Skip to main content
Top
Published in: European Radiology 9/2016

01-09-2016 | Cardiac

AHA classification of coronary and carotid atherosclerotic plaques by grating-based phase-contrast computed tomography

Authors: Holger Hetterich, Nicole Webber, Marian Willner, Julia Herzen, Lorenz Birnbacher, Alexander Hipp, Mathias Marschner, Sigrid D. Auweter, Christopher Habbel, Ulrich Schüller, Fabian Bamberg, Birgit Ertl-Wagner, Franz Pfeiffer, Tobias Saam

Published in: European Radiology | Issue 9/2016

Login to get access

Abstract

Objectives

To evaluate the potential of grating-based phase-contrast computed-tomography (gb-PCCT) to classify human carotid and coronary atherosclerotic plaques according to modified American Heart Association (AHA) criteria.

Methods

Experiments were carried out at a laboratory-based set-up consisting of X-ray tube (40 kVp), grating-interferometer and detector. Eighteen human carotid and coronary artery specimens were examined. Histopathology served as the standard of reference. Vessel cross-sections were classified as AHA lesion type I/II, III, IV/V, VI, VII or VIII plaques by two independent reviewers blinded to histopathology. Conservative measurements of diagnostic accuracies for the detection and differentiation of plaque types were evaluated.

Results

A total of 127 corresponding gb-PCCT/histopathology sections were analyzed. Based on histopathology, lesion type I/II was present in 12 (9.5 %), III in 18 (14.2 %), IV/V in 38 (29.9 %), VI in 16 (12.6 %), VII in 34 (26.8 %) and VIII in 9 (7.0 %) cross-sections. Sensitivity, specificity and positive and negative predictive value were ≥0.88 for most analyzed plaque types with a good level of agreement (Cohen’s kappa = 0.90). Overall, results were better in carotid (kappa = 0.97) than in coronary arteries (kappa = 0.85). Inter-observer agreement was high with kappa = 0.85, p < 0.0001.

Conclusions

These results indicate that gb-PCCT can reliably classify atherosclerotic plaques according to modified AHA criteria with excellent agreement to histopathology.

