Skip to main content
Top
Published in: Basic Research in Cardiology 6/2009

01-11-2009 | Original Contribution

Angiotensin type 1 receptor mediates thyroid hormone-induced cardiomyocyte hypertrophy through the Akt/GSK-3β/mTOR signaling pathway

Authors: Gabriela Placoná Diniz, Marcela Sorelli Carneiro-Ramos, Maria Luiza Morais Barreto-Chaves

Published in: Basic Research in Cardiology | Issue 6/2009

Login to get access

Abstract

Several studies have implicated the renin angiotensin system in the cardiac hypertrophy induced by thyroid hormone. However, whether Angiotensin type 1 receptor (AT1R) is critically required to the development of T3-induced cardiomyocyte hypertrophy as well as whether the intracellular mechanisms that are triggered by AT1R are able to contribute to this hypertrophy model is unknown. To address these questions, we employed a selective small interfering RNA (siRNA, 50 nM) or an AT1R blocker (Losartan, 1 μM) to evaluate the specific role of this receptor in primary cultures of neonatal cardiomyocytes submitted to T3 (10 nM) treatment. The cardiomyocytes transfected with the AT1R siRNA presented reduced mRNA (90%, P < 0.001) and protein (70%, P < 0.001) expression of AT1R. The AT1R silencing and the AT1R blockade totally prevented the T3-induced cardiomyocyte hypertrophy, as evidenced by lower mRNA expression of atrial natriuretic factor (66%, P < 0.01) and skeletal α-actin (170%, P < 0.01) as well as by reduction in protein synthesis (85%, P < 0.001). The cardiomyocytes treated with T3 demonstrated a rapid activation of Akt/GSK-3β/mTOR signaling pathway, which was completely inhibited by the use of PI3K inhibitors (LY294002, 10 μM and Wortmannin, 200 nM). In addition, we demonstrated that the AT1R mediated the T3-induced activation of Akt/GSK-3β/mTOR signaling pathway, since the AT1R silencing and the AT1R blockade attenuated or totally prevented the activation of this signaling pathway. We also reported that local Angiotensin I/II (Ang I/II) levels (120%, P < 0.05) and the AT1R expression (180%, P < 0.05) were rapidly increased by T3 treatment. These data demonstrate for the first time that the AT1R is a critical mediator to the T3-induced cardiomyocyte hypertrophy as well as to the activation of Akt/GSK-3β/mTOR signaling pathway. These results represent a new insight into the mechanism of T3-induced cardiomyocyte hypertrophy, indicating that the Ang I/II-AT1R-Akt/GSK-3β/mTOR pathway corresponds to a potential mediator of the trophic effect exerted by T3 in cardiomyocytes.
Literature
1.
go back to reference Araujo AS, Schenkel P, Enzveiler AT, Fernandes TR, Partata WA, Llesuy S, Ribeiro MF, Khaper N, Singal PK, Bello-Klein A (2008) The role of redox signaling in cardiac hypertrophy induced by experimental hyperthyroidism. J Mol Endocrinol 41:423–430CrossRefPubMed Araujo AS, Schenkel P, Enzveiler AT, Fernandes TR, Partata WA, Llesuy S, Ribeiro MF, Khaper N, Singal PK, Bello-Klein A (2008) The role of redox signaling in cardiac hypertrophy induced by experimental hyperthyroidism. J Mol Endocrinol 41:423–430CrossRefPubMed
2.
go back to reference Bader M (2002) Role of the local renin-angiotensin system in cardiac damage: a minireview focussing on transgenic animal models. J Mol Cell Cardiol 34:1455–1462CrossRefPubMed Bader M (2002) Role of the local renin-angiotensin system in cardiac damage: a minireview focussing on transgenic animal models. J Mol Cell Cardiol 34:1455–1462CrossRefPubMed
3.
go back to reference Baker KM, Aceto JF (1990) Angiotensin II stimulation of protein synthesis and cell growth in chick heart cells. Am J Physiol 259:H610–H618PubMed Baker KM, Aceto JF (1990) Angiotensin II stimulation of protein synthesis and cell growth in chick heart cells. Am J Physiol 259:H610–H618PubMed
4.
