Skip to main content
Top
Published in: European Journal of Nuclear Medicine and Molecular Imaging 1/2010

01-08-2010

Magnetic resonance perfusion imaging without contrast media

Authors: Petros Martirosian, Andreas Boss, Christina Schraml, Nina F. Schwenzer, Hansjörg Graf, Claus D. Claussen, Fritz Schick

Published in: European Journal of Nuclear Medicine and Molecular Imaging | Special Issue 1/2010

Login to get access

Abstract

Purpose

Principles of magnetic resonance imaging techniques providing perfusion-related contrast weighting without administration of contrast media are reported and analysed systematically. Especially common approaches to arterial spin labelling (ASL) perfusion imaging allowing quantitative assessment of specific perfusion rates are described in detail. The potential of ASL for perfusion imaging was tested in several types of tissue.

Methods

After a systematic comparison of technical aspects of continuous and pulsed ASL techniques the standard kinetic model and tissue properties of influence to quantitative measurements of perfusion are reported. For the applications demonstrated in this paper a flow-sensitive alternating inversion recovery (FAIR) ASL perfusion preparation approach followed by true fast imaging with steady precession (true FISP) data recording was developed and implemented on whole-body scanners operating at 0.2, 1.5 and 3 T for quantitative perfusion measurement in various types of tissue.

Results

ASL imaging provides a non-invasive tool for assessment of tissue perfusion rates in vivo. Images recorded from kidney, lung, brain, salivary gland and thyroid gland provide a spatial resolution of a few millimetres and sufficient signal to noise ratio in perfusion maps after 2–5 min of examination time.

