Skip to main content
Top
Published in: Seminars in Immunopathology 3/2020

Open Access 01-06-2020 | Tuberculosis | Review

Towards new TB vaccines

Authors: Benedict Brazier, Helen McShane

Published in: Seminars in Immunopathology | Issue 3/2020

Login to get access

Abstract

Mycobacterium tuberculosis remains the leading cause of death attributed to a single infectious organism. Bacillus Calmette-Guerin (BCG), the standard vaccine against M. tuberculosis, is thought to prevent only 5% of all vaccine-preventable deaths due to tuberculosis, thus an alternative vaccine is required. One of the principal barriers to vaccine development against M. tuberculosis is the complexity of the immune response to infection, with uncertainty as to what constitutes an immunological correlate of protection. In this paper, we seek to give an overview of the immunology of M. tuberculosis infection, and by doing so, investigate possible targets of vaccine development. This encompasses the innate, adaptive, mucosal and humoral immune systems. Though MVA85A did not improve protection compared with BCG alone in a large-scale clinical trial, the correlates of protection this has revealed, in addition to promising results from candidate such as VPM1002, M72/ASO1E and H56:IC31 point to a brighter future in the field of TB vaccine development.
Literature
1.
go back to reference Global Tuberculosis Report (WHO), (2019) Geneva Global Tuberculosis Report (WHO), (2019) Geneva
2.
go back to reference Keja K, Chan C, Hayden G, Henderson RH (1988) Expanded programme on immunization. World Health Stat Q 41(2):59–63PubMed Keja K, Chan C, Hayden G, Henderson RH (1988) Expanded programme on immunization. World Health Stat Q 41(2):59–63PubMed
3.
4.
go back to reference Colditz GA, Brewer TF, Berkey CS, Wilson ME, Burdick E, Fineberg HV et al (1994) Efficacy of BCG vaccine in the prevention of tuberculosis: meta-analysis of the published literature. JAMA. 271(9):698–702PubMedCrossRef Colditz GA, Brewer TF, Berkey CS, Wilson ME, Burdick E, Fineberg HV et al (1994) Efficacy of BCG vaccine in the prevention of tuberculosis: meta-analysis of the published literature. JAMA. 271(9):698–702PubMedCrossRef
5.
go back to reference WHO, (2001). Global tuberculosis control. WHO report WHO, (2001). Global tuberculosis control. WHO report
6.
go back to reference Aronson NE, Santosham M, Comstock GW, Howard RS, Moulton LH, Rhoades ER et al (2004) Long-term efficacy of BCG vaccine in American Indians and Alaska natives: a 60-year follow-up study. Jama. 291(17):2086–2091PubMedCrossRef Aronson NE, Santosham M, Comstock GW, Howard RS, Moulton LH, Rhoades ER et al (2004) Long-term efficacy of BCG vaccine in American Indians and Alaska natives: a 60-year follow-up study. Jama. 291(17):2086–2091PubMedCrossRef
7.
go back to reference Tameris MD, Hatherill M, Landry BS, Scriba TJ, Snowden MA, Lockhart S et al (2013) Safety and efficacy of MVA85A, a new tuberculosis vaccine, in infants previously vaccinated with BCG: a randomised, placebo-controlled phase 2b trial. Lancet 381(9871):1021–1028PubMedPubMedCentralCrossRef Tameris MD, Hatherill M, Landry BS, Scriba TJ, Snowden MA, Lockhart S et al (2013) Safety and efficacy of MVA85A, a new tuberculosis vaccine, in infants previously vaccinated with BCG: a randomised, placebo-controlled phase 2b trial. Lancet 381(9871):1021–1028PubMedPubMedCentralCrossRef
8.
go back to reference Tait DR, Hatherill M, Van Der Meeren O, Ginsberg AM, Van Brakel E, Salaun B et al (2019) Final analysis of a trial of M72/AS01E vaccine to prevent tuberculosis. N Engl J Med 381(25):2429–2439CrossRefPubMed Tait DR, Hatherill M, Van Der Meeren O, Ginsberg AM, Van Brakel E, Salaun B et al (2019) Final analysis of a trial of M72/AS01E vaccine to prevent tuberculosis. N Engl J Med 381(25):2429–2439CrossRefPubMed
9.
go back to reference Calmette A, Guérin C (1911) Recherches expérimentales sur la défense de l’organisme contre l’infection tuberculeuse. Ann Inst Pasteur 25:625–641 Calmette A, Guérin C (1911) Recherches expérimentales sur la défense de l’organisme contre l’infection tuberculeuse. Ann Inst Pasteur 25:625–641
10.
go back to reference Camille GR, S. R. The history of BCG: early history, pp. 48–58. In: Rosenthal SR (ed). London: J&H Churchill. 1957 Camille GR, S. R. The history of BCG: early history, pp. 48–58. In: Rosenthal SR (ed). London: J&H Churchill. 1957
11.
go back to reference Hart PD, Sutherland I (1977) BCG and vole bacillus vaccines in the prevention of tuberculosis in adolescence and early adult life. Br Med J 2(6082):293–295PubMedPubMedCentralCrossRef Hart PD, Sutherland I (1977) BCG and vole bacillus vaccines in the prevention of tuberculosis in adolescence and early adult life. Br Med J 2(6082):293–295PubMedPubMedCentralCrossRef
12.
go back to reference Comstock GW, Woolpert SF, Livesay VT (1976) Tuberculosis studies in Muscogee County, Georgia. Twenty-year evaluation of a community trial of BCG vaccination. Public Health Rep 91(3):276–280PubMedPubMedCentral Comstock GW, Woolpert SF, Livesay VT (1976) Tuberculosis studies in Muscogee County, Georgia. Twenty-year evaluation of a community trial of BCG vaccination. Public Health Rep 91(3):276–280PubMedPubMedCentral
14.
go back to reference Tuberculosis Prevention Trial, Madras (1980) Trial of BCG vaccines in South India for tuberculosis prevention. Indian J Med Res 72(Jul):1–74 Tuberculosis Prevention Trial, Madras (1980) Trial of BCG vaccines in South India for tuberculosis prevention. Indian J Med Res 72(Jul):1–74
15.
go back to reference Comstock GW (1994) Field trials of tuberculosis vaccines: how could we have done them better? Control Clin Trials 15(4):247–276PubMedCrossRef Comstock GW (1994) Field trials of tuberculosis vaccines: how could we have done them better? Control Clin Trials 15(4):247–276PubMedCrossRef
16.
go back to reference Calmette A.. (1931) Preventive vaccination against tuberculosis with BCG. SAGE Publications Calmette A.. (1931) Preventive vaccination against tuberculosis with BCG. SAGE Publications
17.
go back to reference Ritz N, Hanekom WA, Robins-Browne R, Britton WJ, Curtis N (2008) Influence of BCG vaccine strain on the immune response and protection against tuberculosis. FEMS Microbiol Rev 32(5):821–841PubMedCrossRef Ritz N, Hanekom WA, Robins-Browne R, Britton WJ, Curtis N (2008) Influence of BCG vaccine strain on the immune response and protection against tuberculosis. FEMS Microbiol Rev 32(5):821–841PubMedCrossRef
18.
go back to reference Brewer TF, Colditz GA (1995) Relationship between bacille Calmette-Guerin (BCG) strains and the efficacy of BCG vaccine in the prevention of tuberculosis. Clin Infect Dis 20(1):126–135PubMedCrossRef Brewer TF, Colditz GA (1995) Relationship between bacille Calmette-Guerin (BCG) strains and the efficacy of BCG vaccine in the prevention of tuberculosis. Clin Infect Dis 20(1):126–135PubMedCrossRef
19.
go back to reference Abubakar I, Pimpin L, Ariti C, Beynon R, Mangtani P, Sterne J et al (2013) Systematic review and meta-analysis of the current evidence on the duration of protection by bacillus Calmette-Guérin vaccination against tuberculosis. Health Technol Assess (Winchester, England) 17(37):1 Abubakar I, Pimpin L, Ariti C, Beynon R, Mangtani P, Sterne J et al (2013) Systematic review and meta-analysis of the current evidence on the duration of protection by bacillus Calmette-Guérin vaccination against tuberculosis. Health Technol Assess (Winchester, England) 17(37):1
20.