go back to reference Barreto-Chaves ML, Heimann A, Krieger JE (2000) Stimulatory effect of dexamethasone on angiotensin-converting enzyme in neonatal rat cardiac myocytes. Braz J Med Biol Res 33:661–664CrossRefPubMed Barreto-Chaves ML, Heimann A, Krieger JE (2000) Stimulatory effect of dexamethasone on angiotensin-converting enzyme in neonatal rat cardiac myocytes. Braz J Med Biol Res 33:661–664CrossRefPubMed
5.
go back to reference Bergh JJ, Lin HY, Lansing L, Mohamed SN, Davis FB, Mousa S, Davis PJ (2005) Integrin alphaVbeta3 contains a cell surface receptor site for thyroid hormone that is linked to activation of mitogen-activated protein kinase and induction of angiogenesis. Endocrinology 146:2864–2871CrossRefPubMed Bergh JJ, Lin HY, Lansing L, Mohamed SN, Davis FB, Mousa S, Davis PJ (2005) Integrin alphaVbeta3 contains a cell surface receptor site for thyroid hormone that is linked to activation of mitogen-activated protein kinase and induction of angiogenesis. Endocrinology 146:2864–2871CrossRefPubMed
6.
go back to reference Billet S, Aguilar F, Baudry C, Clauser E (2008) Role of angiotensin II AT1 receptor activation in cardiovascular diseases. Kidney Int 74:1379–1384CrossRefPubMed Billet S, Aguilar F, Baudry C, Clauser E (2008) Role of angiotensin II AT1 receptor activation in cardiovascular diseases. Kidney Int 74:1379–1384CrossRefPubMed
7.
go back to reference Carneiro-Ramos MS, Diniz GP, Almeida J, Vieira RL, Pinheiro SV, Santos RA, Barreto-Chaves ML (2007) Cardiac angiotensin II type I and type II receptors are increased in rats submitted to experimental hypothyroidism. J Physiol 583:213–223CrossRefPubMed Carneiro-Ramos MS, Diniz GP, Almeida J, Vieira RL, Pinheiro SV, Santos RA, Barreto-Chaves ML (2007) Cardiac angiotensin II type I and type II receptors are increased in rats submitted to experimental hypothyroidism. J Physiol 583:213–223CrossRefPubMed
8.
go back to reference Carneiro-Ramos MS, Silva VB, Santos RA, Barreto-Chaves ML (2006) Tissue-specific modulation of angiotensin-converting enzyme (ACE) in hyperthyroidism. Peptides 27:2942–2949CrossRefPubMed Carneiro-Ramos MS, Silva VB, Santos RA, Barreto-Chaves ML (2006) Tissue-specific modulation of angiotensin-converting enzyme (ACE) in hyperthyroidism. Peptides 27:2942–2949CrossRefPubMed
9.
go back to reference Chandrasekar B, Mummidi S, Claycomb WC, Mestril R, Nemer M (2005) Interleukin-18 is a pro-hypertrophic cytokine that acts through a phosphatidylinositol 3-kinase-phosphoinositide-dependent kinase-1-Akt-GATA4 signaling pathway in cardiomyocytes. J Biol Chem 280:4553–4567CrossRefPubMed Chandrasekar B, Mummidi S, Claycomb WC, Mestril R, Nemer M (2005) Interleukin-18 is a pro-hypertrophic cytokine that acts through a phosphatidylinositol 3-kinase-phosphoinositide-dependent kinase-1-Akt-GATA4 signaling pathway in cardiomyocytes. J Biol Chem 280:4553–4567CrossRefPubMed
10.
go back to reference Condorelli G, Drusco A, Stassi G, Bellacosa A, Roncarati R, Iaccarino G, Russo MA, Gu Y, Dalton N, Chung C, Latronico MV, Napoli C, Sadoshima J, Croce CM, Ross J (2002) Akt induces enhanced myocardial contractility and cell size in vivo in transgenic mice. Proc Natl Acad Sci USA 99:12333–12338CrossRefPubMed Condorelli G, Drusco A, Stassi G, Bellacosa A, Roncarati R, Iaccarino G, Russo MA, Gu Y, Dalton N, Chung C, Latronico MV, Napoli C, Sadoshima J, Croce CM, Ross J (2002) Akt induces enhanced myocardial contractility and cell size in vivo in transgenic mice. Proc Natl Acad Sci USA 99:12333–12338CrossRefPubMed
11.