Conclusions

Newly developed ASL techniques provide especially high image quality and quantitative perfusion maps in tissues with relatively high perfusion rates (as also present in many tumours). Averaging of acquisitions and image subtraction procedures are mandatory, leading to the necessity of synchronization of data recording to breathing in abdominal and thoracic organs.
Literature
1.
go back to reference Thews G, Vaupel P. Autonomic functions in human physiology. Berlin: Springer; 1985. Thews G, Vaupel P. Autonomic functions in human physiology. Berlin: Springer; 1985.
2.
go back to reference Prinzmetal M, Simkin B, Bergman HC, Kruger HE. Studies on the coronary circulation. II. The collateral circulation of the normal human heart by coronary perfusion with radioactive erythrocytes and glass spheres. Am Heart J 1947;33:420–42.CrossRefPubMed Prinzmetal M, Simkin B, Bergman HC, Kruger HE. Studies on the coronary circulation. II. The collateral circulation of the normal human heart by coronary perfusion with radioactive erythrocytes and glass spheres. Am Heart J 1947;33:420–42.CrossRefPubMed
3.
go back to reference Hamlin RL, Marsland WP, Smith CR, Sapirstein LA. Fractional distribution of right ventricular output in the lungs of dogs. Circ Res 1962;10:763–6.PubMed Hamlin RL, Marsland WP, Smith CR, Sapirstein LA. Fractional distribution of right ventricular output in the lungs of dogs. Circ Res 1962;10:763–6.PubMed
4.
go back to reference Kety SS, Schmidt CF. The nitrous oxide method for the quantitative determination of cerebral blood flow in man: theory, procedure and normal values. J Clin Invest 1948;27:476–83.CrossRef Kety SS, Schmidt CF. The nitrous oxide method for the quantitative determination of cerebral blood flow in man: theory, procedure and normal values. J Clin Invest 1948;27:476–83.CrossRef
5.
go back to reference Ingvar DH, Lassen NH. Regional blood flow of the cerebral cortex determined by krypton85. Acta Physiol Scand 1962;54:325–38.CrossRef Ingvar DH, Lassen NH. Regional blood flow of the cerebral cortex determined by krypton85. Acta Physiol Scand 1962;54:325–38.CrossRef
6.
go back to reference Ter-Pogossian MM, Phelps ME, Hoffman EJ, Mullani NA. A positron-emission transaxial tomograph for nuclear imaging (PETT). Radiology 1975;114:89–98.PubMed Ter-Pogossian MM, Phelps ME, Hoffman EJ, Mullani NA. A positron-emission transaxial tomograph for nuclear imaging (PETT). Radiology 1975;114:89–98.PubMed
7.
go back to reference Raichle ME, Martin WR, Herscovitch P, Mintun MA, Markham J. Brain blood flow measured with intravenous H2(15)O. II. Implementation and validation. J Nucl Med 1983;24:790–8.PubMed Raichle ME, Martin WR, Herscovitch P, Mintun MA, Markham J. Brain blood flow measured with intravenous H2(15)O. II. Implementation and validation. J Nucl Med 1983;24:790–8.PubMed
8.
go back to reference Frackowiak RS, Lenzi GL, Jones T, Heather JD. Quantitative measurement of regional cerebral blood flow and oxygen metabolism in man using 15O and positron emission tomography: theory, procedure, and normal values. J Comput Assist Tomogr 1980;4:727–36.CrossRefPubMed Frackowiak RS, Lenzi GL, Jones T, Heather JD. Quantitative measurement of regional cerebral blood flow and oxygen metabolism in man using 15O and positron emission tomography: theory, procedure, and normal values. J Comput Assist Tomogr 1980;4:727–36.CrossRefPubMed
9.
