Skip to main content
Top
Published in: Heart and Vessels 6/2018

01-06-2018 | Original Article

Cardioprotective effect of thyroid hormone is mediated by AT2 receptor and involves nitric oxide production via Akt activation in mice

Authors: Ivson Bezerra da Silva, Dayane Aparecida Gomes, Natalia Alenina, Michael Bader, Robson Augusto dos Santos, Maria Luiza M. Barreto-Chaves

Published in: Heart and Vessels | Issue 6/2018

Login to get access

Abstract

Studies have demonstrated that thyroid hormone (T3) can precondition the heart against ischaemic injury and improve post-ischaemic recovery. This study investigated whether the AT2 receptor (AT2R) is involved in cardioprotection and the potential molecular mechanism responsible for this effect. Hyperthyroidism was induced in male wild-type (WT) and AT2R knockout (KO) mice by administering daily intraperitoneal injections of T3 (7 μg/100 g body weight) for 14 days. The mouse hearts were harvested and perfused with a Krebs–Henseleit solution at a constant flow in a Langendorff set-up. After 30 min of stabilization, the hearts were subjected to global ischaemia for 20 min and reperfused for 45 min. Baseline cardiac function was assessed by measuring four parameters: LVDP (mmHg), heart rate (bpm), + dP/dt and − dP/dt (mmHg/s). After reperfusion, the total protein from cardiac ventricles was obtained, and the Akt signalling pathway and NO production were evaluated. Post-ischaemic functional recovery was significantly greater (p < 0.05) in the T3-treated WT mice compared to the control, demonstrating the cardioprotective effect of T3. This effect was abolished in T3-treated KO mice, demonstrating the physiological relevance of AT2R to the cardioprotective phenotype induced by T3. Akt activation, iNOS expression and NO production increased in cardiac tissue after T3 treatment in the WT animals, but no difference was observed after treatment in the KO mice. This study indicates that AT2R acts as a cardioprotector in the case of hyperthyroidism. Strategies targeting AT2R agonists might improve cardiac function through NO production and suggest potential therapeutic targets for heart diseases.
Literature
1.
go back to reference Forini F, Kusmic C, Nicolini G, Mariani L, Zucchi R, Matteucci M, Iervasi G, Pitto L (2014) Triiodothyronine prevents cardiac ischemia/reperfusion mitochondrial impairment and cell loss by regulating miR30a/p53 axis. Endocrinology 155:4581–4590CrossRefPubMed Forini F, Kusmic C, Nicolini G, Mariani L, Zucchi R, Matteucci M, Iervasi G, Pitto L (2014) Triiodothyronine prevents cardiac ischemia/reperfusion mitochondrial impairment and cell loss by regulating miR30a/p53 axis. Endocrinology 155:4581–4590CrossRefPubMed
2.
3.
go back to reference Suarez J, Wang H, Scott BT, Ling H, Makino A, Swanson E, Brown JH, Suarez JA, Feinstein S, Diaz-Juarez J, Dillmann WH (2014) In vivo selective expression of thyroid hormone receptor α1 in endothelial cells attenuates myocardial injury in experimental myocardial infarction in mice. Am J Physiol Regul Integr Comp Physiol 307:R340–R346CrossRefPubMedPubMedCentral Suarez J, Wang H, Scott BT, Ling H, Makino A, Swanson E, Brown JH, Suarez JA, Feinstein S, Diaz-Juarez J, Dillmann WH (2014) In vivo selective expression of thyroid hormone receptor α1 in endothelial cells attenuates myocardial injury in experimental myocardial infarction in mice. Am J Physiol Regul Integr Comp Physiol 307:R340–R346CrossRefPubMedPubMedCentral
4.
go back to reference Novitzky D, Matthews N, Shawley D, Cooper DK, Zuhdi N (1991) Triiodothyronine in the recovery of stunned myocardium in dogs. Ann Thorac Surg 51:10–16CrossRefPubMed Novitzky D, Matthews N, Shawley D, Cooper DK, Zuhdi N (1991) Triiodothyronine in the recovery of stunned myocardium in dogs. Ann Thorac Surg 51:10–16CrossRefPubMed
5.