go back to reference D’Amore A, Black MJ, Thomas WG (2005) The angiotensin II type 2 receptor causes constitutive growth of cardiomyocytes and does not antagonize angiotensin II type 1 receptor-mediated hypertrophy. Hypertension 46:1347–1354CrossRefPubMed D’Amore A, Black MJ, Thomas WG (2005) The angiotensin II type 2 receptor causes constitutive growth of cardiomyocytes and does not antagonize angiotensin II type 1 receptor-mediated hypertrophy. Hypertension 46:1347–1354CrossRefPubMed
13.
go back to reference Davis PJ, Leonard JL, Davis FB (2008) Mechanisms of nongenomic actions of thyroid hormone. Front Neuroendocrinol 29:211–218PubMed Davis PJ, Leonard JL, Davis FB (2008) Mechanisms of nongenomic actions of thyroid hormone. Front Neuroendocrinol 29:211–218PubMed
14.
16.
go back to reference Diniz GP, Carneiro-Ramos MS, Barreto-Chaves ML (2007) Angiotensin type 1 (AT1) and type 2 (AT2) receptors mediate the increase in TGF-beta1 in thyroid hormone-induced cardiac hypertrophy. Pflugers Arch 454:75–81CrossRefPubMed Diniz GP, Carneiro-Ramos MS, Barreto-Chaves ML (2007) Angiotensin type 1 (AT1) and type 2 (AT2) receptors mediate the increase in TGF-beta1 in thyroid hormone-induced cardiac hypertrophy. Pflugers Arch 454:75–81CrossRefPubMed
17.
18.
go back to reference Dorn GWII, Force T (2005) Protein kinase cascades in the regulation of cardiac hypertrophy. J Clin Invest 115:527–537PubMed Dorn GWII, Force T (2005) Protein kinase cascades in the regulation of cardiac hypertrophy. J Clin Invest 115:527–537PubMed
19.
go back to reference Dzau VJ (1988) Cardiac renin-angiotensin system. Molecular and functional aspects. Am J Med 84:22–27CrossRefPubMed Dzau VJ (1988) Cardiac renin-angiotensin system. Molecular and functional aspects. Am J Med 84:22–27CrossRefPubMed
20.
go back to reference Eguchi S, Frank GD, Mifune M, Inagami T (2003) Metalloprotease-dependent ErbB ligand shedding in mediating EGFR transactivation and vascular remodelling. Biochem Soc Trans 31:1198–1202CrossRefPubMed Eguchi S, Frank GD, Mifune M, Inagami T (2003) Metalloprotease-dependent ErbB ligand shedding in mediating EGFR transactivation and vascular remodelling. Biochem Soc Trans 31:1198–1202CrossRefPubMed
21.
go back to reference Fischer P, Hilfiker-Kleiner D (2007) Survival pathways in hypertrophy and heart failure: the gp130-STAT3 axis. Basic Res Cardiol 102:279–297CrossRefPubMed Fischer P, Hilfiker-Kleiner D (2007) Survival pathways in hypertrophy and heart failure: the gp130-STAT3 axis. Basic Res Cardiol 102:279–297CrossRefPubMed
22.
go back to reference Flusberg DA, Numaguchi Y, Ingber DE (2001) Cooperative control of Akt phosphorylation, bcl-2 expression, and apoptosis by cytoskeletal microfilaments and microtubules in capillary endothelial cells. Mol Biol Cell 12:3087–3094PubMed Flusberg DA, Numaguchi Y, Ingber DE (2001) Cooperative control of Akt phosphorylation, bcl-2 expression, and apoptosis by cytoskeletal microfilaments and microtubules in capillary endothelial cells. Mol Biol Cell 12:3087–3094PubMed
23.
go back to reference Godeny MD, Sayeski PP (2006) ERK1/2 regulates ANG II-dependent cell proliferation via cytoplasmic activation of RSK2 and nuclear activation of elk1. Am J Physiol Cell Physiol 291:C1308–C1317CrossRefPubMed Godeny MD, Sayeski PP (2006) ERK1/2 regulates ANG II-dependent cell proliferation via cytoplasmic activation of RSK2 and nuclear activation of elk1. Am J Physiol Cell Physiol 291:C1308–C1317CrossRefPubMed
24.