Key Points

Different atherosclerotic plaque types display distinct morphological features in phase-contrast CT.
Phase-contrast CT can detect and differentiate AHA plaque types.
Calcifications caused streak artefacts and reduced sensitivity in type VI lesions.
Overall agreement was higher in carotid than in coronary arteries.
Literature
1.
go back to reference Lloyd-Jones D, Adams RJ, Brown TM et al (2010) Executive summary: heart disease and stroke statistics—2010 update: a report from the American Heart Association. Circulation 121:948–954CrossRefPubMed Lloyd-Jones D, Adams RJ, Brown TM et al (2010) Executive summary: heart disease and stroke statistics—2010 update: a report from the American Heart Association. Circulation 121:948–954CrossRefPubMed
2.
go back to reference Stary HC (2000) Natural history and histological classification of atherosclerotic lesions: an update. Arterioscler Thromb Vasc Biol 20:1177–1178CrossRefPubMed Stary HC (2000) Natural history and histological classification of atherosclerotic lesions: an update. Arterioscler Thromb Vasc Biol 20:1177–1178CrossRefPubMed
3.
go back to reference Kolodgie FD, Gold HK, Burke AP et al (2003) Intraplaque hemorrhage and progression of coronary atheroma. N Engl J Med 349:2316–2325CrossRefPubMed Kolodgie FD, Gold HK, Burke AP et al (2003) Intraplaque hemorrhage and progression of coronary atheroma. N Engl J Med 349:2316–2325CrossRefPubMed
4.
go back to reference Virmani R, Kolodgie FD, Burke AP, Farb A, Schwartz SM (2000) Lessons from sudden coronary death: a comprehensive morphological classification scheme for atherosclerotic lesions. Arterioscler Thromb Vasc Biol 20:1262–1275CrossRefPubMed Virmani R, Kolodgie FD, Burke AP, Farb A, Schwartz SM (2000) Lessons from sudden coronary death: a comprehensive morphological classification scheme for atherosclerotic lesions. Arterioscler Thromb Vasc Biol 20:1262–1275CrossRefPubMed
5.
go back to reference Saam T, Hetterich H, Hoffmann V et al (2013) Meta-analysis and systematic review of the predictive value of carotid plaque hemorrhage on cerebrovascular events by magnetic resonance imaging. J Am Coll Cardiol 62:1081–1091CrossRefPubMed Saam T, Hetterich H, Hoffmann V et al (2013) Meta-analysis and systematic review of the predictive value of carotid plaque hemorrhage on cerebrovascular events by magnetic resonance imaging. J Am Coll Cardiol 62:1081–1091CrossRefPubMed
6.
go back to reference Cai JM, Hatsukami TS, Ferguson MS, Small R, Polissar NL, Yuan C (2002) Classification of human carotid atherosclerotic lesions with in vivo multicontrast magnetic resonance imaging. Circulation 106:1368–1373CrossRefPubMed Cai JM, Hatsukami TS, Ferguson MS, Small R, Polissar NL, Yuan C (2002) Classification of human carotid atherosclerotic lesions with in vivo multicontrast magnetic resonance imaging. Circulation 106:1368–1373CrossRefPubMed
7.
go back to reference Esposito-Bauer L, Saam T, Ghodrati I et al (2013) MRI plaque imaging detects carotid plaques with a high risk for future cerebrovascular events in asymptomatic patients. PLoS One 8, e67927CrossRefPubMedPubMedCentral Esposito-Bauer L, Saam T, Ghodrati I et al (2013) MRI plaque imaging detects carotid plaques with a high risk for future cerebrovascular events in asymptomatic patients. PLoS One 8, e67927CrossRefPubMedPubMedCentral
8.
go back to reference Donath T, Pfeiffer F, Bunk O et al (2010) Toward clinical X-ray phase-contrast CT: demonstration of enhanced soft-tissue contrast in human specimen. Invest Radiol 45:445–452PubMed Donath T, Pfeiffer F, Bunk O et al (2010) Toward clinical X-ray phase-contrast CT: demonstration of enhanced soft-tissue contrast in human specimen. Invest Radiol 45:445–452PubMed
9.
go back to reference Pfeiffer F, Herzen J, Willner M et al (2013) Grating-based X-ray phase contrast for biomedical imaging applications. Z Med Phys 23:176–185CrossRefPubMed Pfeiffer F, Herzen J, Willner M et al (2013) Grating-based X-ray phase contrast for biomedical imaging applications. Z Med Phys 23:176–185CrossRefPubMed
10.
go back to reference Momose A, Takeda K, Yoneyama A, Koyama I, Itai T (2001) Phase-contrast X-ray imaging using an x-ray interferometer for biological imaging. Anal Sci 17:i527–i530CrossRef Momose A, Takeda K, Yoneyama A, Koyama I, Itai T (2001) Phase-contrast X-ray imaging using an x-ray interferometer for biological imaging. Anal Sci 17:i527–i530CrossRef
11.