go back to reference Falkinham JO 3rd (2009) Surrounded by mycobacteria: nontuberculous mycobacteria in the human environment. J Appl Microbiol 107(2):356–367PubMedCrossRef Falkinham JO 3rd (2009) Surrounded by mycobacteria: nontuberculous mycobacteria in the human environment. J Appl Microbiol 107(2):356–367PubMedCrossRef
21.
go back to reference Burl S, Adetifa UJ, Cox M, Touray E, Ota MO, Marchant A et al (2010) Delaying bacillus Calmette-Guerin vaccination from birth to 4 1/2 months of age reduces postvaccination Th1 and IL-17 responses but leads to comparable mycobacterial responses at 9 months of age. J Immunol 185(4):2620–2628PubMedCrossRef Burl S, Adetifa UJ, Cox M, Touray E, Ota MO, Marchant A et al (2010) Delaying bacillus Calmette-Guerin vaccination from birth to 4 1/2 months of age reduces postvaccination Th1 and IL-17 responses but leads to comparable mycobacterial responses at 9 months of age. J Immunol 185(4):2620–2628PubMedCrossRef
22.
go back to reference Poyntz HC, Stylianou E, Griffiths KL, Marsay L, Checkley AM, McShane H (2014) Non-tuberculous mycobacteria have diverse effects on BCG efficacy against Mycobacterium tuberculosis. Tuberculosis (Edinb) 94(3):226–237CrossRef Poyntz HC, Stylianou E, Griffiths KL, Marsay L, Checkley AM, McShane H (2014) Non-tuberculous mycobacteria have diverse effects on BCG efficacy against Mycobacterium tuberculosis. Tuberculosis (Edinb) 94(3):226–237CrossRef
23.
go back to reference Black GF, Weir RE, Floyd S, Bliss L, Warndorff DK, Crampin AC et al (2002) BCG-induced increase in interferon-gamma response to mycobacterial antigens and efficacy of BCG vaccination in Malawi and the UK: two randomised controlled studies. Lancet. 359(9315):1393–1401PubMedCrossRef Black GF, Weir RE, Floyd S, Bliss L, Warndorff DK, Crampin AC et al (2002) BCG-induced increase in interferon-gamma response to mycobacterial antigens and efficacy of BCG vaccination in Malawi and the UK: two randomised controlled studies. Lancet. 359(9315):1393–1401PubMedCrossRef
24.
go back to reference Brandt L, Feino Cunha J, Weinreich Olsen A, Chilima B, Hirsch P, Appelberg R et al (2002) Failure of the Mycobacterium bovis BCG vaccine: some species of environmental mycobacteria block multiplication of BCG and induction of protective immunity to tuberculosis. Infect Immun 70(2):672–678PubMedPubMedCentralCrossRef Brandt L, Feino Cunha J, Weinreich Olsen A, Chilima B, Hirsch P, Appelberg R et al (2002) Failure of the Mycobacterium bovis BCG vaccine: some species of environmental mycobacteria block multiplication of BCG and induction of protective immunity to tuberculosis. Infect Immun 70(2):672–678PubMedPubMedCentralCrossRef
25.
go back to reference Barreto ML, Pilger D, Pereira SM, Genser B, Cruz AA, Cunha SS et al (2014) Causes of variation in BCG vaccine efficacy: examining evidence from the BCG REVAC cluster randomized trial to explore the masking and the blocking hypotheses. Vaccine. 32(30):3759–3764PubMedCrossRef Barreto ML, Pilger D, Pereira SM, Genser B, Cruz AA, Cunha SS et al (2014) Causes of variation in BCG vaccine efficacy: examining evidence from the BCG REVAC cluster randomized trial to explore the masking and the blocking hypotheses. Vaccine. 32(30):3759–3764PubMedCrossRef
26.
go back to reference Andersen P, Doherty TM (2005) The success and failure of BCG—implications for a novel tuberculosis vaccine. Nat Rev Microbiol 3(8):656PubMedCrossRef Andersen P, Doherty TM (2005) The success and failure of BCG—implications for a novel tuberculosis vaccine. Nat Rev Microbiol 3(8):656PubMedCrossRef
27.
go back to reference Gupta N, Kumar R, Agrawal B (2018) New players in immunity to tuberculosis: the host microbiome, lung epithelium, and innate immune cells. Front Immunol 9:709PubMedPubMedCentralCrossRef Gupta N, Kumar R, Agrawal B (2018) New players in immunity to tuberculosis: the host microbiome, lung epithelium, and innate immune cells. Front Immunol 9:709PubMedPubMedCentralCrossRef
28.
go back to reference Meermeier EW, Lewinsohn DM (2018) Early clearance versus control: what is the meaning of a negative tuberculin skin test or interferon-gamma release assay following exposure to Mycobacterium tuberculosis? F1000Research 7:F1000 Faculty Rev-664PubMedPubMedCentralCrossRef Meermeier EW, Lewinsohn DM (2018) Early clearance versus control: what is the meaning of a negative tuberculin skin test or interferon-gamma release assay following exposure to Mycobacterium tuberculosis? F1000Research 7:F1000 Faculty Rev-664PubMedPubMedCentralCrossRef
29.
go back to reference Mahan CS, Zalwango S, Thiel BA, Malone LL, Chervenak KA, Baseke J et al (2012) Innate and adaptive immune responses during acute M. tuberculosis infection in adult household contacts in Kampala, Uganda. Am J Trop Med Hyg 86(4):690–697PubMedPubMedCentralCrossRef Mahan CS, Zalwango S, Thiel BA, Malone LL, Chervenak KA, Baseke J et al (2012) Innate and adaptive immune responses during acute M. tuberculosis infection in adult household contacts in Kampala, Uganda. Am J Trop Med Hyg 86(4):690–697PubMedPubMedCentralCrossRef
30.
go back to reference Bark CM, Manceur AM, Malone LL, Nsereko M, Okware B, Mayanja HK et al (2017) Identification of host proteins predictive of early stage Mycobacterium tuberculosis infection. EBioMedicine. 21:150–157PubMedPubMedCentralCrossRef Bark CM, Manceur AM, Malone LL, Nsereko M, Okware B, Mayanja HK et al (2017) Identification of host proteins predictive of early stage Mycobacterium tuberculosis infection. EBioMedicine. 21:150–157PubMedPubMedCentralCrossRef
31.
go back to reference Reuschl A-K, Edwards MR, Parker R, Connell DW, Hoang L, Halliday A et al (2017) Innate activation of human primary epithelial cells broadens the host response to Mycobacterium tuberculosis in the airways. PLoS Pathog 13(9):e1006577PubMedPubMedCentralCrossRef Reuschl A-K, Edwards MR, Parker R, Connell DW, Hoang L, Halliday A et al (2017) Innate activation of human primary epithelial cells broadens the host response to Mycobacterium tuberculosis in the airways. PLoS Pathog 13(9):e1006577PubMedPubMedCentralCrossRef
32.
go back to reference Lu LL, Chung AW, Rosebrock TR, Ghebremichael M, Yu WH, Grace PS et al (2016) A functional role for antibodies in tuberculosis. Cell. 167(2):433–43.e14PubMedPubMedCentralCrossRef Lu LL, Chung AW, Rosebrock TR, Ghebremichael M, Yu WH, Grace PS et al (2016) A functional role for antibodies in tuberculosis. Cell. 167(2):433–43.e14PubMedPubMedCentralCrossRef
33.
go back to reference Godfrey DI, Uldrich AP, McCluskey J, Rossjohn J, Moody DB (2015) The burgeoning family of unconventional T cells. Nat Immunol 16(11):1114PubMedCrossRef Godfrey DI, Uldrich AP, McCluskey J, Rossjohn J, Moody DB (2015) The burgeoning family of unconventional T cells. Nat Immunol 16(11):1114PubMedCrossRef
34.
go back to reference Hall NB, Igo RP Jr, Malone L, Truitt B, Schnell A, Tao L et al (2015) Polymorphisms in TICAM2 and IL1B are associated with TB. Genes Immun 16(2):127PubMedCrossRef Hall NB, Igo RP Jr, Malone L, Truitt B, Schnell A, Tao L et al (2015) Polymorphisms in TICAM2 and IL1B are associated with TB. Genes Immun 16(2):127PubMedCrossRef
35.
