced DUSP4 reduction promotes podocyte dysfunction and progression of diabetic nephropathy. Diabetes 68(5):1026–1039CrossRef
27.
go back to reference Zhao G, Li R, Cao Y, Song M, Jiang P, Wu Q, Zhou Z, Zhu H, Wang H, Dai C, Liu D, Yao S, Lv H, Wang L, Dai J, Zhou Y, Hu Y (2020) ΔNp63α-induced DUSP4/GSK3β/SNAI1 pathway in epithelial cells drives endometrial fibrosis. Cell Death Dis 11(6):449CrossRef Zhao G, Li R, Cao Y, Song M, Jiang P, Wu Q, Zhou Z, Zhu H, Wang H, Dai C, Liu D, Yao S, Lv H, Wang L, Dai J, Zhou Y, Hu Y (2020) ΔNp63α-induced DUSP4/GSK3β/SNAI1 pathway in epithelial cells drives endometrial fibrosis. Cell Death Dis 11(6):449CrossRef
Metadata
Title
SAHA could inhibit TGF-β1/p38 pathway in MI-induced cardiac fibrosis through DUSP4 overexpression
Authors
Kaihao Wang
Ruijie Tang
Siyuan Wang
Wenyao Wang
Kuo Zhang
Jun Li
Ping Li
Yi-Da Tang
Publication date
01-01-2022
Publisher
Springer Japan
Published in
Heart and Vessels / Issue 1/2022
Print ISSN: 0910-8327
Electronic ISSN: 1615-2573
DOI
https://doi.org/10.1007/s00380-021-01900-4

Other articles of this Issue 1/2022

Heart and Vessels 1/2022 Go to the issue