Skip to main content
Top
Published in: European Radiology 9/2016

01-09-2016 | Computer Applications

Normal spectrum of pulmonary parametric response map to differentiate lung collapsibility: distribution of densitometric classifications in healthy adult volunteers

Authors: Mario Silva, Stefan F. Nemec, Valerie Dufresne, Mariaelena Occhipinti, Benedikt H. Heidinger, Ryan Chamberlain, Alexander A. Bankier

Published in: European Radiology | Issue 9/2016

Login to get access

Abstract

Objectives

Pulmonary parametric response map (PRM) was proposed for quantitative densitometric phenotypization of chronic obstructive pulmonary disease. However, little is known about this technique in healthy subjects. The purpose of this study was to describe the normal spectrum of densitometric classification of pulmonary PRM in a group of healthy adults.

Methods

15 healthy volunteers underwent spirometrically monitored chest CT at total lung capacity (TLC) and functional residual capacity (FRC). The paired CT scans were analyzed by PRM for voxel-by-voxel characterization of lung parenchyma according to 4 densitometric classifications: normal lung (TLC ≥ -950 HU, FRC ≥ -856 HU); expiratory low attenuation area (LAA) (TLC ≥ -950 HU, FRC < -856 HU); dual LAA (TLC<-950 HU, FRC < -856 HU); uncharacterized (TLC < -950 HU, FRC ≥ -856 HU).

Results

PRM spectrum was 78 % ± 10 % normal lung, 20 % ± 8 % expiratory LAA, and 1 % ± 1 % dual LAA. PRM was similar between genders, there was moderate correlation between dual LAA and spirometrically assessed TLC (R = 0.531; p = 0.042), and between expiratory LAA and VolExp/Insp ratio (R = -0.572; p = 0.026).

Conclusions

PRM reflects the predominance of normal lung parenchyma in a group of healthy volunteers. However, PRM also confirms the presence of physiological expiratory LAA seemingly related to air trapping and a minimal amount of dual LAA likely reflecting emphysema.

