Skip to main content
Log in

Temporospatial Heterogeneity of Myocardial Perfusion and Blood Volume in the Porcine Heart Wall

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Spatial heterogeneity of myocardial perfusion has been recognized for many years. Whether this is primarily the result of heterogeneity of parameters such as myocardial metabolism, of intramyocardial mechanical forces, or of vasomotor function within the myocardial microcirculation, is not clear. A practical problem is that it has been almost impossible to measure any two of these parameters simultaneously in the same piece of myocardium so that an unambiguous correlation, much less a cause-and-effect relationship, has been difficult to establish. In this study of six anesthetized pigs, we propose that whole-body computed tomography is a method for providing the simultaneous measurement of heterogeneity of myocardial perfusion (F) and myocardial blood volume (ρ). The first finding was that the empirical relationship ρ=AF+BF0.5 between myocardial blood flow (F) and intramyocardial blood volume (ρ) is maintained over a range of sizes of regions of interest (approximately 1 to 0.125 cm3) within the myocardium of each individual animal despite the spatial heterogeneity of the F and the ρ values. The value of A ranges from 0.014 to 0.021 min and of B ranges from 0.061 to 0.076 ml0.5 g−0.5 min0.5. A second finding was that the pattern of spatial heterogeneity of F and of ρ remained reasonably stable over at least a 1 h period. © 1998 Biomedical Engineering Society.

PAC98: 8745Ft, 8759Fm

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Bassingthwaighte, J. B., R. B. King, and S. A. Roger. Fractal nature of regional myocardial blood flow heterogeneity. Circ. Res.65:578-590, 1989.

    Google Scholar 

  2. Behrenbeck, T., J. H. Kinsey, L. D. Harris, R. A. Robb, and E. L. Ritman. Three-dimensional spatial, density, and temporal resolution of the dynamic spatial reconstructor. J. Comput. Assist. Tomogr.6:1138-1147, 1982.

    Google Scholar 

  3. Chesler, D. A., S. J. Riederer, and N. J. Pelc. Noise due to photon counting statistics in computed tomography. J. Comput. Assist. Tomogr.1:64-74, 1977.

    Google Scholar 

  4. Falsetti, H. L., R. J. Carroll, and M. L. Marcus. Temporal heterogeneity of myocardial blood flow in anesthetized dogs. Circulation52:848-853, 1975.

    Google Scholar 

  5. Feigl, E. O. Coronary physiology. Physiol. Rev.63:1-205, 1983.

    Google Scholar 

  6. Franzen, D., R. S. Conway, H. Zhang, E. H. Sonnenblick, and C. Eng. Spatial heterogeneity of local blood flow and metabolite content in dog hearts. Am. J. Physiol.254:H344- H353, 1988.

    Google Scholar 

  7. Gonzalez, F., and J. B. Bassingthwaighte. Heterogeneities in regional volumes of distribution and flows in rabbit heart. Am. J. Physiol.258:H1012-H1024, 1990.

    Google Scholar 

  8. Iversen, P. O. Evidence for long term fluctuation in regional blood flow within the rabbit left ventricle. Acta Physiol. Scand.146:329-339, 1992.

    Google Scholar 

  9. Iversen, P. O., and G. Nicolaysen. Fractals describe blood flow heterogeneity with skeletal muscle and with myocardium. Am. J. Physiol.268:H112-H116, 1995.

    Google Scholar 

  10. Jorgensen, S. M., S. V. Whitlock, P. J. Thomas, R. W. Roessler, and E. L. Ritman. The dynamic spatial reconstructor: A high speed, stop action, 3-D, digital radiographic imager of moving internal organs and blood. Proc. SPIE1346:180-191, 1990.

    Google Scholar 

  11. Katz, A. M., and P. B. Katz. Homogeneity out of heterogeneity. Circulation79:712-717, 1989.

    Google Scholar 

  12. King, R. B., and J. B. Bassingthwaighte. Temporal fluctuations in regional myocardial flows. Pflugers Arch.413:336- 342, 1989.

    Google Scholar 

  13. King, R. B., L. J. Weissman, and J. B. Bassingthwaighte. Fractal description for spatial statistics. Ann. Biomed. Eng.18:111-121, 1990.