go back to reference Villringer A, Rosen BR, Belliveau JW, Ackerman JL, Lauffer RB, Buxton RB, et al. Dynamic imaging with lanthanide chelates in normal brain: contrast due to magnetic susceptibility effects. Magn Reson Med 1988;6:164–74.CrossRefPubMed Villringer A, Rosen BR, Belliveau JW, Ackerman JL, Lauffer RB, Buxton RB, et al. Dynamic imaging with lanthanide chelates in normal brain: contrast due to magnetic susceptibility effects. Magn Reson Med 1988;6:164–74.CrossRefPubMed
10.
go back to reference Rosen BR, Belliveau JW, Vevea JM, Brady TJ. Perfusion imaging with NMR contrast agents. Magn Reson Med 1990;14:249–65.CrossRefPubMed Rosen BR, Belliveau JW, Vevea JM, Brady TJ. Perfusion imaging with NMR contrast agents. Magn Reson Med 1990;14:249–65.CrossRefPubMed
11.
go back to reference Zierler KL. Theoretical basis of indicator-dilution methods for measuring flow and volume. Circ Res 1962;10:393–407. Zierler KL. Theoretical basis of indicator-dilution methods for measuring flow and volume. Circ Res 1962;10:393–407.
12.
go back to reference Zierler KL. Equations for measuring blood flow by external monitoring of radioisotopes. Circ Res 1965;16:309–21.PubMed Zierler KL. Equations for measuring blood flow by external monitoring of radioisotopes. Circ Res 1965;16:309–21.PubMed
13.
go back to reference Axel L. Cerebral blood flow determination by rapid-sequence computed tomography: theoretical analysis. Radiology 1980;137:679–86.PubMed Axel L. Cerebral blood flow determination by rapid-sequence computed tomography: theoretical analysis. Radiology 1980;137:679–86.PubMed
14.
go back to reference Le Bihan D, Breton E, Lallemand D, Grenier P, Cabanis E, Laval-Jeantet M. MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders. Radiology 1986;161:401–7.PubMed Le Bihan D, Breton E, Lallemand D, Grenier P, Cabanis E, Laval-Jeantet M. MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders. Radiology 1986;161:401–7.PubMed
15.
go back to reference Le Bihan D, Breton E, Lallemand D, Aubin M, Vignaud J, Laval-Jeantet M. Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging. Radiology 1988;168:497–505.PubMed Le Bihan D, Breton E, Lallemand D, Aubin M, Vignaud J, Laval-Jeantet M. Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging. Radiology 1988;168:497–505.PubMed
16.
go back to reference Prasad PV, Edelman RR, Epstein FH. Noninvasive evaluation of intrarenal oxygenation with BOLD MRI. Circulation 1996;94:3271–5.PubMed Prasad PV, Edelman RR, Epstein FH. Noninvasive evaluation of intrarenal oxygenation with BOLD MRI. Circulation 1996;94:3271–5.PubMed
17.
go back to reference Norris DG. Principles of magnetic resonance assessment of brain function. J Magn Reson Imaging 2006;23:794–807.CrossRefPubMed Norris DG. Principles of magnetic resonance assessment of brain function. J Magn Reson Imaging 2006;23:794–807.CrossRefPubMed
18.
go back to reference Williams DS, Detre JA, Leigh JS, Koretsky AP. Magnetic resonance imaging of perfusion using spin inversion of arterial water. Proc Natl Acad Sci U S A 1992;89:212–6.CrossRefPubMed Williams DS, Detre JA, Leigh JS, Koretsky AP. Magnetic resonance imaging of perfusion using spin inversion of arterial water. Proc Natl Acad Sci U S A 1992;89:212–6.CrossRefPubMed
19.
20.
go back to reference Dixon WT, Du LN, Faul DD, Gado M, Rossnick S. Projection angiograms of blood labeled by adiabatic fast passage. Magn Reson Med 1986;3:454–62.CrossRefPubMed Dixon WT, Du LN, Faul DD, Gado M, Rossnick S. Projection angiograms of blood labeled by adiabatic fast passage. Magn Reson Med 1986;3:454–62.CrossRefPubMed
21.