go back to reference Pantos C, Mourouzis I, Saranteas T, Clavé G, Ligeret H, Noack-Fraissignes P, Renard PY, Massonneau M, Perimenis P, Spanou D, Kostopanagiotou G, Cokkinos DV (2009) Thyroid hormone improves postischaemic recovery of function while limiting apoptosis: a new therapeutic approach to support hemodynamics in the setting of ischaemia–reperfusion? Basic Res Cardiol 104:69–77CrossRefPubMed Pantos C, Mourouzis I, Saranteas T, Clavé G, Ligeret H, Noack-Fraissignes P, Renard PY, Massonneau M, Perimenis P, Spanou D, Kostopanagiotou G, Cokkinos DV (2009) Thyroid hormone improves postischaemic recovery of function while limiting apoptosis: a new therapeutic approach to support hemodynamics in the setting of ischaemia–reperfusion? Basic Res Cardiol 104:69–77CrossRefPubMed
6.
go back to reference Tavares FM, da Silva IB, Gomes DA, Barreto-Chaves ML (2013) Angiotensin II type 2 receptor (AT2R) is associated with increased tolerance of the hyperthyroid heart to ischemia–reperfusion. Cardiovasc Drugs Ther 27:393–402CrossRefPubMed Tavares FM, da Silva IB, Gomes DA, Barreto-Chaves ML (2013) Angiotensin II type 2 receptor (AT2R) is associated with increased tolerance of the hyperthyroid heart to ischemia–reperfusion. Cardiovasc Drugs Ther 27:393–402CrossRefPubMed
7.
go back to reference Pantos C, Paizis I, Mourouzis I, Moraitis P, Tzeis S, Karamanoli E, Mourouzis C, Karageorgiou H, Cokkinos DV (2005) Blockade of angiotensin II type 1 receptor diminishes cardiac hypertrophy, but does not abolish thyroxin-induced preconditioning. Horm Metab Res 37:500–504CrossRefPubMed Pantos C, Paizis I, Mourouzis I, Moraitis P, Tzeis S, Karamanoli E, Mourouzis C, Karageorgiou H, Cokkinos DV (2005) Blockade of angiotensin II type 1 receptor diminishes cardiac hypertrophy, but does not abolish thyroxin-induced preconditioning. Horm Metab Res 37:500–504CrossRefPubMed
8.
9.
10.
go back to reference Barreto-Chaves ML, Carrillo-Sepúlveda MA, Carneiro-Ramos MS, Gomes DA, Diniz GP (2010) The crosstalk between thyroid hormones and the renin–angiotensin system. Vascul Pharmacol 52:166–170CrossRefPubMed Barreto-Chaves ML, Carrillo-Sepúlveda MA, Carneiro-Ramos MS, Gomes DA, Diniz GP (2010) The crosstalk between thyroid hormones and the renin–angiotensin system. Vascul Pharmacol 52:166–170CrossRefPubMed
11.
go back to reference Carrillo-Sepúlveda MA, Ceravolo GS, Furstenau CR, Monteiro PS, Bruno-Fortes Z, Carvalho MH, Laurindo FR, Tostes RC, Webb RC, Barreto-Chaves ML (2013) Emerging role of angiotensin type 2 receptor (AT2R)/Akt/NO pathway in vascular smooth muscle cell in the hyperthyroidism. PLoS One 8:e61982CrossRefPubMedPubMedCentral Carrillo-Sepúlveda MA, Ceravolo GS, Furstenau CR, Monteiro PS, Bruno-Fortes Z, Carvalho MH, Laurindo FR, Tostes RC, Webb RC, Barreto-Chaves ML (2013) Emerging role of angiotensin type 2 receptor (AT2R)/Akt/NO pathway in vascular smooth muscle cell in the hyperthyroidism. PLoS One 8:e61982CrossRefPubMedPubMedCentral
12.
go back to reference Sumners C, de Kloet AD, Krause EG, Unger T, Steckelings UM (2015) Angiotensin type 2 receptors: blood pressure regulation and end organ damage. Curr Opin Pharmacol 21:115–121CrossRefPubMedPubMedCentral Sumners C, de Kloet AD, Krause EG, Unger T, Steckelings UM (2015) Angiotensin type 2 receptors: blood pressure regulation and end organ damage. Curr Opin Pharmacol 21:115–121CrossRefPubMedPubMedCentral
13.
go back to reference Hisatake S, Kiuchi S, Kabuki T, Oka T, Dobashi S, Ikeda T (2017) Serum angiotensin-converting enzyme 2 concentration and angiotensin-(1–7) concentration in patients with acute heart failure patients requiring emergency hospitalization. Heart Vessels 32:303–308CrossRefPubMed Hisatake S, Kiuchi S, Kabuki T, Oka T, Dobashi S, Ikeda T (2017) Serum angiotensin-converting enzyme 2 concentration and angiotensin-(1–7) concentration in patients with acute heart failure patients requiring emergency hospitalization. Heart Vessels 32:303–308CrossRefPubMed
14.