go back to reference Golomb E, Abassi ZA, Cuda G, Stylianou M, Panchal VR, Trachewsky D, Keiser HR (1994) Angiotensin II maintains, but does not mediate, isoproterenol-induced cardiac hypertrophy in rats. Am J Physiol 267:H1496–H1506PubMed Golomb E, Abassi ZA, Cuda G, Stylianou M, Panchal VR, Trachewsky D, Keiser HR (1994) Angiotensin II maintains, but does not mediate, isoproterenol-induced cardiac hypertrophy in rats. Am J Physiol 267:H1496–H1506PubMed
25.
go back to reference Griendling KK, Ushio-Fukai M, Lassegue B, Alexander RW (1997) Angiotensin II signaling in vascular smooth muscle. New concepts. Hypertension 29:366–373PubMed Griendling KK, Ushio-Fukai M, Lassegue B, Alexander RW (1997) Angiotensin II signaling in vascular smooth muscle. New concepts. Hypertension 29:366–373PubMed
26.
go back to reference Gupta S, Das B, Sen S (2007) Cardiac hypertrophy: mechanisms and therapeutic opportunities. Antioxid Redox Signal 9:623–652CrossRefPubMed Gupta S, Das B, Sen S (2007) Cardiac hypertrophy: mechanisms and therapeutic opportunities. Antioxid Redox Signal 9:623–652CrossRefPubMed
27.
go back to reference Higuchi S, Ohtsu H, Suzuki H, Shirai H, Frank GD, Eguchi S (2007) Angiotensin II signal transduction through the AT1 receptor: novel insights into mechanisms and pathophysiology. Clin Sci 112:417–428CrossRefPubMed Higuchi S, Ohtsu H, Suzuki H, Shirai H, Frank GD, Eguchi S (2007) Angiotensin II signal transduction through the AT1 receptor: novel insights into mechanisms and pathophysiology. Clin Sci 112:417–428CrossRefPubMed
28.
go back to reference Horiuchi M, Akishita M, Dzau VJ (1999) Recent progress in angiotensin II type 2 receptor research in the cardiovascular system. Hypertension 33:613–621PubMed Horiuchi M, Akishita M, Dzau VJ (1999) Recent progress in angiotensin II type 2 receptor research in the cardiovascular system. Hypertension 33:613–621PubMed
29.
go back to reference Hu LW, Benvenuti LA, Liberti EA, Carneiro-Ramos MS, Barreto-Chaves ML (2003) Thyroxine-induced cardiac hypertrophy: influence of adrenergic nervous system versus renin-angiotensin system on myocyte remodeling. Am J Physiol Regul Integr Comp Physiol 285:R1473–R1480PubMed Hu LW, Benvenuti LA, Liberti EA, Carneiro-Ramos MS, Barreto-Chaves ML (2003) Thyroxine-induced cardiac hypertrophy: influence of adrenergic nervous system versus renin-angiotensin system on myocyte remodeling. Am J Physiol Regul Integr Comp Physiol 285:R1473–R1480PubMed
30.
go back to reference Kenessey A, Ojamaa K (2006) Thyroid hormone stimulates protein synthesis in the cardiomyocyte by activating the Akt-mTOR and p70S6K pathways. J Biol Chem 281:20666–20672CrossRefPubMed Kenessey A, Ojamaa K (2006) Thyroid hormone stimulates protein synthesis in the cardiomyocyte by activating the Akt-mTOR and p70S6K pathways. J Biol Chem 281:20666–20672CrossRefPubMed
31.
go back to reference Kobori H, Ichihara A, Miyashita Y, Hayashi M, Saruta T (1999) Local renin-angiotensin system contributes to hyperthyroidism-induced cardiac hypertrophy. J Endocrinol 160:43–47CrossRefPubMed Kobori H, Ichihara A, Miyashita Y, Hayashi M, Saruta T (1999) Local renin-angiotensin system contributes to hyperthyroidism-induced cardiac hypertrophy. J Endocrinol 160:43–47CrossRefPubMed
32.
go back to reference Kobori H, Ichihara A, Suzuki H, Takenaka T, Miyashita Y, Hayashi M, Saruta T (1997) Role of the renin-angiotensin system in cardiac hypertrophy induced in rats by hyperthyroidism. Am J Physiol 273:H593–H599PubMed Kobori H, Ichihara A, Suzuki H, Takenaka T, Miyashita Y, Hayashi M, Saruta T (1997) Role of the renin-angiotensin system in cardiac hypertrophy induced in rats by hyperthyroidism. Am J Physiol 273:H593–H599PubMed
33.