go back to reference Pekar J, Jezzard P, Roberts DA, Leigh JS, Frank JA, McLaughlin AC. Perfusion imaging with compensation for asymmetric magnetization transfer effects. Magn Reson Med 1996;35:70–9.CrossRefPubMed Pekar J, Jezzard P, Roberts DA, Leigh JS, Frank JA, McLaughlin AC. Perfusion imaging with compensation for asymmetric magnetization transfer effects. Magn Reson Med 1996;35:70–9.CrossRefPubMed
22.
go back to reference Alsop DC, Detre JA. Multisection cerebral blood flow MR imaging with continuous arterial spin labeling. Radiology 1998;208:410–6.PubMed Alsop DC, Detre JA. Multisection cerebral blood flow MR imaging with continuous arterial spin labeling. Radiology 1998;208:410–6.PubMed
23.
go back to reference Talagala SL, Barbier EL, Williams DS, Silva AC, Koretsky AP. Multi-slice perfusion MRI using continuous arterial water labeling controlling for MT effects with simultaneous proximal and distal RF irradiation. In: Proc 6th Annual Meeting ISMRM, Sydney; 1998. Talagala SL, Barbier EL, Williams DS, Silva AC, Koretsky AP. Multi-slice perfusion MRI using continuous arterial water labeling controlling for MT effects with simultaneous proximal and distal RF irradiation. In: Proc 6th Annual Meeting ISMRM, Sydney; 1998.
24.
go back to reference Zhang WG, Silva AC, Williams DS, Koretsky AP. NMR measurement of perfusion using arterial spin labeling without saturation of macromolecular spins. Magn Reson Med 1995;33:370–6.CrossRefPubMed Zhang WG, Silva AC, Williams DS, Koretsky AP. NMR measurement of perfusion using arterial spin labeling without saturation of macromolecular spins. Magn Reson Med 1995;33:370–6.CrossRefPubMed
25.
go back to reference Pohmann R, Budde J, Auerbach EJ, Adriany G, Uğurbil K. Theoretical and experimental evaluation of continuous arterial spin labeling techniques. Magn Reson Med 2010;63:438–46.CrossRefPubMed Pohmann R, Budde J, Auerbach EJ, Adriany G, Uğurbil K. Theoretical and experimental evaluation of continuous arterial spin labeling techniques. Magn Reson Med 2010;63:438–46.CrossRefPubMed
26.
go back to reference Golay X, Hendrikse J, Tchoyoson CC. Perfusion imaging using arterial spin labeling. Top Magn Reson Imaging 2004;15:10–27.CrossRefPubMed Golay X, Hendrikse J, Tchoyoson CC. Perfusion imaging using arterial spin labeling. Top Magn Reson Imaging 2004;15:10–27.CrossRefPubMed
27.
go back to reference Petersen ET, Zimine I, Ho YL, Golay X. Non-invasive measurement of perfusion: a critical review of arterial spin labelling techniques. Br J Radiol 2006;79:688–701.CrossRefPubMed Petersen ET, Zimine I, Ho YL, Golay X. Non-invasive measurement of perfusion: a critical review of arterial spin labelling techniques. Br J Radiol 2006;79:688–701.CrossRefPubMed
28.
go back to reference Edelman RR, Siewert B, Darby DG, Thangaraj V, Nobre AC, Mesulam MM, et al. Quantitative mapping of cerebral blood flow and functional localization with echo-planar MR imaging and signal targeting with alternating radio-frequency. Radiology 1994;192:513–20.PubMed Edelman RR, Siewert B, Darby DG, Thangaraj V, Nobre AC, Mesulam MM, et al. Quantitative mapping of cerebral blood flow and functional localization with echo-planar MR imaging and signal targeting with alternating radio-frequency. Radiology 1994;192:513–20.PubMed
29.
go back to reference Wong EC, Buxton RB, Frank LR. Implementation of quantitative perfusion imaging techniques for functional brain mapping using pulsed arterial spin labeling. NMR Biomed 1997;10:237–49.CrossRefPubMed Wong EC, Buxton RB, Frank LR. Implementation of quantitative perfusion imaging techniques for functional brain mapping using pulsed arterial spin labeling. NMR Biomed 1997;10:237–49.CrossRefPubMed
30.