go back to reference Ichihara S, Senbonmatsu T, Price E Jr, Ichiki T, Gaffney FA, Inagami T (2001) Angiotensin II type 2 receptor is essential for left ventricular hypertrophy and cardiac fibrosis in chronic angiotensin II-induced hypertension. Circulation 104:346–351CrossRefPubMed Ichihara S, Senbonmatsu T, Price E Jr, Ichiki T, Gaffney FA, Inagami T (2001) Angiotensin II type 2 receptor is essential for left ventricular hypertrophy and cardiac fibrosis in chronic angiotensin II-induced hypertension. Circulation 104:346–351CrossRefPubMed
15.
go back to reference Senbonmatsu T, Saito T, Landon EJ, Watanabe O, Price E Jr, Roberts RL, Imboden H, Fitzgerald TG, Gaffney FA, Inagami T (2003) A novel angiotensin II type 2 receptor signaling pathway: possible role in cardiac hypertrophy. EMBO J 22:6471–6482CrossRefPubMedPubMedCentral Senbonmatsu T, Saito T, Landon EJ, Watanabe O, Price E Jr, Roberts RL, Imboden H, Fitzgerald TG, Gaffney FA, Inagami T (2003) A novel angiotensin II type 2 receptor signaling pathway: possible role in cardiac hypertrophy. EMBO J 22:6471–6482CrossRefPubMedPubMedCentral
16.
go back to reference Porrello ER, D’Amore A, Curl CL, Allen AM, Harrap SB, Thomas WG, Delbridge LM (2009) Angiotensin II type 2 receptor antagonizes angiotensin II type 1 receptor-mediated cardiomyocyte autophagy. Hypertension 53:1032–1040CrossRefPubMed Porrello ER, D’Amore A, Curl CL, Allen AM, Harrap SB, Thomas WG, Delbridge LM (2009) Angiotensin II type 2 receptor antagonizes angiotensin II type 1 receptor-mediated cardiomyocyte autophagy. Hypertension 53:1032–1040CrossRefPubMed
17.
go back to reference Chiu AT, Duncia JV, McCall DE, Wong PC, Price WA Jr, Thoolen MJ, Carini DJ, Johnson AL, Timmermans PB (1989) Nonpeptide angiotensin II receptor antagonists. III. Structure–function studies. J Pharmacol Exp Ther 250:867–874PubMed Chiu AT, Duncia JV, McCall DE, Wong PC, Price WA Jr, Thoolen MJ, Carini DJ, Johnson AL, Timmermans PB (1989) Nonpeptide angiotensin II receptor antagonists. III. Structure–function studies. J Pharmacol Exp Ther 250:867–874PubMed
18.
go back to reference Oishi Y, Ozono R, Yano Y, Teranishi Y, Akishita M, Horiuchi M, Oshima T, Kambe M (2003) Cardioprotective role of AT2 receptor in postinfarction left ventricular remodeling. Hypertension 41:814–818CrossRefPubMed Oishi Y, Ozono R, Yano Y, Teranishi Y, Akishita M, Horiuchi M, Oshima T, Kambe M (2003) Cardioprotective role of AT2 receptor in postinfarction left ventricular remodeling. Hypertension 41:814–818CrossRefPubMed
19.
go back to reference Adachi Y, Saito Y, Kishimoto I, Harada M, Kuwahara K, Takahashi N, Kawakami R, Nakanishi M, Nakagawa Y, Tanimoto K, Saitoh Y, Yasuno S, Usami S, Iwai M, Horiuchi M, Nakao K (2003) Angiotensin II type 2 receptor deficiency exacerbates heart failure and reduces survival after acute myocardial infarction in mice. Circulation 107:2406–2408CrossRefPubMed Adachi Y, Saito Y, Kishimoto I, Harada M, Kuwahara K, Takahashi N, Kawakami R, Nakanishi M, Nakagawa Y, Tanimoto K, Saitoh Y, Yasuno S, Usami S, Iwai M, Horiuchi M, Nakao K (2003) Angiotensin II type 2 receptor deficiency exacerbates heart failure and reduces survival after acute myocardial infarction in mice. Circulation 107:2406–2408CrossRefPubMed
20.