go back to reference Kleinnijenhuis J, Quintin J, Preijers F, Joosten LA, Ifrim DC, Saeed S et al (2012) Bacille Calmette-Guerin induces NOD2-dependent nonspecific protection from reinfection via epigenetic reprogramming of monocytes. Proc Natl Acad Sci 109(43):17537–17542PubMedCrossRefPubMedCentral Kleinnijenhuis J, Quintin J, Preijers F, Joosten LA, Ifrim DC, Saeed S et al (2012) Bacille Calmette-Guerin induces NOD2-dependent nonspecific protection from reinfection via epigenetic reprogramming of monocytes. Proc Natl Acad Sci 109(43):17537–17542PubMedCrossRefPubMedCentral
36.
go back to reference Agger EM (2016) Novel adjuvant formulations for delivery of anti-tuberculosis vaccine candidates. Adv Drug Deliv Rev 102:73–82PubMedCrossRef Agger EM (2016) Novel adjuvant formulations for delivery of anti-tuberculosis vaccine candidates. Adv Drug Deliv Rev 102:73–82PubMedCrossRef
37.
go back to reference Riley R, Mills C, Nyka W, Weinstock N, Storey P, Sultan L et al (1959) Aerial dissemination of pulmonary tuberculosis. A two-year study of contagion in a tuberculosis ward. Am J Hyg 70(2):185–196 Riley R, Mills C, Nyka W, Weinstock N, Storey P, Sultan L et al (1959) Aerial dissemination of pulmonary tuberculosis. A two-year study of contagion in a tuberculosis ward. Am J Hyg 70(2):185–196
38.
go back to reference Saini D, Hopkins GW, Seay SA, Chen C-J, Perley CC, Click EM et al (2012) Ultra-low dose of Mycobacterium tuberculosis aerosol creates partial infection in mice. Tuberculosis. 92(2):160–165PubMedCrossRef Saini D, Hopkins GW, Seay SA, Chen C-J, Perley CC, Click EM et al (2012) Ultra-low dose of Mycobacterium tuberculosis aerosol creates partial infection in mice. Tuberculosis. 92(2):160–165PubMedCrossRef
39.
go back to reference Kleinnijenhuis J, Oosting M, Joosten LA, Netea MG, Van Crevel R (2011) Innate immune recognition of Mycobacterium tuberculosis. Clin Dev Immunol 2011 Kleinnijenhuis J, Oosting M, Joosten LA, Netea MG, Van Crevel R (2011) Innate immune recognition of Mycobacterium tuberculosis. Clin Dev Immunol 2011
40.
go back to reference Ferguson J, Schlesinger L (2000) Pulmonary surfactant in innate immunity and the pathogenesis of tuberculosis. Tuber Lung Dis 80(4–5):173–184PubMedCrossRef Ferguson J, Schlesinger L (2000) Pulmonary surfactant in innate immunity and the pathogenesis of tuberculosis. Tuber Lung Dis 80(4–5):173–184PubMedCrossRef
41.
go back to reference Lee H-M, Shin D-M, Jo E-K (2009) Mycobacterium tuberculosis induces the production of tumor necrosis factor-α, interleukin-6, and CXCL8 in pulmonary epithelial cells through reactive oxygen species-dependent mitogen-activated protein kinase activation. J Bacteriol Virol 39(1):1–10CrossRef Lee H-M, Shin D-M, Jo E-K (2009) Mycobacterium tuberculosis induces the production of tumor necrosis factor-α, interleukin-6, and CXCL8 in pulmonary epithelial cells through reactive oxygen species-dependent mitogen-activated protein kinase activation. J Bacteriol Virol 39(1):1–10CrossRef
42.
go back to reference Sharma M, Sharma S, Roy S, Varma S, Bose M (2007) Pulmonary epithelial cells are a source of interferon-γ in response to Mycobacterium tuberculosis infection. Immunol Cell Biol 85(3):229–237PubMedCrossRef Sharma M, Sharma S, Roy S, Varma S, Bose M (2007) Pulmonary epithelial cells are a source of interferon-γ in response to Mycobacterium tuberculosis infection. Immunol Cell Biol 85(3):229–237PubMedCrossRef
43.
go back to reference Lin Y, Zhang M, Barnes PF (1998) Chemokine production by a human alveolar epithelial cell line in response to Mycobacterium tuberculosis. Infect Immun 66(3):1121–1126PubMedPubMedCentralCrossRef Lin Y, Zhang M, Barnes PF (1998) Chemokine production by a human alveolar epithelial cell line in response to Mycobacterium tuberculosis. Infect Immun 66(3):1121–1126PubMedPubMedCentralCrossRef
44.
go back to reference Nakanaga T, Nadel JA, Ueki IF, Koff JL, Shao MX (2007) Regulation of interleukin-8 via an airway epithelial signaling cascade. Am J Phys Lung Cell Mol Phys 292(5):L1289–L1L96 Nakanaga T, Nadel JA, Ueki IF, Koff JL, Shao MX (2007) Regulation of interleukin-8 via an airway epithelial signaling cascade. Am J Phys Lung Cell Mol Phys 292(5):L1289–L1L96
45.
go back to reference Harriff MJ, Cansler ME, Toren KG, Canfield ET, Kwak S, Gold MC et al (2014) Human lung epithelial cells contain Mycobacterium tuberculosis in a late endosomal vacuole and are efficiently recognized by CD8+ T cells. PLoS One 9(5):e97515PubMedPubMedCentralCrossRef Harriff MJ, Cansler ME, Toren KG, Canfield ET, Kwak S, Gold MC et al (2014) Human lung epithelial cells contain Mycobacterium tuberculosis in a late endosomal vacuole and are efficiently recognized by CD8+ T cells. PLoS One 9(5):e97515PubMedPubMedCentralCrossRef
46.
go back to reference Hirsch CS, Ellner JJ, Russell DG, Rich EA (1994) Complement receptor-mediated uptake and tumor necrosis factor-alpha-mediated growth inhibition of Mycobacterium tuberculosis by human alveolar macrophages. J Immunol 152(2):743–753PubMed Hirsch CS, Ellner JJ, Russell DG, Rich EA (1994) Complement receptor-mediated uptake and tumor necrosis factor-alpha-mediated growth inhibition of Mycobacterium tuberculosis by human alveolar macrophages. J Immunol 152(2):743–753PubMed
47.
go back to reference Engele M, Stöβel E, Castiglione K, Schwerdtner N, Wagner M, Bölcskei P et al (2002) Induction of TNF in human alveolar macrophages as a potential evasion mechanism of virulent Mycobacterium tuberculosis. J Immunol 168(3):1328–1337PubMedCrossRef Engele M, Stöβel E, Castiglione K, Schwerdtner N, Wagner M, Bölcskei P et al (2002) Induction of TNF in human alveolar macrophages as a potential evasion mechanism of virulent Mycobacterium tuberculosis. J Immunol 168(3):1328–1337PubMedCrossRef
48.
go back to reference Gleeson LE, Sheedy FJ, Palsson-McDermott EM, Triglia D, O’Leary SM, O’Sullivan MP et al (2016) Cutting edge: Mycobacterium tuberculosis induces aerobic glycolysis in human alveolar macrophages that is required for control of intracellular bacillary replication. J Immunol 196(6):2444–2449PubMedCrossRef Gleeson LE, Sheedy FJ, Palsson-McDermott EM, Triglia D, O’Leary SM, O’Sullivan MP et al (2016) Cutting edge: Mycobacterium tuberculosis induces aerobic glycolysis in human alveolar macrophages that is required for control of intracellular bacillary replication. J Immunol 196(6):2444–2449PubMedCrossRef
49.
go back to reference Silver RF, Walrath J, Lee H, Jacobson BA, Horton H, Bowman MR et al (2009) Human alveolar macrophage gene responses to Mycobacterium tuberculosis strains H37Ra and H37Rv. Am J Respir Cell Mol Biol 40(4):491–504PubMedCrossRef Silver RF, Walrath J, Lee H, Jacobson BA, Horton H, Bowman MR et al (2009) Human alveolar macrophage gene responses to Mycobacterium tuberculosis strains H37Ra and H37Rv. Am J Respir Cell Mol Biol 40(4):491–504PubMedCrossRef
50.
go back to reference Leemans JC, Juffermans NP, Florquin S, van Rooijen N, Vervoordeldonk MJ, Verbon A et al (2001) Depletion of alveolar macrophages exerts protective effects in pulmonary tuberculosis in mice. J Immunol 166(7):4604–4611PubMedCrossRef Leemans JC, Juffermans NP, Florquin S, van Rooijen N, Vervoordeldonk MJ, Verbon A et al (2001) Depletion of alveolar macrophages exerts protective effects in pulmonary tuberculosis in mice. J Immunol 166(7):4604–4611PubMedCrossRef
51.