go back to reference Golay X, Stuber M, Pruessmann KP, Meier D, Boesiger P. Transfer insensitive inversion technique (TILT): application to multislice functional perfusion imaging. J Magn Reson Imaging 1999;9:454–61.CrossRefPubMed Golay X, Stuber M, Pruessmann KP, Meier D, Boesiger P. Transfer insensitive inversion technique (TILT): application to multislice functional perfusion imaging. J Magn Reson Imaging 1999;9:454–61.CrossRefPubMed
31.
go back to reference Kwong KK, Chesler DA, Weisskoff RM, Donahue KM, Davis TL, Ostergaard L, et al. MR perfusion studies with T1-weighted echo planar imaging. Magn Reson Med 1995;34:878–87.CrossRefPubMed Kwong KK, Chesler DA, Weisskoff RM, Donahue KM, Davis TL, Ostergaard L, et al. MR perfusion studies with T1-weighted echo planar imaging. Magn Reson Med 1995;34:878–87.CrossRefPubMed
32.
go back to reference Kim SG. Quantification of relative cerebral blood flow change by flow-sensitive alternating inversion recovery (FAIR) technique: application to functional mapping. Magn Reson Med 1995;34:293–301.CrossRefPubMed Kim SG. Quantification of relative cerebral blood flow change by flow-sensitive alternating inversion recovery (FAIR) technique: application to functional mapping. Magn Reson Med 1995;34:293–301.CrossRefPubMed
33.
go back to reference Schwarzbauer C, Morrissey SP, Haase A. Quantitative magnetic resonance imaging of perfusion using magnetic labeling of water proton spins within the detection slice. Magn Reson Med 1996;35:540–6.PubMed Schwarzbauer C, Morrissey SP, Haase A. Quantitative magnetic resonance imaging of perfusion using magnetic labeling of water proton spins within the detection slice. Magn Reson Med 1996;35:540–6.PubMed
34.
go back to reference Helpern JA, Branch CA, Yongbi M, Huang N. Perfusion imaging by un-inverted flow-sensitive inversion recovery (UNFAIR). Magn Reson Imaging 1997;15:135–9.CrossRefPubMed Helpern JA, Branch CA, Yongbi M, Huang N. Perfusion imaging by un-inverted flow-sensitive inversion recovery (UNFAIR). Magn Reson Imaging 1997;15:135–9.CrossRefPubMed
35.
go back to reference Berr SS, Mai VM. Extraslice spin tagging (EST) magnetic resonance imaging for the determination of perfusion. J Magn Reson Imaging 1999;9:146–50.CrossRefPubMed Berr SS, Mai VM. Extraslice spin tagging (EST) magnetic resonance imaging for the determination of perfusion. J Magn Reson Imaging 1999;9:146–50.CrossRefPubMed
36.
go back to reference Zhou J, Mori S, van Zijl PC. FAIR excluding radiation damping (FAIRER). Magn Reson Med 1998;40:712–9.CrossRefPubMed Zhou J, Mori S, van Zijl PC. FAIR excluding radiation damping (FAIRER). Magn Reson Med 1998;40:712–9.CrossRefPubMed
37.
go back to reference Mai VM, Berr SS. MR perfusion imaging of pulmonary parenchyma using pulsed arterial spin labeling techniques: FAIRER and FAIR. J Magn Reson Imaging 1999;9:483–7.CrossRefPubMed Mai VM, Berr SS. MR perfusion imaging of pulmonary parenchyma using pulsed arterial spin labeling techniques: FAIRER and FAIR. J Magn Reson Imaging 1999;9:483–7.CrossRefPubMed
38.
go back to reference Lai S, Wang J, Jahng GH. FAIR exempting separate T(1) measurement (FAIREST): a novel technique for online quantitative perfusion imaging and multi-contrast fMRI. NMR Biomed 2001;14:507–16.CrossRefPubMed Lai S, Wang J, Jahng GH. FAIR exempting separate T(1) measurement (FAIREST): a novel technique for online quantitative perfusion imaging and multi-contrast fMRI. NMR Biomed 2001;14:507–16.CrossRefPubMed
39.