go back to reference Yang Z, Bove CM, French BA, Epstein FH, Berr SS, DiMaria JM, Gibson JJ, Carey RM, Kramer CM (2002) Angiotensin II type 2 receptor overexpression preserves left ventricular function after myocardial infarction. Circulation 106:106–111CrossRefPubMed Yang Z, Bove CM, French BA, Epstein FH, Berr SS, DiMaria JM, Gibson JJ, Carey RM, Kramer CM (2002) Angiotensin II type 2 receptor overexpression preserves left ventricular function after myocardial infarction. Circulation 106:106–111CrossRefPubMed
21.
go back to reference Bove CM, Gilson WD, Scott CD, Epstein FH, Yang Z, Dimaria JM, Berr SS, French BA, Bishop SP, Kramer CM (2005) The angiotensin II type 2 receptor and improved adjacent region function post-MI. J Cardiovasc Magn Reson 7:459–464CrossRefPubMed Bove CM, Gilson WD, Scott CD, Epstein FH, Yang Z, Dimaria JM, Berr SS, French BA, Bishop SP, Kramer CM (2005) The angiotensin II type 2 receptor and improved adjacent region function post-MI. J Cardiovasc Magn Reson 7:459–464CrossRefPubMed
22.
go back to reference Diniz GP, Carneiro-Ramos MS, Barreto-Chaves ML (2007) Angiotensin type 1 (AT1) and type 2 (AT2) receptors mediate the increase in TGF-beta1 in thyroid hormone-induced cardiac hypertrophy. Pflugers Arch 454:75–81CrossRefPubMed Diniz GP, Carneiro-Ramos MS, Barreto-Chaves ML (2007) Angiotensin type 1 (AT1) and type 2 (AT2) receptors mediate the increase in TGF-beta1 in thyroid hormone-induced cardiac hypertrophy. Pflugers Arch 454:75–81CrossRefPubMed
23.
go back to reference Carneiro-Ramos MS, Diniz GP, Nadu AP, Almeida J, Vieira RL, Santos RA, Barreto-Chaves ML (2010) Blockage of angiotensin II type 2 receptor prevents thyroxine-mediated cardiac hypertrophy by blocking Akt activation. Basic Res Cardiol 105:325–335CrossRefPubMed Carneiro-Ramos MS, Diniz GP, Nadu AP, Almeida J, Vieira RL, Santos RA, Barreto-Chaves ML (2010) Blockage of angiotensin II type 2 receptor prevents thyroxine-mediated cardiac hypertrophy by blocking Akt activation. Basic Res Cardiol 105:325–335CrossRefPubMed
24.
go back to reference Bove CM, Yang Z, Gilson WD, Epstein FH, French BA, Berr SS, Bishop SP, Matsubara H, Carey RM, Kramer CM (2004) Nitric oxide mediates benefits of angiotensin II type 2 receptor overexpression during post-infarct remodeling. Hypertension 43:680–685CrossRefPubMed Bove CM, Yang Z, Gilson WD, Epstein FH, French BA, Berr SS, Bishop SP, Matsubara H, Carey RM, Kramer CM (2004) Nitric oxide mediates benefits of angiotensin II type 2 receptor overexpression during post-infarct remodeling. Hypertension 43:680–685CrossRefPubMed
25.
go back to reference Kim JS, Ohshima S, Pediaditakis P, Lemasters JJ (2004) Nitric oxide: a signaling molecule against mitochondrial permeability transition- and pH-dependent cell death after reperfusion. Free Radic Biol Med 37:1943–1950CrossRefPubMed Kim JS, Ohshima S, Pediaditakis P, Lemasters JJ (2004) Nitric oxide: a signaling molecule against mitochondrial permeability transition- and pH-dependent cell death after reperfusion. Free Radic Biol Med 37:1943–1950CrossRefPubMed
26.
go back to reference Costa AD, Garlid KD, West IC, Lincoln TM, Downey JM, Cohen MV, Critz SD (2005) Protein kinase G transmits the cardioprotective signal from cytosol to mitochondria. Circ Res 97:329–336CrossRefPubMed Costa AD, Garlid KD, West IC, Lincoln TM, Downey JM, Cohen MV, Critz SD (2005) Protein kinase G transmits the cardioprotective signal from cytosol to mitochondria. Circ Res 97:329–336CrossRefPubMed
27.