go back to reference Kuzman JA, Gerdes AM, Kobayashi S, Liang Q (2005) Thyroid hormone activates Akt and prevents serum starvation-induced cell death in neonatal rat cardiomyocytes. J Mol Cell Cardiol 39:841–844CrossRefPubMed Kuzman JA, Gerdes AM, Kobayashi S, Liang Q (2005) Thyroid hormone activates Akt and prevents serum starvation-induced cell death in neonatal rat cardiomyocytes. J Mol Cell Cardiol 39:841–844CrossRefPubMed
34.
go back to reference Kuzman JA, Vogelsang KA, Thomas TA, Gerdes AM (2005) l-Thyroxine activates Akt signaling in the heart. J Mol Cell Cardiol 39:251–258CrossRefPubMed Kuzman JA, Vogelsang KA, Thomas TA, Gerdes AM (2005) l-Thyroxine activates Akt signaling in the heart. J Mol Cell Cardiol 39:251–258CrossRefPubMed
35.
go back to reference Ladenson PW, Bloch KD, Seidman JG (1988) Modulation of atrial natriuretic factor by thyroid hormone: messenger ribonucleic acid and peptide levels in hypothyroid, euthyroid, and hyperthyroid rat atria and ventricles. Endocrinology 123:652–657CrossRefPubMed Ladenson PW, Bloch KD, Seidman JG (1988) Modulation of atrial natriuretic factor by thyroid hormone: messenger ribonucleic acid and peptide levels in hypothyroid, euthyroid, and hyperthyroid rat atria and ventricles. Endocrinology 123:652–657CrossRefPubMed
36.
go back to reference Liang F, Webb P, Marimuthu A, Zhang S, Gardner DG (2003) Triiodothyronine increases brain natriuretic peptide (BNP) gene transcription and amplifies endothelin-dependent BNP gene transcription and hypertrophy in neonatal rat ventricular myocytes. J Biol Chem 278:15073–15083CrossRefPubMed Liang F, Webb P, Marimuthu A, Zhang S, Gardner DG (2003) Triiodothyronine increases brain natriuretic peptide (BNP) gene transcription and amplifies endothelin-dependent BNP gene transcription and hypertrophy in neonatal rat ventricular myocytes. J Biol Chem 278:15073–15083CrossRefPubMed
37.
go back to reference Matsui T, Nagoshi T, Rosenzweig A (2003) Akt and PI 3-kinase signaling in cardiomyocyte hypertrophy and survival. Cell Cycle 2:220–223PubMed Matsui T, Nagoshi T, Rosenzweig A (2003) Akt and PI 3-kinase signaling in cardiomyocyte hypertrophy and survival. Cell Cycle 2:220–223PubMed
38.
go back to reference Morgan HE, Baker KM (1991) Cardiac hypertrophy. Mechanical, neural, and endocrine dependence. Circulation 83:13–25PubMed Morgan HE, Baker KM (1991) Cardiac hypertrophy. Mechanical, neural, and endocrine dependence. Circulation 83:13–25PubMed
39.
go back to reference Morisco C, Zebrowski D, Condorelli G, Tsichlis P, Vatner SF, Sadoshima J (2000) The Akt-glycogen synthase kinase 3beta pathway regulates transcription of atrial natriuretic factor induced by beta-adrenergic receptor stimulation in cardiac myocytes. J Biol Chem 275:14466–14475CrossRefPubMed Morisco C, Zebrowski D, Condorelli G, Tsichlis P, Vatner SF, Sadoshima J (2000) The Akt-glycogen synthase kinase 3beta pathway regulates transcription of atrial natriuretic factor induced by beta-adrenergic receptor stimulation in cardiac myocytes. J Biol Chem 275:14466–14475CrossRefPubMed
40.
go back to reference Moser M (2007) Hypertension treatment guidelines: is it time for an update? J Clin Hypertens 9:9–14 Moser M (2007) Hypertension treatment guidelines: is it time for an update? J Clin Hypertens 9:9–14
41.