go back to reference Leemans JC, Thepen T, Weijer S, Florquin S, Van Rooijen N, Van de Winkel JG et al (2005) Macrophages play a dual role during pulmonary tuberculosis in mice. J Infect Dis 191(1):65–74PubMedCrossRef Leemans JC, Thepen T, Weijer S, Florquin S, Van Rooijen N, Van de Winkel JG et al (2005) Macrophages play a dual role during pulmonary tuberculosis in mice. J Infect Dis 191(1):65–74PubMedCrossRef
52.
go back to reference Lasco TM, Turner OC, Cassone L, Sugawara I, Yamada H, McMurray DN et al (2004) Rapid accumulation of eosinophils in lung lesions in guinea pigs infected with Mycobacterium tuberculosis. Infect Immun 72(2):1147–1149PubMedPubMedCentralCrossRef Lasco TM, Turner OC, Cassone L, Sugawara I, Yamada H, McMurray DN et al (2004) Rapid accumulation of eosinophils in lung lesions in guinea pigs infected with Mycobacterium tuberculosis. Infect Immun 72(2):1147–1149PubMedPubMedCentralCrossRef
53.
go back to reference Appelberg R (2007) Neutrophils and intracellular pathogens: beyond phagocytosis and killing. Trends Microbiol 15(2):87–92PubMedCrossRef Appelberg R (2007) Neutrophils and intracellular pathogens: beyond phagocytosis and killing. Trends Microbiol 15(2):87–92PubMedCrossRef
54.
go back to reference Kibiki G, Myers L, Kalambo C, Hoang S, Stoler M, Stroup S et al (2007) Bronchoalveolar neutrophils, interferon gamma-inducible protein 10 and interleukin-7 in AIDS-associated tuberculosis. Clin Exp Immunol 148(2):254–259PubMedPubMedCentralCrossRef Kibiki G, Myers L, Kalambo C, Hoang S, Stoler M, Stroup S et al (2007) Bronchoalveolar neutrophils, interferon gamma-inducible protein 10 and interleukin-7 in AIDS-associated tuberculosis. Clin Exp Immunol 148(2):254–259PubMedPubMedCentralCrossRef
55.
go back to reference Hilda JN, Narasimhan M, Das SD (2014) Neutrophils from pulmonary tuberculosis patients show augmented levels of chemokines MIP-1α, IL-8 and MCP-1 which further increase upon in vitro infection with mycobacterial strains. Hum Immunol 75(8):914–922PubMedCrossRef Hilda JN, Narasimhan M, Das SD (2014) Neutrophils from pulmonary tuberculosis patients show augmented levels of chemokines MIP-1α, IL-8 and MCP-1 which further increase upon in vitro infection with mycobacterial strains. Hum Immunol 75(8):914–922PubMedCrossRef
56.
go back to reference Petrofsky M, Bermudez LE (1999) Neutrophils from Mycobacterium avium-infected mice produce TNF-α, IL-12, and IL-1β and have a putative role in early host response. Clin Immunol 91(3):354–358PubMedCrossRef Petrofsky M, Bermudez LE (1999) Neutrophils from Mycobacterium avium-infected mice produce TNF-α, IL-12, and IL-1β and have a putative role in early host response. Clin Immunol 91(3):354–358PubMedCrossRef
57.
go back to reference Martineau AR, Newton SM, Wilkinson KA, Kampmann B, Hall BM, Nawroly N et al (2007) Neutrophil-mediated innate immune resistance to mycobacteria. J Clin Invest 117(7):1988–1994PubMedPubMedCentralCrossRef Martineau AR, Newton SM, Wilkinson KA, Kampmann B, Hall BM, Nawroly N et al (2007) Neutrophil-mediated innate immune resistance to mycobacteria. J Clin Invest 117(7):1988–1994PubMedPubMedCentralCrossRef
58.
go back to reference Goetz DH, Holmes MA, Borregaard N, Bluhm ME, Raymond KN, Strong RK (2002) The neutrophil lipocalin NGAL is a bacteriostatic agent that interferes with siderophore-mediated iron acquisition. Mol Cell 10(5):1033–1043PubMedCrossRef Goetz DH, Holmes MA, Borregaard N, Bluhm ME, Raymond KN, Strong RK (2002) The neutrophil lipocalin NGAL is a bacteriostatic agent that interferes with siderophore-mediated iron acquisition. Mol Cell 10(5):1033–1043PubMedCrossRef
59.
go back to reference Dahl SL, Woodworth JS, Lerche CJ, Cramer EP, Nielsen PR, Moser C et al (2018) Lipocalin-2 functions as inhibitor of innate resistance to Mycobacterium tuberculosis. Front Immunol 9 Dahl SL, Woodworth JS, Lerche CJ, Cramer EP, Nielsen PR, Moser C et al (2018) Lipocalin-2 functions as inhibitor of innate resistance to Mycobacterium tuberculosis. Front Immunol 9
60.
go back to reference Lowe DM, Bandara AK, Packe GE, Barker RD, Wilkinson RJ, Griffiths CJ et al (2013) Neutrophilia independently predicts death in tuberculosis. Eur Respir J 42(6):1752–1757PubMedPubMedCentralCrossRef Lowe DM, Bandara AK, Packe GE, Barker RD, Wilkinson RJ, Griffiths CJ et al (2013) Neutrophilia independently predicts death in tuberculosis. Eur Respir J 42(6):1752–1757PubMedPubMedCentralCrossRef
61.
go back to reference Berry MP, Graham CM, McNab FW, Xu Z, Bloch SA, Oni T et al (2010) An interferon-inducible neutrophil-driven blood transcriptional signature in human tuberculosis. Nature. 466(7309):973PubMedPubMedCentralCrossRef Berry MP, Graham CM, McNab FW, Xu Z, Bloch SA, Oni T et al (2010) An interferon-inducible neutrophil-driven blood transcriptional signature in human tuberculosis. Nature. 466(7309):973PubMedPubMedCentralCrossRef
62.
go back to reference Eruslanov EB, Lyadova IV, Kondratieva TK, Majorov KB, Scheglov IV, Orlova MO et al (2005) Neutrophil responses to Mycobacterium tuberculosis infection in genetically susceptible and resistant mice. Infect Immun 73(3):1744–1753PubMedPubMedCentralCrossRef Eruslanov EB, Lyadova IV, Kondratieva TK, Majorov KB, Scheglov IV, Orlova MO et al (2005) Neutrophil responses to Mycobacterium tuberculosis infection in genetically susceptible and resistant mice. Infect Immun 73(3):1744–1753PubMedPubMedCentralCrossRef
63.
go back to reference Allen M, Bailey C, Cahatol I, Dodge L, Yim J, Kassissa C et al (2015) Mechanisms of control of Mycobacterium tuberculosis by NK cells: role of glutathione. Front Immunol 6:508PubMedPubMedCentralCrossRef Allen M, Bailey C, Cahatol I, Dodge L, Yim J, Kassissa C et al (2015) Mechanisms of control of Mycobacterium tuberculosis by NK cells: role of glutathione. Front Immunol 6:508PubMedPubMedCentralCrossRef
64.
go back to reference Kee S-J, Kwon Y-S, Park Y-W, Cho Y-N, Lee S-J, Kim T-J et al (2012) Dysfunction of natural killer T cells in patients with active Mycobacterium tuberculosis infection. Infect Immun 80(6):2100–2108PubMedPubMedCentralCrossRef Kee S-J, Kwon Y-S, Park Y-W, Cho Y-N, Lee S-J, Kim T-J et al (2012) Dysfunction of natural killer T cells in patients with active Mycobacterium tuberculosis infection. Infect Immun 80(6):2100–2108PubMedPubMedCentralCrossRef
65.
go back to reference Dieli F, Troye-Blomberg M, Ivanyi J, Fournié JJ, Krensky AM, Bonneville M et al (2001) Granulysin-dependent killing of intracellular and extracellular Mycobacterium tuberculosis by Vγ9/Vδ2 T lymphocytes. J Infect Dis 184(8):1082–1085PubMedCrossRef Dieli F, Troye-Blomberg M, Ivanyi J, Fournié JJ, Krensky AM, Bonneville M et al (2001) Granulysin-dependent killing of intracellular and extracellular Mycobacterium tuberculosis by Vγ9/Vδ2 T lymphocytes. J Infect Dis 184(8):1082–1085PubMedCrossRef
66.