go back to reference Hendrikse J, van der Grond J, Lu H, van Zijl PC, Golay X. Flow territory mapping of the cerebral arteries with regional perfusion MRI. Stroke 2004;35:882–5.CrossRefPubMed Hendrikse J, van der Grond J, Lu H, van Zijl PC, Golay X. Flow territory mapping of the cerebral arteries with regional perfusion MRI. Stroke 2004;35:882–5.CrossRefPubMed
40.
go back to reference Edelman RR, Chen Q. EPISTAR MRI: Multislice mapping of cerebral blood flow. Magn Reson Med 1998;40:800–5.CrossRefPubMed Edelman RR, Chen Q. EPISTAR MRI: Multislice mapping of cerebral blood flow. Magn Reson Med 1998;40:800–5.CrossRefPubMed
41.
go back to reference Ogg RJ, Kingsley PB, Taylor JS. WET, a T1- and B1-insensitive water-suppression method for in vivo localized 1H NMR spectroscopy. J Magn Reson B 1994;104:1–10.CrossRefPubMed Ogg RJ, Kingsley PB, Taylor JS. WET, a T1- and B1-insensitive water-suppression method for in vivo localized 1H NMR spectroscopy. J Magn Reson B 1994;104:1–10.CrossRefPubMed
42.
go back to reference Golay X, Petersen ET, Hui F. Pulsed star labeling of arterial regions (PULSAR): a robust regional perfusion technique for high field imaging. Magn Reson Med 2005;53:15–21.CrossRefPubMed Golay X, Petersen ET, Hui F. Pulsed star labeling of arterial regions (PULSAR): a robust regional perfusion technique for high field imaging. Magn Reson Med 2005;53:15–21.CrossRefPubMed
43.
go back to reference Petersen ET, Lim T, Golay X. Model-free arterial spin labeling quantification approach for perfusion MRI. Magn Reson Med 2006;55:219–32.CrossRefPubMed Petersen ET, Lim T, Golay X. Model-free arterial spin labeling quantification approach for perfusion MRI. Magn Reson Med 2006;55:219–32.CrossRefPubMed
44.
go back to reference Gowland P, Mansfield P. Accurate measurement of T1 in vivo in less than 3 seconds using echo-planar imaging. Magn Reson Med 1993;30:351–4.CrossRefPubMed Gowland P, Mansfield P. Accurate measurement of T1 in vivo in less than 3 seconds using echo-planar imaging. Magn Reson Med 1993;30:351–4.CrossRefPubMed
45.
go back to reference Luh WM, Wong EC, Bandettini PA, Hyde JS. QUIPSS II with thin-slice TI1 periodic saturation: a method for improving accuracy of quantitative perfusion imaging using pulsed arterial spin labeling. Magn Reson Med 1999;41:1246–54.CrossRefPubMed Luh WM, Wong EC, Bandettini PA, Hyde JS. QUIPSS II with thin-slice TI1 periodic saturation: a method for improving accuracy of quantitative perfusion imaging using pulsed arterial spin labeling. Magn Reson Med 1999;41:1246–54.CrossRefPubMed
46.
go back to reference Buxton RB, Frank LR, Wong EC, Siewert B, Warach S, Edelman RR. A general kinetic model for quantitative perfusion imaging with arterial spin labeling. Magn Reson Med 1998;40:383–96.CrossRefPubMed Buxton RB, Frank LR, Wong EC, Siewert B, Warach S, Edelman RR. A general kinetic model for quantitative perfusion imaging with arterial spin labeling. Magn Reson Med 1998;40:383–96.CrossRefPubMed
47.
go back to reference Wong EC, Buxton RB, Frank LR. Quantitative imaging of perfusion using a single subtraction (QUIPSS and QUIPSS II). Magn Reson Med 1998;39:702–8.CrossRefPubMed Wong EC, Buxton RB, Frank LR. Quantitative imaging of perfusion using a single subtraction (QUIPSS and QUIPSS II). Magn Reson Med 1998;39:702–8.CrossRefPubMed
48.
go back to reference Chen Q, Siewert B, Bly BM, Warach S, Edelman RR. STAR-HASTE: perfusion imaging without magnetic susceptibility artifact. Magn Reson Med 1997;38:404–8.CrossRefPubMed Chen Q, Siewert B, Bly BM, Warach S, Edelman RR. STAR-HASTE: perfusion imaging without magnetic susceptibility artifact. Magn Reson Med 1997;38:404–8.CrossRefPubMed
49.