    Google Scholar 

  14. Kuo, L., W. M. Chilian, and M. J. Davis. Interaction of pressure-and flow-induced responses in porcine coronary resistance vessels. Am. J. Physiol.261:H1706-H1715, 1991.

    Google Scholar 

  15. Liu, Y., R. C. Bahn, E. L. Ritman, and P. E. Beighley. Microvascular blood volume-to-flow relationships in porcine heart wall: Whole body CT evaluation in vivo. Am. J. Physiol.269:H1820-H1826, 1995.

    Google Scholar 

  16. Matsumoto, T., M. Goto, H. Tachibana, Y. Ogasawara, K. Tsujioka, and F. Kajiya. Microheterogeneity of myocardial blood flow in rabbit hearts during normoxic and hypoxic states. Am. J. Physiol.270:H435-H441, 1996.

    Google Scholar 

  17. Mori, H., M. Chujo, S. Haruyama, H. Sakamato, Y. Shinozaki, M. Uddin-Mohammed, A. Iida, and H. Nakazawa. Local continuity of myocardial blood flow studied by monochromatic synchrotron radiation-Excited x-ray fluorescence spectrometry. Circ. Res.76:1008-1100, 1995.

    Google Scholar 

  18. Potter, R. F., and A. C. Groom. Capillary diameter and geometry in cardiac and skeletal muscle studied by means of corrosion casts. Microvasc. Res.25:68-84, 1983.

    Google Scholar 

  19. Pries, A. R., T. W. Secomb, and P. Gaehtgens. Structure and hemodynamics of microvascular networks: Heterogeneity and correlations. Am. J. Physiol.209:H1713-H1722, 1995.

    Google Scholar 

  20. Pries, A. R., T. W. Secomb, and P. Gaehtgens. Relationship between structural and hemodynamic heterogeneity in microvascular networks. Am. J. Physiol.270:H545-H533, 1996.

    Google Scholar 

  21. Ritman, E. L. Computed tomography evaluation of regional increases in microvascular permeability after reperfusion of locally ischemic myocardium in intact pigs. Acad. Radiol.2:952-958, 1995.

    Google Scholar 

  22. Sestier, F. J., R. R. Kieldenterger, and G. A. Klassen. Role of autoregulation in spatial and temporal perfusion heterogeneity of canine myocardium. Am. J. Physiol.235:H64-H71, 1978.

    Google Scholar 

  23. Shu, N., and E. L. Ritman. Heterogeneity of intramyocardial blood flow, blood volume and transit time-fractal analysis of fast CT images. Physiologist32:188, 1989.

    Google Scholar 

  24. Van Bavel, E., and J. A. E. Spaan. Branching patterns in the porcine coronary arterial tree. Estimation of flow heterogeneity. Circ. Res.71:1200-1212, 1992.

    Google Scholar 

  25. van Beek, J. H., S. A. Roger, and J. B. Bassingthwaighte. Regional myocardial flow heterogeneity explained with fractal networks. Am. J. Physiol.257:H1670-H1680, 1989.

    Google Scholar 

  26. Wang, T., X. Wu, N. Chung, and E. L. Ritman. Myocardial blood flow estimated by synchronous, multislice, high-speed computed tomography. IEEE Trans. Med. Imaging8:70-77, 1989.

    Google Scholar 

  27. Wolpers, H. G., A. Hoeft, H. Korb, P. R. Lichtlen, and G. Helliji. Heterogeneity of myocardial blood flow under normal conditions and its dependance on arterial PO2. Am. J. Physiol.258:H549-H555, 1990.

    Google Scholar 

  28. Wu, X. S., D. L. Ewert, Y. H. Liu, and E. L. Ritman. In vivorelation of intramyocardial blood volume to myocardial perfusion: Evidence supporting microvascular site for autoregulation. Circulation85:730-737, 1992.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ritman, E.L. Temporospatial Heterogeneity of Myocardial Perfusion and Blood Volume in the Porcine Heart Wall. Annals of Biomedical Engineering 26, 519–525 (1998). https://doi.org/10.1114/1.98

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1114/1.98

Navigation