go back to reference Hetterich H, Fill S, Herzen J et al (2013) Grating-based X-ray phase-contrast tomography of atherosclerotic plaque at high photon energies. Z Med Phys 23:194–203CrossRefPubMed Hetterich H, Fill S, Herzen J et al (2013) Grating-based X-ray phase-contrast tomography of atherosclerotic plaque at high photon energies. Z Med Phys 23:194–203CrossRefPubMed
13.
go back to reference Saam T, Herzen J, Hetterich H et al (2013) Translation of atherosclerotic plaque phase-contrast CT imaging from synchrotron radiation to a conventional lab-based X-ray source. PLoS One 8, e73513CrossRefPubMedPubMedCentral Saam T, Herzen J, Hetterich H et al (2013) Translation of atherosclerotic plaque phase-contrast CT imaging from synchrotron radiation to a conventional lab-based X-ray source. PLoS One 8, e73513CrossRefPubMedPubMedCentral
14.
go back to reference Momose A (2005) Recent advances in X-ray phase imaging. Jpn J Appl Phys 44:6355CrossRef Momose A (2005) Recent advances in X-ray phase imaging. Jpn J Appl Phys 44:6355CrossRef
15.
go back to reference Pfeiffer F, Weitkamp T, Bunk O, David C (2006) Phase retrieval and differential phase-contrast imaging with low-brilliance X-ray sources. Nat Phys 2:258–261CrossRef Pfeiffer F, Weitkamp T, Bunk O, David C (2006) Phase retrieval and differential phase-contrast imaging with low-brilliance X-ray sources. Nat Phys 2:258–261CrossRef
16.
go back to reference Bravin A, Coan P, Suortti P (2013) X-ray phase-contrast imaging: from pre-clinical applications towards clinics. Phys Med Biol 58:R1–R35CrossRefPubMed Bravin A, Coan P, Suortti P (2013) X-ray phase-contrast imaging: from pre-clinical applications towards clinics. Phys Med Biol 58:R1–R35CrossRefPubMed
17.
go back to reference Willner M, Herzen J, Grandl S et al (2014) Quantitative breast tissue characterization using grating-based x-ray phase-contrast imaging. Phys Med Biol 59:1557–1571CrossRefPubMed Willner M, Herzen J, Grandl S et al (2014) Quantitative breast tissue characterization using grating-based x-ray phase-contrast imaging. Phys Med Biol 59:1557–1571CrossRefPubMed
18.
go back to reference Weitkamp T, Diaz A, David C et al (2005) X-ray phase imaging with a grating interferometer. Opt Express 13:6296–6304CrossRefPubMed Weitkamp T, Diaz A, David C et al (2005) X-ray phase imaging with a grating interferometer. Opt Express 13:6296–6304CrossRefPubMed
20.
go back to reference Willner M, Bech M, Herzen J et al (2013) Quantitative X-ray phase-contrast computed tomography at 82 keV. Opt Express 21:4155–4166CrossRefPubMed Willner M, Bech M, Herzen J et al (2013) Quantitative X-ray phase-contrast computed tomography at 82 keV. Opt Express 21:4155–4166CrossRefPubMed
21.
go back to reference Donath T, Pfeiffer F, Bunk O et al (2009) Phase-contrast imaging and tomography at 60 keV using a conventional x-ray tube source. Rev Sci Instrum 80:053701CrossRefPubMed Donath T, Pfeiffer F, Bunk O et al (2009) Phase-contrast imaging and tomography at 60 keV using a conventional x-ray tube source. Rev Sci Instrum 80:053701CrossRefPubMed
22.
go back to reference Gaass T, Potdevin G, Bech M et al (2013) Iterative reconstruction for few-view grating-based phase-contrast CT—an in vitro mouse model. EPL (Europhys Lett) 102:48001CrossRef Gaass T, Potdevin G, Bech M et al (2013) Iterative reconstruction for few-view grating-based phase-contrast CT—an in vitro mouse model. EPL (Europhys Lett) 102:48001CrossRef
23.
go back to reference Sarapata A, Willner M, Walter M et al (2015) Quantitative imaging using high-energy X-ray phase-contrast CT with a 70 kVp polychromatic X-ray spectrum. Opt Express 23:523–535CrossRefPubMed Sarapata A, Willner M, Walter M et al (2015) Quantitative imaging using high-energy X-ray phase-contrast CT with a 70 kVp polychromatic X-ray spectrum. Opt Express 23:523–535CrossRefPubMed
24.
go back to reference Obaid DR, Calvert PA, Gopalan D et al (2013) Atherosclerotic plaque composition and classification identified by coronary computed tomography: assessment of computed tomography-generated plaque maps compared with virtual histology intravascular ultrasound and histology. Circ Cardiovasc Imaging 6:655–664CrossRefPubMed Obaid DR, Calvert PA, Gopalan D et al (2013) Atherosclerotic plaque composition and classification identified by coronary computed tomography: assessment of computed tomography-generated plaque maps compared with virtual histology intravascular ultrasound and histology. Circ Cardiovasc Imaging 6:655–664CrossRefPubMed