go back to reference Okumura H, Nagaya N, Itoh T, Okano I, Hino J, Mori K, Tsukamoto Y, Ishibashi-Ueda H, Miwa S, Tambara K, Toyokuni S, Yutani C, Kangawa K (2004) Adrenomedullin infusion attenuates myocardial ischemia/reperfusion injury through the phosphatidylinositol 3-kinase/Akt-dependent pathway. Circulation 109:242–248CrossRefPubMed Okumura H, Nagaya N, Itoh T, Okano I, Hino J, Mori K, Tsukamoto Y, Ishibashi-Ueda H, Miwa S, Tambara K, Toyokuni S, Yutani C, Kangawa K (2004) Adrenomedullin infusion attenuates myocardial ischemia/reperfusion injury through the phosphatidylinositol 3-kinase/Akt-dependent pathway. Circulation 109:242–248CrossRefPubMed
42.
go back to reference Oudit GY, Penninger JM (2009) Cardiac regulation by phosphoinositide 3-kinases and PTEN. Cardiovasc Res 82:250–260CrossRefPubMed Oudit GY, Penninger JM (2009) Cardiac regulation by phosphoinositide 3-kinases and PTEN. Cardiovasc Res 82:250–260CrossRefPubMed
43.
go back to reference Oudit GY, Sun H, Kerfant BG, Crackower MA, Penninger JM, Backx PH (2004) The role of phosphoinositide-3 kinase and PTEN in cardiovascular physiology and disease. J Mol Cell Cardiol 37:449–471CrossRefPubMed Oudit GY, Sun H, Kerfant BG, Crackower MA, Penninger JM, Backx PH (2004) The role of phosphoinositide-3 kinase and PTEN in cardiovascular physiology and disease. J Mol Cell Cardiol 37:449–471CrossRefPubMed
44.
45.
go back to reference Senbonmatsu T, Ichihara S, Price E Jr, Gaffney FA, Inagami T (2000) Evidence for angiotensin II type 2 receptor-mediated cardiac myocyte enlargement during in vivo pressure overload. J Clin Invest 106:R25–R29CrossRefPubMed Senbonmatsu T, Ichihara S, Price E Jr, Gaffney FA, Inagami T (2000) Evidence for angiotensin II type 2 receptor-mediated cardiac myocyte enlargement during in vivo pressure overload. J Clin Invest 106:R25–R29CrossRefPubMed
46.
go back to reference Sugden PH, Fuller SJ, Weiss SC, Clerk A (2008) Glycogen synthase kinase 3 (GSK3) in the heart: a point of integration in hypertrophic signalling and a therapeutic target? A critical analysis. Br J Pharmacol 153:S137–S153CrossRefPubMed Sugden PH, Fuller SJ, Weiss SC, Clerk A (2008) Glycogen synthase kinase 3 (GSK3) in the heart: a point of integration in hypertrophic signalling and a therapeutic target? A critical analysis. Br J Pharmacol 153:S137–S153CrossRefPubMed
47.
go back to reference Oudit GY, Sun H, Kerfant BG, Crackower MA, Penninger JM, Backx PH (2004) The role of phosphoinositide-3 kinase and PTEN in cardiovascular physiology and disease. J Mol Cell Cardiol 37:449–471CrossRefPubMed Oudit GY, Sun H, Kerfant BG, Crackower MA, Penninger JM, Backx PH (2004) The role of phosphoinositide-3 kinase and PTEN in cardiovascular physiology and disease. J Mol Cell Cardiol 37:449–471CrossRefPubMed
48.
go back to reference Pantos C, Mourouzis I, Markakis K, Tsagoulis N, Panagiotou M, Cokkinos DV (2008) Long-term thyroid hormone administration reshapes left ventricular chamber and improves cardiac function after myocardial infarction in rats. Basic Res Cardiol 103:308–318CrossRefPubMed Pantos C, Mourouzis I, Markakis K, Tsagoulis N, Panagiotou M, Cokkinos DV (2008) Long-term thyroid hormone administration reshapes left ventricular chamber and improves cardiac function after myocardial infarction in rats. Basic Res Cardiol 103:308–318CrossRefPubMed
49.
go back to reference Pantos C, Mourouzis I, Xinaris C, Papadopoulou-Daifoti Z, Cokkinos D (2008) Thyroid hormone and “cardiac metamorphosis”: potential therapeutic implications. Pharmacol Ther 118:277–294CrossRefPubMed Pantos C, Mourouzis I, Xinaris C, Papadopoulou-Daifoti Z, Cokkinos D (2008) Thyroid hormone and “cardiac metamorphosis”: potential therapeutic implications. Pharmacol Ther 118:277–294CrossRefPubMed
50.