go back to reference Meraviglia S, El Daker S, Dieli F, Martini F, Martino A (2011) γδ T cells cross-link innate and adaptive immunity in Mycobacterium tuberculosis infection. Clin Dev Immunol 2011 Meraviglia S, El Daker S, Dieli F, Martini F, Martino A (2011) γδ T cells cross-link innate and adaptive immunity in Mycobacterium tuberculosis infection. Clin Dev Immunol 2011
67.
go back to reference Shen Y, Zhou D, Qiu L, Lai X, Simon M, Shen L et al (2002) Adaptive immune response of Vgamma2Vdelta2+ T cells during mycobacterial infections. Science. 295(5563):2255–2258PubMedPubMedCentralCrossRef Shen Y, Zhou D, Qiu L, Lai X, Simon M, Shen L et al (2002) Adaptive immune response of Vgamma2Vdelta2+ T cells during mycobacterial infections. Science. 295(5563):2255–2258PubMedPubMedCentralCrossRef
68.
go back to reference Gold MC, Napier RJ, Lewinsohn DM (2015) MR 1-restricted mucosal associated invariant T (MAIT) cells in the immune response to M ycobacterium tuberculosis. Immunol Rev 264(1):154–166PubMedPubMedCentralCrossRef Gold MC, Napier RJ, Lewinsohn DM (2015) MR 1-restricted mucosal associated invariant T (MAIT) cells in the immune response to M ycobacterium tuberculosis. Immunol Rev 264(1):154–166PubMedPubMedCentralCrossRef
69.
go back to reference Jiang J, Yang B, An H, Wang X, Liu Y, Cao Z et al (2016) Mucosal-associated invariant T cells from patients with tuberculosis exhibit impaired immune response. J Inf Secur 72(3):338–352 Jiang J, Yang B, An H, Wang X, Liu Y, Cao Z et al (2016) Mucosal-associated invariant T cells from patients with tuberculosis exhibit impaired immune response. J Inf Secur 72(3):338–352
71.
go back to reference Ardain A, Domingo-Gonzalez R, Das S, Kazer SW, Howard NC, Singh A et al (2019) Group 3 innate lymphoid cells mediate early protective immunity against tuberculosis. Nature. 1 Ardain A, Domingo-Gonzalez R, Das S, Kazer SW, Howard NC, Singh A et al (2019) Group 3 innate lymphoid cells mediate early protective immunity against tuberculosis. Nature. 1
73.
go back to reference Moyron-Quiroz JE, Rangel-Moreno J, Kusser K, Hartson L, Sprague F, Goodrich S et al (2004) Role of inducible bronchus associated lymphoid tissue (iBALT) in respiratory immunity. Nat Med 10(9):927–934PubMedCrossRef Moyron-Quiroz JE, Rangel-Moreno J, Kusser K, Hartson L, Sprague F, Goodrich S et al (2004) Role of inducible bronchus associated lymphoid tissue (iBALT) in respiratory immunity. Nat Med 10(9):927–934PubMedCrossRef
74.
go back to reference Ulrichs T, Kosmiadi GA, Trusov V, Jorg S, Pradl L, Titukhina M et al (2004) Human tuberculous granulomas induce peripheral lymphoid follicle-like structures to orchestrate local host defence in the lung. J Pathol 204(2):217–228PubMedCrossRef Ulrichs T, Kosmiadi GA, Trusov V, Jorg S, Pradl L, Titukhina M et al (2004) Human tuberculous granulomas induce peripheral lymphoid follicle-like structures to orchestrate local host defence in the lung. J Pathol 204(2):217–228PubMedCrossRef
75.
go back to reference Ganchua SKC, Cadena AM, Maiello P, Gideon HP, Myers AJ, Junecko BF et al (2018) Lymph nodes are sites of prolonged bacterial persistence during Mycobacterium tuberculosis infection in macaques. PLoS Pathog 14(11):e1007337PubMedPubMedCentralCrossRef Ganchua SKC, Cadena AM, Maiello P, Gideon HP, Myers AJ, Junecko BF et al (2018) Lymph nodes are sites of prolonged bacterial persistence during Mycobacterium tuberculosis infection in macaques. PLoS Pathog 14(11):e1007337PubMedPubMedCentralCrossRef
76.
go back to reference Khader SA, Guglani L, Rangel-Moreno J, Gopal R, Junecko BA, Fountain JJ et al (2011) IL-23 is required for long-term control of Mycobacterium tuberculosis and B cell follicle formation in the infected lung. J Immunol 187(10):5402–5407PubMedCrossRef Khader SA, Guglani L, Rangel-Moreno J, Gopal R, Junecko BA, Fountain JJ et al (2011) IL-23 is required for long-term control of Mycobacterium tuberculosis and B cell follicle formation in the infected lung. J Immunol 187(10):5402–5407PubMedCrossRef
77.
go back to reference Slight SR, Rangel-Moreno J, Gopal R, Lin Y, Junecko BAF, Mehra S et al (2013) CXCR5+ T helper cells mediate protective immunity against tuberculosis. J Clin Invest 123(2) Slight SR, Rangel-Moreno J, Gopal R, Lin Y, Junecko BAF, Mehra S et al (2013) CXCR5+ T helper cells mediate protective immunity against tuberculosis. J Clin Invest 123(2)
78.
go back to reference Klose CS, Artis D (2016) Innate lymphoid cells as regulators of immunity, inflammation and tissue homeostasis. Nat Immunol 17(7):765PubMedCrossRef Klose CS, Artis D (2016) Innate lymphoid cells as regulators of immunity, inflammation and tissue homeostasis. Nat Immunol 17(7):765PubMedCrossRef
79.
go back to reference Rangel-Moreno J, Carragher DM, de la Luz Garcia-Hernandez M, Hwang JY, Kusser K, Hartson L et al (2011) The development of inducible bronchus-associated lymphoid tissue depends on IL-17. Nat Immunol 12(7):639PubMedPubMedCentralCrossRef Rangel-Moreno J, Carragher DM, de la Luz Garcia-Hernandez M, Hwang JY, Kusser K, Hartson L et al (2011) The development of inducible bronchus-associated lymphoid tissue depends on IL-17. Nat Immunol 12(7):639PubMedPubMedCentralCrossRef
80.
go back to reference Joosten SA, van Meijgaarden KE, Arend SM, Prins C, Oftung F, Korsvold GE et al (2018) Mycobacterial growth inhibition is associated with trained innate immunity. J Clin Invest 128(5):1837–1851PubMedPubMedCentralCrossRef Joosten SA, van Meijgaarden KE, Arend SM, Prins C, Oftung F, Korsvold GE et al (2018) Mycobacterial growth inhibition is associated with trained innate immunity. J Clin Invest 128(5):1837–1851PubMedPubMedCentralCrossRef
81.
go back to reference Cros J, Cagnard N, Woollard K, Patey N, Zhang S-Y, Senechal B et al (2010) Human CD14dim monocytes patrol and sense nucleic acids and viruses via TLR7 and TLR8 receptors. Immunity. 33(3):375–386PubMedPubMedCentralCrossRef Cros J, Cagnard N, Woollard K, Patey N, Zhang S-Y, Senechal B et al (2010) Human CD14dim monocytes patrol and sense nucleic acids and viruses via TLR7 and TLR8 receptors. Immunity. 33(3):375–386PubMedPubMedCentralCrossRef
82.
go back to reference Netea MG, Joosten LA, Latz E, Mills KH, Natoli G, Stunnenberg HG et al (2016) Trained immunity: a program of innate immune memory in health and disease. Science 352(6284):aaf1098PubMedPubMedCentralCrossRef Netea MG, Joosten LA, Latz E, Mills KH, Natoli G, Stunnenberg HG et al (2016) Trained immunity: a program of innate immune memory in health and disease. Science 352(6284):aaf1098PubMedPubMedCentralCrossRef
83.
go back to reference Higgins JP, Soares-Weiser K, López-López JA, Kakourou A, Chaplin K, Christensen H et al (2016) Association of BCG, DTP, and measles containing vaccines with childhood mortality: systematic review. BMJ. 355:i5170PubMedPubMedCentralCrossRef Higgins JP, Soares-Weiser K, López-López JA, Kakourou A, Chaplin K, Christensen H et al (2016) Association of BCG, DTP, and measles containing vaccines with childhood mortality: systematic review. BMJ. 355:i5170PubMedPubMedCentralCrossRef
84.