go back to reference Cuong DV, Kim N, Youm JB, Joo H, Warda M, Lee JW, Park WS, Kim T, Kang S, Kim H, Han J (2006) Nitric oxide-cGMP-protein kinase G signaling pathway induces anoxic preconditioning through activation of ATP-sensitive K+ channels in rat hearts. Am J Physiol Heart Circ Physiol 290:H1808–H1817CrossRefPubMed Cuong DV, Kim N, Youm JB, Joo H, Warda M, Lee JW, Park WS, Kim T, Kang S, Kim H, Han J (2006) Nitric oxide-cGMP-protein kinase G signaling pathway induces anoxic preconditioning through activation of ATP-sensitive K+ channels in rat hearts. Am J Physiol Heart Circ Physiol 290:H1808–H1817CrossRefPubMed
28.
go back to reference Burwell LS, Brookes PS (2008) Mitochondria as a target for the cardioprotective effects of nitric oxide in ischemia–reperfusion injury. Antioxid Redox Signal 10:579–599CrossRefPubMed Burwell LS, Brookes PS (2008) Mitochondria as a target for the cardioprotective effects of nitric oxide in ischemia–reperfusion injury. Antioxid Redox Signal 10:579–599CrossRefPubMed
29.
go back to reference Carrillo-Sepúlveda MA, Ceravolo GS, Fortes ZB, Carvalho MH, Tostes RC, Laurindo FR, Webb RC, Barreto-Chaves ML (2010) Thyroid hormone stimulates NO production via activation of the PI3K/Akt pathway in vascular myocytes. Cardiovasc Res 85:560–570CrossRefPubMed Carrillo-Sepúlveda MA, Ceravolo GS, Fortes ZB, Carvalho MH, Tostes RC, Laurindo FR, Webb RC, Barreto-Chaves ML (2010) Thyroid hormone stimulates NO production via activation of the PI3K/Akt pathway in vascular myocytes. Cardiovasc Res 85:560–570CrossRefPubMed
30.
go back to reference Ichiki T, Labosky PA, Shiota C, Okuyama S, Imagawa Y, Fogo A, Niimura F, Ichikawa I, Hogan BL, Inagami T (1995) Effects on blood pressure and exploratory behaviour of mice lacking angiotensin II type-2 receptor. Nature 377(6551):748–750CrossRefPubMed Ichiki T, Labosky PA, Shiota C, Okuyama S, Imagawa Y, Fogo A, Niimura F, Ichikawa I, Hogan BL, Inagami T (1995) Effects on blood pressure and exploratory behaviour of mice lacking angiotensin II type-2 receptor. Nature 377(6551):748–750CrossRefPubMed
31.
go back to reference Reichelt ME, Willems L, Hack BA, Peart JN, Headrick JP (2009) Cardiac and coronary function in the Langendorff-perfused mouse heart model. Exp Physiol 94:54–70CrossRefPubMed Reichelt ME, Willems L, Hack BA, Peart JN, Headrick JP (2009) Cardiac and coronary function in the Langendorff-perfused mouse heart model. Exp Physiol 94:54–70CrossRefPubMed
32.
go back to reference Liao R, Podesser BK, Lim CC (2012) The continuing evolution of the Langendorff and ejecting murine heart: new advances in cardiac phenotyping. Am J Physiol Heart Circ Physiol 303:H156–H167CrossRefPubMedPubMedCentral Liao R, Podesser BK, Lim CC (2012) The continuing evolution of the Langendorff and ejecting murine heart: new advances in cardiac phenotyping. Am J Physiol Heart Circ Physiol 303:H156–H167CrossRefPubMedPubMedCentral
33.
go back to reference Lino CA, da Silva IB, Shibata CE, Monteiro P, Barreto-Chaves ML (2015) Maternal hyperthyroidism increases the susceptibility of rat adult offspring to cardiovascular disorders. Mol Cell Endocrinol 416:1–8CrossRefPubMed Lino CA, da Silva IB, Shibata CE, Monteiro P, Barreto-Chaves ML (2015) Maternal hyperthyroidism increases the susceptibility of rat adult offspring to cardiovascular disorders. Mol Cell Endocrinol 416:1–8CrossRefPubMed
34.
go back to reference Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254CrossRefPubMed Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254CrossRefPubMed
35.