25.
go back to reference Maurovich-Horvat P, Schlett CL, Alkadhi H et al (2012) Differentiation of early from advanced coronary atherosclerotic lesions: systematic comparison of CT, intravascular US, and optical frequency domain imaging with histopathologic examination in ex vivo human hearts. Radiology 265:393–401CrossRefPubMed Maurovich-Horvat P, Schlett CL, Alkadhi H et al (2012) Differentiation of early from advanced coronary atherosclerotic lesions: systematic comparison of CT, intravascular US, and optical frequency domain imaging with histopathologic examination in ex vivo human hearts. Radiology 265:393–401CrossRefPubMed
26.
go back to reference Li T, Li X, Zhao X et al (2012) Classification of human coronary atherosclerotic plaques using ex vivo high-resolution multicontrast-weighted MRI compared with histopathology. AJR Am J Roentgenol 198:1069–1075CrossRefPubMed Li T, Li X, Zhao X et al (2012) Classification of human coronary atherosclerotic plaques using ex vivo high-resolution multicontrast-weighted MRI compared with histopathology. AJR Am J Roentgenol 198:1069–1075CrossRefPubMed
27.
go back to reference Pohle K, Achenbach S, Macneill B et al (2007) Characterization of non-calcified coronary atherosclerotic plaque by multi-detector row CT: comparison to IVUS. Atherosclerosis 190:174–180CrossRefPubMed Pohle K, Achenbach S, Macneill B et al (2007) Characterization of non-calcified coronary atherosclerotic plaque by multi-detector row CT: comparison to IVUS. Atherosclerosis 190:174–180CrossRefPubMed
28.
go back to reference Pfeiffer F, Bech M, Bunk O et al (2008) Hard-X-ray dark-field imaging using a grating interferometer. Nat Mater 7:134–137CrossRefPubMed Pfeiffer F, Bech M, Bunk O et al (2008) Hard-X-ray dark-field imaging using a grating interferometer. Nat Mater 7:134–137CrossRefPubMed
29.
go back to reference McDonald SA, Marone F, Hintermuller C et al (2009) Advanced phase-contrast imaging using a grating interferometer. J Synchrotron Radiat 16:562–572CrossRefPubMed McDonald SA, Marone F, Hintermuller C et al (2009) Advanced phase-contrast imaging using a grating interferometer. J Synchrotron Radiat 16:562–572CrossRefPubMed
31.
go back to reference Momose A, Yashiro W, Harasse S, Kuwabara H (2011) Four-dimensional X-ray phase tomography with Talbot interferometry and white synchrotron radiation: dynamic observation of a living worm. Opt Express 19:8423–8432CrossRefPubMed Momose A, Yashiro W, Harasse S, Kuwabara H (2011) Four-dimensional X-ray phase tomography with Talbot interferometry and white synchrotron radiation: dynamic observation of a living worm. Opt Express 19:8423–8432CrossRefPubMed
32.
go back to reference Stutman D, Finkenthal M (2012) Glancing angle Talbot-Lau grating interferometers for phase contrast imaging at high x-ray energy. Appl Phys Lett 101:91108CrossRefPubMed Stutman D, Finkenthal M (2012) Glancing angle Talbot-Lau grating interferometers for phase contrast imaging at high x-ray energy. Appl Phys Lett 101:91108CrossRefPubMed
34.
go back to reference Wang Z, Huang Z, Zhang L et al (2011) Low dose reconstruction algorithm for differential phase contrast imaging. J Xray Sci Technol 19:403–415PubMed Wang Z, Huang Z, Zhang L et al (2011) Low dose reconstruction algorithm for differential phase contrast imaging. J Xray Sci Technol 19:403–415PubMed
35.
go back to reference Miao H, Chen L, Bennett EE et al (2013) Motionless phase stepping in X-ray phase contrast imaging with a compact source. Proc Natl Acad Sci U S A 110:19268–19272CrossRefPubMedPubMedCentral Miao H, Chen L, Bennett EE et al (2013) Motionless phase stepping in X-ray phase contrast imaging with a compact source. Proc Natl Acad Sci U S A 110:19268–19272CrossRefPubMedPubMedCentral
Metadata
Title
AHA classification of coronary and carotid atherosclerotic plaques by grating-based phase-contrast computed tomography
Authors
Holger Hetterich
Nicole Webber
Marian Willner
Julia Herzen
Lorenz Birnbacher
Alexander Hipp
Mathias Marschner
Sigrid D. Auweter
Christopher Habbel
Ulrich Schüller
Fabian Bamberg
Birgit Ertl-Wagner
Franz Pfeiffer
Tobias Saam
Publication date
01-09-2016
Publisher
Springer Berlin Heidelberg
Published in
European Radiology / Issue 9/2016
Print ISSN: 0938-7994
Electronic ISSN: 1432-1084
DOI
https://doi.org/10.1007/s00330-015-4143-z

Other articles of this Issue 9/2016

European Radiology 9/2016 Go to the issue