go back to reference Kaufmann E, Sanz J, Dunn JL, Khan N, Mendonça LE, Pacis A et al (2018) BCG educates hematopoietic stem cells to generate protective innate immunity against tuberculosis. Cell 172(1–2):176–90.e19PubMedCrossRef Kaufmann E, Sanz J, Dunn JL, Khan N, Mendonça LE, Pacis A et al (2018) BCG educates hematopoietic stem cells to generate protective innate immunity against tuberculosis. Cell 172(1–2):176–90.e19PubMedCrossRef
85.
go back to reference Orme IM, Robinson RT, Cooper AM (2015) The balance between protective and pathogenic immune responses in the TB-infected lung. Nat Immunol 16(1):57PubMedCrossRef Orme IM, Robinson RT, Cooper AM (2015) The balance between protective and pathogenic immune responses in the TB-infected lung. Nat Immunol 16(1):57PubMedCrossRef
86.
go back to reference Liu H, Moynihan KD, Zheng Y, Szeto GL, Li AV, Huang B et al (2014) Structure-based programming of lymph-node targeting in molecular vaccines. Nature. 507(7493):519PubMedPubMedCentralCrossRef Liu H, Moynihan KD, Zheng Y, Szeto GL, Li AV, Huang B et al (2014) Structure-based programming of lymph-node targeting in molecular vaccines. Nature. 507(7493):519PubMedPubMedCentralCrossRef
87.
go back to reference Griffiths KL, Ahmed M, Das S, Gopal R, Horne W, Connell TD et al (2016) Targeting dendritic cells to accelerate T-cell activation overcomes a bottleneck in tuberculosis vaccine efficacy. Nat Commun 7:13894PubMedPubMedCentralCrossRef Griffiths KL, Ahmed M, Das S, Gopal R, Horne W, Connell TD et al (2016) Targeting dendritic cells to accelerate T-cell activation overcomes a bottleneck in tuberculosis vaccine efficacy. Nat Commun 7:13894PubMedPubMedCentralCrossRef
88.
go back to reference Antonelli LR, Rothfuchs AG, Gonçalves R, Roffê E, Cheever AW, Bafica A et al (2010) Intranasal poly-IC treatment exacerbates tuberculosis in mice through the pulmonary recruitment of a pathogen-permissive monocyte/macrophage population. J Clin Invest 120(5):1674–1682PubMedPubMedCentralCrossRef Antonelli LR, Rothfuchs AG, Gonçalves R, Roffê E, Cheever AW, Bafica A et al (2010) Intranasal poly-IC treatment exacerbates tuberculosis in mice through the pulmonary recruitment of a pathogen-permissive monocyte/macrophage population. J Clin Invest 120(5):1674–1682PubMedPubMedCentralCrossRef
89.
go back to reference Sharpe S, White A, Sarfas C, Sibley L, Gleeson F, McIntyre A et al (2016) Alternative BCG delivery strategies improve protection against Mycobacterium tuberculosis in non-human primates: protection associated with mycobacterial antigen-specific CD4 effector memory T-cell populations. Tuberculosis (Edinb) 101:174–190CrossRef Sharpe S, White A, Sarfas C, Sibley L, Gleeson F, McIntyre A et al (2016) Alternative BCG delivery strategies improve protection against Mycobacterium tuberculosis in non-human primates: protection associated with mycobacterial antigen-specific CD4 effector memory T-cell populations. Tuberculosis (Edinb) 101:174–190CrossRef
90.
go back to reference Darrah PA, Zeppa JJ, Maiello P, Hackney JA, Wadsworth MH 2nd, Hughes TK et al (2020) Prevention of tuberculosis in macaques after intravenous BCG immunization. Nature. 577(7788):95–102PubMedPubMedCentralCrossRef Darrah PA, Zeppa JJ, Maiello P, Hackney JA, Wadsworth MH 2nd, Hughes TK et al (2020) Prevention of tuberculosis in macaques after intravenous BCG immunization. Nature. 577(7788):95–102PubMedPubMedCentralCrossRef
91.
go back to reference Master SS, Rampini SK, Davis AS, Keller C, Ehlers S, Springer B et al (2008) Mycobacterium tuberculosis prevents inflammasome activation. Cell Host Microbe 3(4):224–232PubMedPubMedCentralCrossRef Master SS, Rampini SK, Davis AS, Keller C, Ehlers S, Springer B et al (2008) Mycobacterium tuberculosis prevents inflammasome activation. Cell Host Microbe 3(4):224–232PubMedPubMedCentralCrossRef
92.
go back to reference Kaushal D, Schroeder BG, Tyagi S, Yoshimatsu T, Scott C, Ko C et al (2002) Reduced immunopathology and mortality despite tissue persistence in a Mycobacterium tuberculosis mutant lacking alternative σ factor, SigH. Proc Natl Acad Sci 99(12):8330–8335PubMedCrossRefPubMedCentral Kaushal D, Schroeder BG, Tyagi S, Yoshimatsu T, Scott C, Ko C et al (2002) Reduced immunopathology and mortality despite tissue persistence in a Mycobacterium tuberculosis mutant lacking alternative σ factor, SigH. Proc Natl Acad Sci 99(12):8330–8335PubMedCrossRefPubMedCentral
93.
go back to reference Noss EH, Pai RK, Sellati TJ, Radolf JD, Belisle J, Golenbock DT et al (2001) Toll-like receptor 2-dependent inhibition of macrophage class II MHC expression and antigen processing by 19-kDa lipoprotein of Mycobacterium tuberculosis. J Immunol 167(2):910–918PubMedCrossRef Noss EH, Pai RK, Sellati TJ, Radolf JD, Belisle J, Golenbock DT et al (2001) Toll-like receptor 2-dependent inhibition of macrophage class II MHC expression and antigen processing by 19-kDa lipoprotein of Mycobacterium tuberculosis. J Immunol 167(2):910–918PubMedCrossRef
94.
go back to reference Gehring AJ, Dobos KM, Belisle JT, Harding CV, Boom WH (2004) Mycobacterium tuberculosis LprG (Rv1411c): a novel TLR-2 ligand that inhibits human macrophage class II MHC antigen processing. J Immunol 173(4):2660–2668PubMedCrossRef Gehring AJ, Dobos KM, Belisle JT, Harding CV, Boom WH (2004) Mycobacterium tuberculosis LprG (Rv1411c): a novel TLR-2 ligand that inhibits human macrophage class II MHC antigen processing. J Immunol 173(4):2660–2668PubMedCrossRef
95.
go back to reference Pecora ND, Gehring AJ, Canaday DH, Boom WH, Harding CV (2006) Mycobacterium tuberculosis LprA is a lipoprotein agonist of TLR2 that regulates innate immunity and APC function. J Immunol 177(1):422–429PubMedCrossRef Pecora ND, Gehring AJ, Canaday DH, Boom WH, Harding CV (2006) Mycobacterium tuberculosis LprA is a lipoprotein agonist of TLR2 that regulates innate immunity and APC function. J Immunol 177(1):422–429PubMedCrossRef
96.
go back to reference Pires D, Marques J, Pombo JP, Carmo N, Bettencourt P, Neyrolles O et al (2016) Role of cathepsins in Mycobacterium tuberculosis survival in human macrophages. Sci Rep 6:32247PubMedPubMedCentralCrossRef Pires D, Marques J, Pombo JP, Carmo N, Bettencourt P, Neyrolles O et al (2016) Role of cathepsins in Mycobacterium tuberculosis survival in human macrophages. Sci Rep 6:32247PubMedPubMedCentralCrossRef
97.
go back to reference Sendide K, Deghmane A-E, Pechkovsky D, Av-Gay Y, Talal A, Hmama Z (2005) Mycobacterium bovis BCG attenuates surface expression of mature class II molecules through IL-10-dependent inhibition of cathepsin S. J Immunol 175(8):5324–5332PubMedCrossRef Sendide K, Deghmane A-E, Pechkovsky D, Av-Gay Y, Talal A, Hmama Z (2005) Mycobacterium bovis BCG attenuates surface expression of mature class II molecules through IL-10-dependent inhibition of cathepsin S. J Immunol 175(8):5324–5332PubMedCrossRef
98.