go back to reference Hebeda CB, Teixeira SA, Tamura EK, Muscará MN, de Mello SB, Markus RP, Farsky SH (2011) Nitric oxide modulates lipopolysaccharide-induced endothelial platelet endothelial cell adhesion molecule expression via interleukin-10. Clin Exp Immunol 165:172–179CrossRefPubMedPubMedCentral Hebeda CB, Teixeira SA, Tamura EK, Muscará MN, de Mello SB, Markus RP, Farsky SH (2011) Nitric oxide modulates lipopolysaccharide-induced endothelial platelet endothelial cell adhesion molecule expression via interleukin-10. Clin Exp Immunol 165:172–179CrossRefPubMedPubMedCentral
37.
go back to reference Hein L, Barsh GS, Pratt RE, Dzau VJ, Kobilka BK (1995) Behavioural and cardiovascular effects of disrupting the angiotensin II type-2 receptor in mice. Nature 377:744–747CrossRefPubMed Hein L, Barsh GS, Pratt RE, Dzau VJ, Kobilka BK (1995) Behavioural and cardiovascular effects of disrupting the angiotensin II type-2 receptor in mice. Nature 377:744–747CrossRefPubMed
38.
go back to reference Kobori H, Ichihara A, Miyashita Y, Hayashi M, Saruta T (1999) Local renin–angiotensin system contributes to hyperthyroidism-induced cardiac hypertrophy. J Endocrinol 160:43–47CrossRefPubMedPubMedCentral Kobori H, Ichihara A, Miyashita Y, Hayashi M, Saruta T (1999) Local renin–angiotensin system contributes to hyperthyroidism-induced cardiac hypertrophy. J Endocrinol 160:43–47CrossRefPubMedPubMedCentral
39.
go back to reference Shimoura H, Tanaka H, Matsumoto K, Mochizuki Y, Hatani Y, Hatazawa K, Matsuzoe H, Ooka J, Sano H, Sawa T, Motoji Y, Ryo-Koriyama K, Hirata KI (2017) Effects of a changeover from other angiotensin II receptor blockers to olmesartan on left ventricular hypertrophy in heart failure patients. Heart Vessels 32:584–590CrossRefPubMed Shimoura H, Tanaka H, Matsumoto K, Mochizuki Y, Hatani Y, Hatazawa K, Matsuzoe H, Ooka J, Sano H, Sawa T, Motoji Y, Ryo-Koriyama K, Hirata KI (2017) Effects of a changeover from other angiotensin II receptor blockers to olmesartan on left ventricular hypertrophy in heart failure patients. Heart Vessels 32:584–590CrossRefPubMed
40.
go back to reference Senbonmatsu T, Ichihara S, Price E Jr, Gaffney FA, Inagami T (2000) Evidence for angiotensin II type 2 receptor-mediated cardiac myocyte enlargement during in vivo pressure overload. J Clin Investig 106:R25–R29CrossRefPubMedPubMedCentral Senbonmatsu T, Ichihara S, Price E Jr, Gaffney FA, Inagami T (2000) Evidence for angiotensin II type 2 receptor-mediated cardiac myocyte enlargement during in vivo pressure overload. J Clin Investig 106:R25–R29CrossRefPubMedPubMedCentral
41.
go back to reference Akishita M, Iwai M, Wu L, Zhang L, Ouchi Y, Dzau VJ, Horiuchi M (2000) Inhibitory effect of angiotensin II type 2 receptor on coronary arterial remodeling after aortic banding in mice. Circulation 102:1684–1689CrossRefPubMed Akishita M, Iwai M, Wu L, Zhang L, Ouchi Y, Dzau VJ, Horiuchi M (2000) Inhibitory effect of angiotensin II type 2 receptor on coronary arterial remodeling after aortic banding in mice. Circulation 102:1684–1689CrossRefPubMed
42.
go back to reference Bliksøen M, Rutkovskiy A, Vaage J, Stensløkken KO (2017) Mode of perfusion influences infarct size, coronary flow and stress kinases in the isolated mouse heart. Acta Physiol (Oxf) 220:36–46CrossRef Bliksøen M, Rutkovskiy A, Vaage J, Stensløkken KO (2017) Mode of perfusion influences infarct size, coronary flow and stress kinases in the isolated mouse heart. Acta Physiol (Oxf) 220:36–46CrossRef
43.
go back to reference Pantos C, Mourouzis I, Saranteas T, Brozou V, Galanopoulos G, Kostopanagiotou G, Cokkinos DV (2011) Acute T3 treatment protects the heart against ischemia-reperfusion injury via TRα1 receptor. Mol Cell Biochem 353:235–241CrossRefPubMed Pantos C, Mourouzis I, Saranteas T, Brozou V, Galanopoulos G, Kostopanagiotou G, Cokkinos DV (2011) Acute T3 treatment protects the heart against ischemia-reperfusion injury via TRα1 receptor. Mol Cell Biochem 353:235–241CrossRefPubMed
44.