go back to reference Karger N, Biederer J, Lüsse S, Grimm J, Steffens JC, Heller M, et al. Quantitation of renal perfusion using arterial spin labeling with FAIR-UFLARE. Magn Reson Imaging 2000;18:641–7.CrossRefPubMed Karger N, Biederer J, Lüsse S, Grimm J, Steffens JC, Heller M, et al. Quantitation of renal perfusion using arterial spin labeling with FAIR-UFLARE. Magn Reson Imaging 2000;18:641–7.CrossRefPubMed
50.
go back to reference Tsekos NV, Zhang F, Merkle H, Nagayama M, Iadecola C, Kim S. Quantitative measurements of cerebral blood flow in rats using the FAIR technique: correlation with previous iodoantipyrine autoradiographic studies. Magn Reson Med 1998;39:564–73.CrossRefPubMed Tsekos NV, Zhang F, Merkle H, Nagayama M, Iadecola C, Kim S. Quantitative measurements of cerebral blood flow in rats using the FAIR technique: correlation with previous iodoantipyrine autoradiographic studies. Magn Reson Med 1998;39:564–73.CrossRefPubMed
51.
go back to reference Oppelt A, Graumann R, Barfuss H, Fischer H, Hartl W, Schajor W. FISP: eine neue schnelle Pulssequenz für die Kernspintomographie. Electromedica 1986;54:15–8. Oppelt A, Graumann R, Barfuss H, Fischer H, Hartl W, Schajor W. FISP: eine neue schnelle Pulssequenz für die Kernspintomographie. Electromedica 1986;54:15–8.
52.
go back to reference Martirosian P, Schick F, Klose U, Ludescher B, Mader I. Renal perfusion MRI rivals contrast studies. Diagn Imaging Eur 2003;51:31–7. Martirosian P, Schick F, Klose U, Ludescher B, Mader I. Renal perfusion MRI rivals contrast studies. Diagn Imaging Eur 2003;51:31–7.
53.
go back to reference Martirosian P, Klose U, Mader I, Schick F. FAIR true-FISP perfusion imaging of the kidneys. Magn Reson Med 2004;51:353–61.CrossRefPubMed Martirosian P, Klose U, Mader I, Schick F. FAIR true-FISP perfusion imaging of the kidneys. Magn Reson Med 2004;51:353–61.CrossRefPubMed
54.
go back to reference Boss A, Martirosian P, Graf H, Claussen CD, Schlemmer HP, Schick F. High resolution MR perfusion imaging of the kidneys at 3 Tesla without administration of contrast media. Rofo 2005;177:1625–30.PubMed Boss A, Martirosian P, Graf H, Claussen CD, Schlemmer HP, Schick F. High resolution MR perfusion imaging of the kidneys at 3 Tesla without administration of contrast media. Rofo 2005;177:1625–30.PubMed
55.
go back to reference Fenchel M, Martirosian P, Langanke J, Giersch J, Miller S, Stauder N, et al. Perfusion MR imaging with FAIR true FISP spin labeling in patients with and without renal artery stenosis: initial experience. Radiology 2006;238:1013–21.CrossRefPubMed Fenchel M, Martirosian P, Langanke J, Giersch J, Miller S, Stauder N, et al. Perfusion MR imaging with FAIR true FISP spin labeling in patients with and without renal artery stenosis: initial experience. Radiology 2006;238:1013–21.CrossRefPubMed
56.
go back to reference Martirosian P, Boss A, Fenchel M, Deimling M, Schäfer J, Claussen CD, et al. Quantitative lung perfusion mapping at 0.2 T using FAIR True-FISP MRI. Magn Reson Med 2006;55:1065–74.CrossRefPubMed Martirosian P, Boss A, Fenchel M, Deimling M, Schäfer J, Claussen CD, et al. Quantitative lung perfusion mapping at 0.2 T using FAIR True-FISP MRI. Magn Reson Med 2006;55:1065–74.CrossRefPubMed
57.
go back to reference Boss A, Martirosian P, Claussen CD, Schick F. Quantitative ASL muscle perfusion imaging using a FAIR-TrueFISP technique at 3.0 T. NMR Biomed 2006;19:125–32.CrossRefPubMed Boss A, Martirosian P, Claussen CD, Schick F. Quantitative ASL muscle perfusion imaging using a FAIR-TrueFISP technique at 3.0 T. NMR Biomed 2006;19:125–32.CrossRefPubMed