go back to reference Simeone R, Bottai D, Brosch R (2009) ESX/type VII secretion systems and their role in host–pathogen interaction. Curr Opin Microbiol 12(1):4–10PubMedCrossRef Simeone R, Bottai D, Brosch R (2009) ESX/type VII secretion systems and their role in host–pathogen interaction. Curr Opin Microbiol 12(1):4–10PubMedCrossRef
99.
go back to reference Madan-Lala R, Sia JK, King R, Adekambi T, Monin L, Khader SA et al (2014) Mycobacterium tuberculosis impairs dendritic cell functions through the serine hydrolase Hip1. J Immunol 192(9):4263–4272PubMedCrossRef Madan-Lala R, Sia JK, King R, Adekambi T, Monin L, Khader SA et al (2014) Mycobacterium tuberculosis impairs dendritic cell functions through the serine hydrolase Hip1. J Immunol 192(9):4263–4272PubMedCrossRef
100.
go back to reference Bach H, Papavinasasundaram KG, Wong D, Hmama Z, Av-Gay Y (2008) Mycobacterium tuberculosis virulence is mediated by PtpA dephosphorylation of human vacuolar protein sorting 33B. Cell Host Microbe 3(5):316–322PubMedCrossRef Bach H, Papavinasasundaram KG, Wong D, Hmama Z, Av-Gay Y (2008) Mycobacterium tuberculosis virulence is mediated by PtpA dephosphorylation of human vacuolar protein sorting 33B. Cell Host Microbe 3(5):316–322PubMedCrossRef
101.
go back to reference Sun J, Wang X, Lau A, Liao T-YA, Bucci C, Hmama Z (2010) Mycobacterial nucleoside diphosphate kinase blocks phagosome maturation in murine RAW 264.7 macrophages. PLoS One 5(1):e8769PubMedPubMedCentralCrossRef Sun J, Wang X, Lau A, Liao T-YA, Bucci C, Hmama Z (2010) Mycobacterial nucleoside diphosphate kinase blocks phagosome maturation in murine RAW 264.7 macrophages. PLoS One 5(1):e8769PubMedPubMedCentralCrossRef
102.
go back to reference Hinchey J, Lee S, Jeon BY, Basaraba RJ, Venkataswamy MM, Chen B et al (2007) Enhanced priming of adaptive immunity by a proapoptotic mutant of Mycobacterium tuberculosis. J Clin Invest 117(8):2279–2288PubMedPubMedCentralCrossRef Hinchey J, Lee S, Jeon BY, Basaraba RJ, Venkataswamy MM, Chen B et al (2007) Enhanced priming of adaptive immunity by a proapoptotic mutant of Mycobacterium tuberculosis. J Clin Invest 117(8):2279–2288PubMedPubMedCentralCrossRef
103.
go back to reference Hmama Z, Peña-Díaz S, Joseph S, Av-Gay Y (2015) Immunoevasion and immunosuppression of the macrophage by M ycobacterium tuberculosis. Immunol Rev 264(1):220–232PubMedCrossRef Hmama Z, Peña-Díaz S, Joseph S, Av-Gay Y (2015) Immunoevasion and immunosuppression of the macrophage by M ycobacterium tuberculosis. Immunol Rev 264(1):220–232PubMedCrossRef
104.
go back to reference Schaible UE, Winau F, Sieling PA, Fischer K, Collins HL, Hagens K et al (2003) Apoptosis facilitates antigen presentation to T lymphocytes through MHC-I and CD1 in tuberculosis. Nat Med 9(8):1039PubMedCrossRef Schaible UE, Winau F, Sieling PA, Fischer K, Collins HL, Hagens K et al (2003) Apoptosis facilitates antigen presentation to T lymphocytes through MHC-I and CD1 in tuberculosis. Nat Med 9(8):1039PubMedCrossRef
105.
go back to reference Johansen P, Fettelschoss A, Amstutz B, Selchow P, Waeckerle-Men Y, Keller P et al (2011) Relief from Zmp1-mediated arrest of phagosome maturation is associated with facilitated presentation and enhanced immunogenicity of mycobacterial antigens. Clin Vaccine Immunol 18(6):907–913PubMedPubMedCentralCrossRef Johansen P, Fettelschoss A, Amstutz B, Selchow P, Waeckerle-Men Y, Keller P et al (2011) Relief from Zmp1-mediated arrest of phagosome maturation is associated with facilitated presentation and enhanced immunogenicity of mycobacterial antigens. Clin Vaccine Immunol 18(6):907–913PubMedPubMedCentralCrossRef
106.
go back to reference Sander P, Clark S, Petrera A, Vilaplana C, Meuli M, Selchow P et al (2015) Deletion of zmp1 improves Mycobacterium bovis BCG-mediated protection in a guinea pig model of tuberculosis. Vaccine. 33(11):1353–1359PubMedCrossRef Sander P, Clark S, Petrera A, Vilaplana C, Meuli M, Selchow P et al (2015) Deletion of zmp1 improves Mycobacterium bovis BCG-mediated protection in a guinea pig model of tuberculosis. Vaccine. 33(11):1353–1359PubMedCrossRef
107.
go back to reference Khatri B, Whelan A, Clifford D, Petrera A, Sander P, Vordermeier HM (2014) BCG Δzmp1 vaccine induces enhanced antigen specific immune responses in cattle. Vaccine. 32(7):779–784PubMedCrossRef Khatri B, Whelan A, Clifford D, Petrera A, Sander P, Vordermeier HM (2014) BCG Δzmp1 vaccine induces enhanced antigen specific immune responses in cattle. Vaccine. 32(7):779–784PubMedCrossRef
108.
go back to reference Fujita M, Harada E, Matsumoto T, Mizuta Y, Ikegame S, Ouchi H et al (2010) Impaired host defence against Mycobacterium avium in mice with chronic granulomatous disease. Clin Exp Immunol 160(3):457–460PubMedPubMedCentralCrossRef Fujita M, Harada E, Matsumoto T, Mizuta Y, Ikegame S, Ouchi H et al (2010) Impaired host defence against Mycobacterium avium in mice with chronic granulomatous disease. Clin Exp Immunol 160(3):457–460PubMedPubMedCentralCrossRef
109.
go back to reference Fleury C, Mignotte B, Vayssière J-L (2002) Mitochondrial reactive oxygen species in cell death signaling. Biochimie. 84(2–3):131–141PubMedCrossRef Fleury C, Mignotte B, Vayssière J-L (2002) Mitochondrial reactive oxygen species in cell death signaling. Biochimie. 84(2–3):131–141PubMedCrossRef
110.
go back to reference Miller JL, Velmurugan K, Cowan MJ, Briken V (2010) The type I NADH dehydrogenase of Mycobacterium tuberculosis counters phagosomal NOX2 activity to inhibit TNF-α-mediated host cell apoptosis. PLoS Pathog 6(4):e1000864PubMedPubMedCentralCrossRef Miller JL, Velmurugan K, Cowan MJ, Briken V (2010) The type I NADH dehydrogenase of Mycobacterium tuberculosis counters phagosomal NOX2 activity to inhibit TNF-α-mediated host cell apoptosis. PLoS Pathog 6(4):e1000864PubMedPubMedCentralCrossRef
111.
go back to reference Gengenbacher M, Nieuwenhuizen N, Vogelzang A, Liu H, Kaiser P, Schuerer S et al (2016) Deletion of nuoG from the vaccine candidate Mycobacterium bovis BCG ΔureC::hly improves protection against tuberculosis. MBio. 7(3):e00679–e00616PubMedPubMedCentralCrossRef Gengenbacher M, Nieuwenhuizen N, Vogelzang A, Liu H, Kaiser P, Schuerer S et al (2016) Deletion of nuoG from the vaccine candidate Mycobacterium bovis BCG ΔureC::hly improves protection against tuberculosis. MBio. 7(3):e00679–e00616PubMedPubMedCentralCrossRef
112.
go back to reference Kernodle DS (2010) Decrease in the effectiveness of bacille Calmette-Guérin vaccine against pulmonary tuberculosis: a consequence of increased immune suppression by microbial antioxidants, not overattenuation. Clin Infect Dis 51(2):177–184PubMedCrossRef Kernodle DS (2010) Decrease in the effectiveness of bacille Calmette-Guérin vaccine against pulmonary tuberculosis: a consequence of increased immune suppression by microbial antioxidants, not overattenuation. Clin Infect Dis 51(2):177–184PubMedCrossRef
113.
go back to reference Kaushal D, Foreman TW, Gautam US, Alvarez X, Adekambi T, Rangel-Moreno J et al (2015) Mucosal vaccination with attenuated Mycobacterium tuberculosis induces strong central memory responses and protects against tuberculosis. Nat Commun 6:8533PubMedCrossRef Kaushal D, Foreman TW, Gautam US, Alvarez X, Adekambi T, Rangel-Moreno J et al (2015) Mucosal vaccination with attenuated Mycobacterium tuberculosis induces strong central memory responses and protects against tuberculosis. Nat Commun 6:8533PubMedCrossRef
114.