go back to reference Pantos CI, Malliopoulou VA, Mourouzis IS, Karamanoli EP, Paizis IA, Steimberg N, Varonos DD, Cokkinos DV (2002) Long-term thyroxine administration protects the heart in a pattern similar to ischemic preconditioning. Thyroid 12:325–329CrossRefPubMed Pantos CI, Malliopoulou VA, Mourouzis IS, Karamanoli EP, Paizis IA, Steimberg N, Varonos DD, Cokkinos DV (2002) Long-term thyroxine administration protects the heart in a pattern similar to ischemic preconditioning. Thyroid 12:325–329CrossRefPubMed
45.
go back to reference Jeddi S, Zaman J, Ghasemi A (2015) Effects of ischemic postconditioning on the hemodynamic parameters and heart nitric oxide levels of hypothyroid rats. Arq Bras Cardiol 104:136–143PubMedPubMedCentral Jeddi S, Zaman J, Ghasemi A (2015) Effects of ischemic postconditioning on the hemodynamic parameters and heart nitric oxide levels of hypothyroid rats. Arq Bras Cardiol 104:136–143PubMedPubMedCentral
46.
47.
go back to reference Sabatino L, Kusmic C, Nicolini G, Amato R, Casini G, Iervasi G, Balzan S (2016) T3 enhances Ang2 in rat aorta in myocardial I/R: comparison with left ventricle. J Mol Endocrinol 57:139–149CrossRefPubMed Sabatino L, Kusmic C, Nicolini G, Amato R, Casini G, Iervasi G, Balzan S (2016) T3 enhances Ang2 in rat aorta in myocardial I/R: comparison with left ventricle. J Mol Endocrinol 57:139–149CrossRefPubMed
48.
go back to reference Jeddi S, Zaman J, Zadeh-Vakili A, Zarkesh M, Ghasemi A (2016) Involvement of inducible nitric oxide synthase in the loss of cardioprotection by ischemic postconditioning in hypothyroid rats. Gene 580:169–176CrossRefPubMed Jeddi S, Zaman J, Zadeh-Vakili A, Zarkesh M, Ghasemi A (2016) Involvement of inducible nitric oxide synthase in the loss of cardioprotection by ischemic postconditioning in hypothyroid rats. Gene 580:169–176CrossRefPubMed
49.
go back to reference Yuan X, Niu HT, Wang PL, Lu J, Zhao H, Liu SH, Zheng QS, Li CG (2015) Cardioprotective effect of licochalcone D against myocardial ischemia/reperfusion injury in Langendorff-perfused rat hearts. PLoS One 10:e0128375CrossRefPubMedPubMedCentral Yuan X, Niu HT, Wang PL, Lu J, Zhao H, Liu SH, Zheng QS, Li CG (2015) Cardioprotective effect of licochalcone D against myocardial ischemia/reperfusion injury in Langendorff-perfused rat hearts. PLoS One 10:e0128375CrossRefPubMedPubMedCentral
50.
go back to reference Rajagopalan V, Zhang Y, Pol C, Costello C, Seitter S, Lehto A, Savinova OV, Chen YF, Gerdes AM (2017) Modified low-dose triiodo-l-thyronine therapy safely improves function following myocardial ischemia–reperfusion injury. Front Physiol 8:225CrossRefPubMedPubMedCentral Rajagopalan V, Zhang Y, Pol C, Costello C, Seitter S, Lehto A, Savinova OV, Chen YF, Gerdes AM (2017) Modified low-dose triiodo-l-thyronine therapy safely improves function following myocardial ischemia–reperfusion injury. Front Physiol 8:225CrossRefPubMedPubMedCentral
51.
go back to reference Diniz GP, Carneiro-Ramos MS, Barreto-Chaves ML (2009) Angiotensin type 1 receptor mediates thyroid hormone-induced cardiomyocyte hypertrophy through the Akt/GSK-3beta/mTOR signaling pathway. Basic Res Cardiol 104:653–667CrossRefPubMed Diniz GP, Carneiro-Ramos MS, Barreto-Chaves ML (2009) Angiotensin type 1 receptor mediates thyroid hormone-induced cardiomyocyte hypertrophy through the Akt/GSK-3beta/mTOR signaling pathway. Basic Res Cardiol 104:653–667CrossRefPubMed
52.