58.
go back to reference Schraml C, Boss A, Martirosian P, Schwenzer NF, Claussen CD, Schick F. FAIR true-FISP perfusion imaging of the thyroid gland. J Magn Reson Imaging 2007;26:66–71.CrossRefPubMed Schraml C, Boss A, Martirosian P, Schwenzer NF, Claussen CD, Schick F. FAIR true-FISP perfusion imaging of the thyroid gland. J Magn Reson Imaging 2007;26:66–71.CrossRefPubMed
59.
go back to reference Schraml C, Schwenzer NF, Martirosian P, Claussen CD, Schick F. Perfusion imaging of the pancreas using an arterial spin labeling technique. J Magn Reson Imaging 2008;28:1459–65.CrossRefPubMed Schraml C, Schwenzer NF, Martirosian P, Claussen CD, Schick F. Perfusion imaging of the pancreas using an arterial spin labeling technique. J Magn Reson Imaging 2008;28:1459–65.CrossRefPubMed
60.
go back to reference Schwenzer NF, Schraml C, Martirosian P, Boss A, Claussen CD, Schick F. MR measurement of blood flow in the parotid gland without contrast medium: a functional study before and after gustatory stimulation. NMR Biomed 2008;21:598–605.CrossRefPubMed Schwenzer NF, Schraml C, Martirosian P, Boss A, Claussen CD, Schick F. MR measurement of blood flow in the parotid gland without contrast medium: a functional study before and after gustatory stimulation. NMR Biomed 2008;21:598–605.CrossRefPubMed
61.
go back to reference Martirosian P, Schick F, Klose U. True-FISP sequences applied for data recording in FAIR perfusion imaging. In: Proc 9th Annual Meeting ISMRM, Glasgow; 2001. p. 1560. Martirosian P, Schick F, Klose U. True-FISP sequences applied for data recording in FAIR perfusion imaging. In: Proc 9th Annual Meeting ISMRM, Glasgow; 2001. p. 1560.
62.
go back to reference Boss A, Martirosian P, Klose U, Nägele T, Claussen CD, Schick F. FAIR-TrueFISP imaging of cerebral perfusion in areas of high magnetic susceptibility differences at 1.5 and 3 Tesla. J Magn Reson Imaging 2007;25:924–31.CrossRefPubMed Boss A, Martirosian P, Klose U, Nägele T, Claussen CD, Schick F. FAIR-TrueFISP imaging of cerebral perfusion in areas of high magnetic susceptibility differences at 1.5 and 3 Tesla. J Magn Reson Imaging 2007;25:924–31.CrossRefPubMed
63.
go back to reference Schick F. Whole-body MRI at high field: technical limits and clinical potential. Eur Radiol 2005;15:946–59.CrossRefPubMed Schick F. Whole-body MRI at high field: technical limits and clinical potential. Eur Radiol 2005;15:946–59.CrossRefPubMed
64.
go back to reference Deimling M. True FISP imaging of lung parenchyma at 0.2 T. In: Proc 8th Annual Meeting ISMRM, Denver; 2000. p. 2002. Deimling M. True FISP imaging of lung parenchyma at 0.2 T. In: Proc 8th Annual Meeting ISMRM, Denver; 2000. p. 2002.
65.
go back to reference Bell BA. A history of the study of the cerebral circulation and the measurement of cerebral blood flow. Neurosurgery 1984;14:238–46.CrossRefPubMed Bell BA. A history of the study of the cerebral circulation and the measurement of cerebral blood flow. Neurosurgery 1984;14:238–46.CrossRefPubMed
Metadata
Title
Magnetic resonance perfusion imaging without contrast media
Authors
Petros Martirosian
Andreas Boss
Christina Schraml
Nina F. Schwenzer
Hansjörg Graf
Claus D. Claussen
Fritz Schick
Publication date
01-08-2010
Publisher
Springer-Verlag
Published in
European Journal of Nuclear Medicine and Molecular Imaging / Issue Special Issue 1/2010
Print ISSN: 1619-7070
Electronic ISSN: 1619-7089
DOI
https://doi.org/10.1007/s00259-010-1456-7

Other articles of this Special Issue 1/2010

European Journal of Nuclear Medicine and Molecular Imaging 1/2010 Go to the issue