Key points

Co-registration of inspiratory and expiratory computed tomography allows dual-phase densitometry.
Dual-phase co-registered densitometry reflects heterogeneous regional changes in lung function.
Quantification of lung in healthy subjects is needed to set reference values.
Expiratory low attenuation areas <30 % could be considered within normal range.
Literature
1.
go back to reference Moffat BA, Chenevert TL, Lawrence TS et al (2005) Functional diffusion map: a noninvasive MRI biomarker for early stratification of clinical brain tumor response. Proc Natl Acad Sci U S A 102:5524–5529CrossRefPubMedPubMedCentral Moffat BA, Chenevert TL, Lawrence TS et al (2005) Functional diffusion map: a noninvasive MRI biomarker for early stratification of clinical brain tumor response. Proc Natl Acad Sci U S A 102:5524–5529CrossRefPubMedPubMedCentral
2.
go back to reference Galban CJ, Han MK, Boes JL et al (2012) Computed tomography-based biomarker provides unique signature for diagnosis of COPD phenotypes and disease progression. Nat Med 18:1711–1715CrossRefPubMedPubMedCentral Galban CJ, Han MK, Boes JL et al (2012) Computed tomography-based biomarker provides unique signature for diagnosis of COPD phenotypes and disease progression. Nat Med 18:1711–1715CrossRefPubMedPubMedCentral
3.
go back to reference Dufresne V, Knoop C, Van Muylem A et al (2009) Effect of systemic inflammation on inspiratory and limb muscle strength and bulk in cystic fibrosis. Am J Respir Crit Care Med 180:153–158CrossRefPubMed Dufresne V, Knoop C, Van Muylem A et al (2009) Effect of systemic inflammation on inspiratory and limb muscle strength and bulk in cystic fibrosis. Am J Respir Crit Care Med 180:153–158CrossRefPubMed
4.
go back to reference Nemec SF, Molinari F, Dufresne V, Gosset N, Silva M, Bankier AA (2015) Comparison of four software packages for CT lung volumetry in healthy individuals. Eur Radiol. doi:10.1007/s00330-014-3557-3 Nemec SF, Molinari F, Dufresne V, Gosset N, Silva M, Bankier AA (2015) Comparison of four software packages for CT lung volumetry in healthy individuals. Eur Radiol. doi:10.​1007/​s00330-014-3557-3
5.
go back to reference Pellegrino R, Viegi G, Brusasco V et al (2005) Interpretative strategies for lung function tests. Eur Respir J 26:948–968CrossRefPubMed Pellegrino R, Viegi G, Brusasco V et al (2005) Interpretative strategies for lung function tests. Eur Respir J 26:948–968CrossRefPubMed
6.
go back to reference Wanger J, Clausen JL, Coates A et al (2005) Standardisation of the measurement of lung volumes. Eur Respir J 26:511–522CrossRefPubMed Wanger J, Clausen JL, Coates A et al (2005) Standardisation of the measurement of lung volumes. Eur Respir J 26:511–522CrossRefPubMed
7.
go back to reference Bankier AA, O'Donnell CR, Boiselle PM (2008) Quality initiatives. Respiratory instructions for CT examinations of the lungs: a hands-on guide. Radiographics 28:919–931CrossRefPubMed Bankier AA, O'Donnell CR, Boiselle PM (2008) Quality initiatives. Respiratory instructions for CT examinations of the lungs: a hands-on guide. Radiographics 28:919–931CrossRefPubMed
8.
go back to reference Mets OM, Zanen P, Lammers JW et al (2012) Early identification of small airways disease on lung cancer screening CT: comparison of current air trapping measures. Lung 190:629–633CrossRefPubMed Mets OM, Zanen P, Lammers JW et al (2012) Early identification of small airways disease on lung cancer screening CT: comparison of current air trapping measures. Lung 190:629–633CrossRefPubMed
9.
go back to reference Schroeder JD, McKenzie AS, Zach JA et al (2013) Relationships between airflow obstruction and quantitative CT measurements of emphysema, air trapping, and airways in subjects with and without chronic obstructive pulmonary disease. AJR Am J Roentgenol 201:W460–W470CrossRefPubMedPubMedCentral Schroeder JD, McKenzie AS, Zach JA et al (2013) Relationships between airflow obstruction and quantitative CT measurements of emphysema, air trapping, and airways in subjects with and without chronic obstructive pulmonary disease. AJR Am J Roentgenol 201:W460–W470CrossRefPubMedPubMedCentral
10.
go back to reference Bankier AA, De Maertelaer V, Keyzer C, Gevenois PA (1999) Pulmonary emphysema: subjective visual grading versus objective quantification with macroscopic morphometry and thin-section CT densitometry. Radiology 211:851–858CrossRefPubMed Bankier AA, De Maertelaer V, Keyzer C, Gevenois PA (1999) Pulmonary emphysema: subjective visual grading versus objective quantification with macroscopic morphometry and thin-section CT densitometry. Radiology 211:851–858CrossRefPubMed
11.
go back to reference Irion KL, Marchiori E, Hochhegger B et al (2009) CT quantification of emphysema in young subjects with no recognizable chest disease. AJR Am J Roentgenol 192:W90–W96CrossRefPubMed Irion KL, Marchiori E, Hochhegger B et al (2009) CT quantification of emphysema in young subjects with no recognizable chest disease. AJR Am J Roentgenol 192:W90–W96CrossRefPubMed
12.
go back to reference Mets OM, van Hulst RA, Jacobs C, van Ginneken B, de Jong PA (2012) Normal range of emphysema and air trapping on CT in young men. AJR Am J Roentgenol 199:336–340CrossRefPubMed Mets OM, van Hulst RA, Jacobs C, van Ginneken B, de Jong PA (2012) Normal range of emphysema and air trapping on CT in young men. AJR Am J Roentgenol 199:336–340CrossRefPubMed
13.
go back to reference Zach JA, Newell JD Jr, Schroeder J et al (2012) Quantitative computed tomography of the lungs and airways in healthy nonsmoking adults. Investig Radiol 47:596–602CrossRef Zach JA, Newell JD Jr, Schroeder J et al (2012) Quantitative computed tomography of the lungs and airways in healthy nonsmoking adults. Investig Radiol 47:596–602CrossRef
14.
go back to reference Bankier AA, Van Muylem A, Knoop C, Estenne M, Gevenois PA (2001) Bronchiolitis obliterans syndrome in heart-lung transplant recipients: diagnosis with expiratory CT. Radiology 218:533–539CrossRefPubMed Bankier AA, Van Muylem A, Knoop C, Estenne M, Gevenois PA (2001) Bronchiolitis obliterans syndrome in heart-lung transplant recipients: diagnosis with expiratory CT. Radiology 218:533–539CrossRefPubMed
15.
go back to reference Wan ES, Hokanson JE, Murphy JR et al (2011) Clinical and radiographic predictors of GOLD-unclassified smokers in the COPDGene study. Am J Respir Crit Care Med 184:57–63CrossRefPubMedPubMedCentral Wan ES, Hokanson JE, Murphy JR et al (2011) Clinical and radiographic predictors of GOLD-unclassified smokers in the COPDGene study. Am J Respir Crit Care Med 184:57–63CrossRefPubMedPubMedCentral
16.
go back to reference Copley SJ, Wells AU, Hawtin KE et al (2009) Lung morphology in the elderly: comparative CT study of subjects over 75 years old versus those under 55 years old. Radiology 251:566–573CrossRefPubMed Copley SJ, Wells AU, Hawtin KE et al (2009) Lung morphology in the elderly: comparative CT study of subjects over 75 years old versus those under 55 years old. Radiology 251:566–573CrossRefPubMed
17.
go back to reference Lee KW, Chung SY, Yang I, Lee Y, Ko EY, Park MJ (2000) Correlation of aging and smoking with air trapping at thin-section CT of the lung in asymptomatic subjects. Radiology 214:831–836CrossRefPubMed Lee KW, Chung SY, Yang I, Lee Y, Ko EY, Park MJ (2000) Correlation of aging and smoking with air trapping at thin-section CT of the lung in asymptomatic subjects. Radiology 214:831–836CrossRefPubMed
Metadata
Title
Normal spectrum of pulmonary parametric response map to differentiate lung collapsibility: distribution of densitometric classifications in healthy adult volunteers
Authors
Mario Silva
Stefan F. Nemec
Valerie Dufresne
Mariaelena Occhipinti
Benedikt H. Heidinger
Ryan Chamberlain
Alexander A. Bankier
Publication date
01-09-2016
Publisher
Springer Berlin Heidelberg
Published in
European Radiology / Issue 9/2016
Print ISSN: 0938-7994
Electronic ISSN: 1432-1084
DOI
https://doi.org/10.1007/s00330-015-4133-1

Other articles of this Issue 9/2016

European Radiology 9/2016 Go to the issue