go back to reference Caruso-Neves C, Kwon SH, Guggino WB (2005) Albumin endocytosis in proximal tubule cells is modulated by angiotensin II through an AT2 receptor-mediated protein kinase B activation. Proc Natl Acad Sci USA 102:17513–17518CrossRefPubMedPubMedCentral Caruso-Neves C, Kwon SH, Guggino WB (2005) Albumin endocytosis in proximal tubule cells is modulated by angiotensin II through an AT2 receptor-mediated protein kinase B activation. Proc Natl Acad Sci USA 102:17513–17518CrossRefPubMedPubMedCentral
53.
go back to reference O’Donnell VB, Chumley PH, Hogg N, Bloodsworth A, Darley-Usmar VM, Freeman BA (1997) Nitric oxide inhibition of lipid peroxidation: kinetics of reaction with lipid peroxylradicals and comparison with alpha-tocopherol. Biochemistry 36:15216–15223CrossRefPubMed O’Donnell VB, Chumley PH, Hogg N, Bloodsworth A, Darley-Usmar VM, Freeman BA (1997) Nitric oxide inhibition of lipid peroxidation: kinetics of reaction with lipid peroxylradicals and comparison with alpha-tocopherol. Biochemistry 36:15216–15223CrossRefPubMed
54.
go back to reference Moncada S, Erusalimsky JD (2002) Does nitric oxide modulate mitochondrial energy generation and apoptosis? Nat Rev Mol Cell Biol 3:214–220CrossRefPubMed Moncada S, Erusalimsky JD (2002) Does nitric oxide modulate mitochondrial energy generation and apoptosis? Nat Rev Mol Cell Biol 3:214–220CrossRefPubMed
55.
go back to reference Rössig L, Fichtlscherer B, Breitschopf K, Haendeler J, Zeiher AM, Mülsch A, Dimmeler S (1999) Nitric oxide inhibits caspase-3 by S-nitrosation in vivo. J Biol Chem 274:6823–6826CrossRefPubMed Rössig L, Fichtlscherer B, Breitschopf K, Haendeler J, Zeiher AM, Mülsch A, Dimmeler S (1999) Nitric oxide inhibits caspase-3 by S-nitrosation in vivo. J Biol Chem 274:6823–6826CrossRefPubMed
56.
go back to reference Trochu JN, Bouhour JB, Kaley G, Hintze TH (2000) Role of endothelium-derived nitric oxide in the regulation of cardiac oxygen metabolism: implications in health and disease. Circ Res 87:1108–1117CrossRefPubMed Trochu JN, Bouhour JB, Kaley G, Hintze TH (2000) Role of endothelium-derived nitric oxide in the regulation of cardiac oxygen metabolism: implications in health and disease. Circ Res 87:1108–1117CrossRefPubMed
57.
go back to reference West MB, Rokosh G, Obal D, Velayutham M, Xuan YT, Hill BG, Keith RJ, Schrader J, Guo Y, Conklin DJ, Prabhu SD, Zweier JL, Bolli R, Bhatnagar A (2008) Cardiac myocyte-specific expression of inducible nitric oxide synthase protects against ischemia/reperfusion injury by preventing mitochondrial permeability transition. Circulation 118:1970–1978CrossRefPubMedPubMedCentral West MB, Rokosh G, Obal D, Velayutham M, Xuan YT, Hill BG, Keith RJ, Schrader J, Guo Y, Conklin DJ, Prabhu SD, Zweier JL, Bolli R, Bhatnagar A (2008) Cardiac myocyte-specific expression of inducible nitric oxide synthase protects against ischemia/reperfusion injury by preventing mitochondrial permeability transition. Circulation 118:1970–1978CrossRefPubMedPubMedCentral
Metadata
Title
Cardioprotective effect of thyroid hormone is mediated by AT2 receptor and involves nitric oxide production via Akt activation in mice
Authors
Ivson Bezerra da Silva
Dayane Aparecida Gomes
Natalia Alenina
Michael Bader
Robson Augusto dos Santos
Maria Luiza M. Barreto-Chaves
Publication date
01-06-2018
Publisher
Springer Japan
Published in
Heart and Vessels / Issue 6/2018
Print ISSN: 0910-8327
Electronic ISSN: 1615-2573
DOI
https://doi.org/10.1007/s00380-017-1101-5

Other articles of this Issue 6/2018

Heart and Vessels 6/2018 Go to the issue