go back to reference Paradis P, MacLellan WR, Belaguli NS, Schwartz RJ, Schneider MD (1996) Serum response factor mediates AP-1-dependent induction of the skeletal alpha-actin promoter in ventricular myocytes. J Biol Chem 271:10827–10833CrossRefPubMed Paradis P, MacLellan WR, Belaguli NS, Schwartz RJ, Schneider MD (1996) Serum response factor mediates AP-1-dependent induction of the skeletal alpha-actin promoter in ventricular myocytes. J Biol Chem 271:10827–10833CrossRefPubMed
51.
go back to reference Sadoshima J, Izumo S (1993) Molecular characterization of angiotensin II-induced hypertrophy of cardiac myocytes and hyperplasia of cardiac fibroblasts. Critical role of the AT1 receptor subtype. Circ Res 73:413–423PubMed Sadoshima J, Izumo S (1993) Molecular characterization of angiotensin II-induced hypertrophy of cardiac myocytes and hyperplasia of cardiac fibroblasts. Critical role of the AT1 receptor subtype. Circ Res 73:413–423PubMed
52.
go back to reference Schaub MC, Hefti MA, Harder BA, Eppenberger HM (1997) Various hypertrophic stimuli induce distinct phenotypes in cardiomyocytes. J Mol Med 75:901–920CrossRefPubMed Schaub MC, Hefti MA, Harder BA, Eppenberger HM (1997) Various hypertrophic stimuli induce distinct phenotypes in cardiomyocytes. J Mol Med 75:901–920CrossRefPubMed
53.
go back to reference Schmidt-Ott UM, Ascheim DD (2006) Thyroid hormone and heart failure. Curr Heart Fail Rep 3:114–119CrossRefPubMed Schmidt-Ott UM, Ascheim DD (2006) Thyroid hormone and heart failure. Curr Heart Fail Rep 3:114–119CrossRefPubMed
54.
go back to reference Skurk C, Izumiya Y, Maatz H, Razeghi P, Shiojima I, Sandri M, Sato K, Zeng L, Schiekofer S, Pimentel D, Lecker S, Taegtmeyer H, Goldberg AL, Walsh K (2005) The FOXO3a transcription factor regulates cardiac myocyte size downstream of AKT signaling. J Biol Chem 280:20814–20823CrossRefPubMed Skurk C, Izumiya Y, Maatz H, Razeghi P, Shiojima I, Sandri M, Sato K, Zeng L, Schiekofer S, Pimentel D, Lecker S, Taegtmeyer H, Goldberg AL, Walsh K (2005) The FOXO3a transcription factor regulates cardiac myocyte size downstream of AKT signaling. J Biol Chem 280:20814–20823CrossRefPubMed
55.
go back to reference Suzuki H, Motley ED, Frank GD, Utsunomiya H, Eguchi S (2005) Recent progress in signal transduction research of the angiotensin II type-1 receptor: protein kinases, vascular dysfunction and structural requirement. Curr Med Chem Cardiovasc Hematol Agents 3:305–322CrossRefPubMed Suzuki H, Motley ED, Frank GD, Utsunomiya H, Eguchi S (2005) Recent progress in signal transduction research of the angiotensin II type-1 receptor: protein kinases, vascular dysfunction and structural requirement. Curr Med Chem Cardiovasc Hematol Agents 3:305–322CrossRefPubMed
56.
go back to reference Takahashi T, Taniguchi T, Konishi H, Kikkawa U, Ishikawa Y, Yokoyama M (1999) Activation of Akt/protein kinase B after stimulation with angiotensin II in vascular smooth muscle cells. Am J Physiol 276:H1927–H1934PubMed Takahashi T, Taniguchi T, Konishi H, Kikkawa U, Ishikawa Y, Yokoyama M (1999) Activation of Akt/protein kinase B after stimulation with angiotensin II in vascular smooth muscle cells. Am J Physiol 276:H1927–H1934PubMed
57.
go back to reference Tsuzuki S, Matoba T, Eguchi S, Inagami T (1996) Angiotensin II type 2 receptor inhibits cell proliferation and activates tyrosine phosphatase. Hypertension 28:916–918PubMed Tsuzuki S, Matoba T, Eguchi S, Inagami T (1996) Angiotensin II type 2 receptor inhibits cell proliferation and activates tyrosine phosphatase. Hypertension 28:916–918PubMed
58.
go back to reference Tuxworth WJ Jr, Shiraishi H, Moschella PC, Yamane K, McDermott PJ, Kuppuswamy D (2008) Translational activation of 5′-TOP mRNA in pressure overload myocardium. Basic Res Cardiol 103:41–53CrossRefPubMed Tuxworth WJ Jr, Shiraishi H, Moschella PC, Yamane K, McDermott PJ, Kuppuswamy D (2008) Translational activation of 5′-TOP mRNA in pressure overload myocardium. Basic Res Cardiol 103:41–53CrossRefPubMed
59.
go back to reference Varagic J, Frohlich ED (2002) Local cardiac renin-angiotensin system: hypertension and cardiac failure. J Mol Cell Cardiol 34:1435–1442CrossRefPubMed Varagic J, Frohlich ED (2002) Local cardiac renin-angiotensin system: hypertension and cardiac failure. J Mol Cell Cardiol 34:1435–1442CrossRefPubMed
60.
go back to reference Wakatsuki T, Schlessinger J, Elson EL (2004) The biochemical response of the heart to hypertension and exercise. Trends Biochem Sci 29:609–617CrossRefPubMed Wakatsuki T, Schlessinger J, Elson EL (2004) The biochemical response of the heart to hypertension and exercise. Trends Biochem Sci 29:609–617CrossRefPubMed
61.
go back to reference Wang B, Ouyang J, Xia Z (2006) Effects of triiodo-thyronine on angiotensin-induced cardiomyocyte hypertrophy: reversal of increased beta-myosin heavy chain gene expression. Can J Physiol Pharmacol 84:935–941CrossRefPubMed Wang B, Ouyang J, Xia Z (2006) Effects of triiodo-thyronine on angiotensin-induced cardiomyocyte hypertrophy: reversal of increased beta-myosin heavy chain gene expression. Can J Physiol Pharmacol 84:935–941CrossRefPubMed
62.
go back to reference Wang J, Paradis P, Aries A, Komati H, Lefebvre C, Wang H, Nemer M (2005) Convergence of protein kinase C and JAK-STAT signaling on transcription factor GATA-4. Mol Cell Biol 25:9829–9844CrossRefPubMed Wang J, Paradis P, Aries A, Komati H, Lefebvre C, Wang H, Nemer M (2005) Convergence of protein kinase C and JAK-STAT signaling on transcription factor GATA-4. Mol Cell Biol 25:9829–9844CrossRefPubMed
63.
go back to reference Wu S, Gao J, Ohlemeyer C, Roos D, Niessen H, Kottgen E, Gessner R (2005) Activation of AP-1 through reactive oxygen species by angiotensin II in rat cardiomyocytes. Free Radic Biol Med 39:1601–1610CrossRefPubMed Wu S, Gao J, Ohlemeyer C, Roos D, Niessen H, Kottgen E, Gessner R (2005) Activation of AP-1 through reactive oxygen species by angiotensin II in rat cardiomyocytes. Free Radic Biol Med 39:1601–1610CrossRefPubMed
64.
go back to reference Yin G, Yan C, Berk BC (2003) Angiotensin II signaling pathways mediated by tyrosine kinases. Int J Biochem Cell Biol 35:780–783CrossRefPubMed Yin G, Yan C, Berk BC (2003) Angiotensin II signaling pathways mediated by tyrosine kinases. Int J Biochem Cell Biol 35:780–783CrossRefPubMed
Metadata
Title
Angiotensin type 1 receptor mediates thyroid hormone-induced cardiomyocyte hypertrophy through the Akt/GSK-3β/mTOR signaling pathway
Authors
Gabriela Placoná Diniz
Marcela Sorelli Carneiro-Ramos
Maria Luiza Morais Barreto-Chaves
Publication date
01-11-2009
Publisher
D. Steinkopff-Verlag
Published in
Basic Research in Cardiology / Issue 6/2009
Print ISSN: 0300-8428
Electronic ISSN: 1435-1803
DOI
https://doi.org/10.1007/s00395-009-0043-1

Other articles of this Issue 6/2009

Basic Research in Cardiology 6/2009 Go to the issue