115.
go back to reference Soualhine H, Deghmane A-E, Sun J, Mak K, Talal A, Av-Gay Y et al (2007) Mycobacterium bovis bacillus Calmette-Guerin secreting active cathepsin S stimulates expression of mature MHC class II molecules and antigen presentation in human macrophages. J Immunol 179(8):5137–5145PubMedCrossRef Soualhine H, Deghmane A-E, Sun J, Mak K, Talal A, Av-Gay Y et al (2007) Mycobacterium bovis bacillus Calmette-Guerin secreting active cathepsin S stimulates expression of mature MHC class II molecules and antigen presentation in human macrophages. J Immunol 179(8):5137–5145PubMedCrossRef
116.
go back to reference Mahairas GG, Sabo PJ, Hickey MJ, Singh DC, Stover CK (1996) Molecular analysis of genetic differences between Mycobacterium bovis BCG and virulent M. bovis. J Bacteriol 178(5):1274–1282PubMedPubMedCentralCrossRef Mahairas GG, Sabo PJ, Hickey MJ, Singh DC, Stover CK (1996) Molecular analysis of genetic differences between Mycobacterium bovis BCG and virulent M. bovis. J Bacteriol 178(5):1274–1282PubMedPubMedCentralCrossRef
117.
go back to reference Romagnoli A, Etna MP, Giacomini E, Pardini M, Remoli ME, Corazzari M et al (2012) ESX-1 dependent impairment of autophagic flux by Mycobacterium tuberculosis in human dendritic cells. Autophagy. 8(9):1357–1370PubMedPubMedCentralCrossRef Romagnoli A, Etna MP, Giacomini E, Pardini M, Remoli ME, Corazzari M et al (2012) ESX-1 dependent impairment of autophagic flux by Mycobacterium tuberculosis in human dendritic cells. Autophagy. 8(9):1357–1370PubMedPubMedCentralCrossRef
118.
go back to reference Pym AS, Brodin P, Majlessi L, Brosch R, Demangel C, Williams A et al (2003) Recombinant BCG exporting ESAT-6 confers enhanced protection against tuberculosis. Nat Med 9(5):533PubMedCrossRef Pym AS, Brodin P, Majlessi L, Brosch R, Demangel C, Williams A et al (2003) Recombinant BCG exporting ESAT-6 confers enhanced protection against tuberculosis. Nat Med 9(5):533PubMedCrossRef
119.
go back to reference Gröschel MI, Sayes F, Shin SJ, Frigui W, Pawlik A, Orgeur M et al (2017) Recombinant BCG expressing ESX-1 of Mycobacterium marinum combines low virulence with cytosolic immune signaling and improved TB protection. Cell Rep 18(11):2752–2765PubMedCrossRef Gröschel MI, Sayes F, Shin SJ, Frigui W, Pawlik A, Orgeur M et al (2017) Recombinant BCG expressing ESX-1 of Mycobacterium marinum combines low virulence with cytosolic immune signaling and improved TB protection. Cell Rep 18(11):2752–2765PubMedCrossRef
120.
go back to reference Hess J, Miko D, Catic A, Lehmensiek V, Russell DG, Kaufmann SH (1998) Mycobacterium bovis bacille Calmette–Guérin strains secreting listeriolysin of Listeria monocytogenes. Proc Natl Acad Sci 95(9):5299–5304PubMedCrossRefPubMedCentral Hess J, Miko D, Catic A, Lehmensiek V, Russell DG, Kaufmann SH (1998) Mycobacterium bovis bacille Calmette–Guérin strains secreting listeriolysin of Listeria monocytogenes. Proc Natl Acad Sci 95(9):5299–5304PubMedCrossRefPubMedCentral
121.
go back to reference Grode L, Seiler P, Baumann S, Hess J, Brinkmann V, Eddine AN et al (2005) Increased vaccine efficacy against tuberculosis of recombinant Mycobacterium bovis bacille Calmette-Guerin mutants that secrete listeriolysin. J Clin Invest 115(9):2472–2479PubMedPubMedCentralCrossRef Grode L, Seiler P, Baumann S, Hess J, Brinkmann V, Eddine AN et al (2005) Increased vaccine efficacy against tuberculosis of recombinant Mycobacterium bovis bacille Calmette-Guerin mutants that secrete listeriolysin. J Clin Invest 115(9):2472–2479PubMedPubMedCentralCrossRef
122.
go back to reference Hamon MA, Ribet D, Stavru F, Cossart P (2012) Listeriolysin O: the Swiss army knife of Listeria. Trends Microbiol 20(8):360–368PubMedCrossRef Hamon MA, Ribet D, Stavru F, Cossart P (2012) Listeriolysin O: the Swiss army knife of Listeria. Trends Microbiol 20(8):360–368PubMedCrossRef
123.
go back to reference Shaughnessy LM, Hoppe AD, Christensen KA, Swanson JA (2006) Membrane perforations inhibit lysosome fusion by altering pH and calcium in Listeria monocytogenes vacuoles. Cell Microbiol 8(5):781–792PubMedPubMedCentralCrossRef Shaughnessy LM, Hoppe AD, Christensen KA, Swanson JA (2006) Membrane perforations inhibit lysosome fusion by altering pH and calcium in Listeria monocytogenes vacuoles. Cell Microbiol 8(5):781–792PubMedPubMedCentralCrossRef
124.
go back to reference Geoffroy C, Gaillard J-L, Alouf JE, Berche P (1987) Purification, characterization, and toxicity of the sulfhydryl-activated hemolysin listeriolysin O from Listeria monocytogenes. Infect Immun 55(7):1641–1646PubMedPubMedCentralCrossRef Geoffroy C, Gaillard J-L, Alouf JE, Berche P (1987) Purification, characterization, and toxicity of the sulfhydryl-activated hemolysin listeriolysin O from Listeria monocytogenes. Infect Immun 55(7):1641–1646PubMedPubMedCentralCrossRef
125.
go back to reference Nieuwenhuizen NE, Kulkarni PS, Shaligram U, Cotton MF, Rentsch CA, Eisele B et al (2017) The recombinant bacille Calmette–Guérin vaccine VPM1002: ready for clinical efficacy testing. Front Immunol 8:1147PubMedPubMedCentralCrossRef Nieuwenhuizen NE, Kulkarni PS, Shaligram U, Cotton MF, Rentsch CA, Eisele B et al (2017) The recombinant bacille Calmette–Guérin vaccine VPM1002: ready for clinical efficacy testing. Front Immunol 8:1147PubMedPubMedCentralCrossRef
126.
go back to reference Vogelzang A, Perdomo C, Zedler U, Kuhlmann S, Hurwitz R, Gengenbacher M et al (2014) Central memory CD4+ T cells are responsible for the recombinant Bacillus Calmette-Guérin Δ ureC::hly vaccine’s superior protection against tuberculosis. J Infect Dis 210(12):1928–1937PubMedPubMedCentralCrossRef Vogelzang A, Perdomo C, Zedler U, Kuhlmann S, Hurwitz R, Gengenbacher M et al (2014) Central memory CD4+ T cells are responsible for the recombinant Bacillus Calmette-Guérin Δ ureC::hly vaccine’s superior protection against tuberculosis. J Infect Dis 210(12):1928–1937PubMedPubMedCentralCrossRef
127.
go back to reference Kaufmann SH, Cotton MF, Eisele B, Gengenbacher M, Grode L, Hesseling AC et al (2014) The BCG replacement vaccine VPM1002: from drawing board to clinical trial. Expert Rev Vaccines 13(5):619–630PubMedCrossRef Kaufmann SH, Cotton MF, Eisele B, Gengenbacher M, Grode L, Hesseling AC et al (2014) The BCG replacement vaccine VPM1002: from drawing board to clinical trial. Expert Rev Vaccines 13(5):619–630PubMedCrossRef
128.
go back to reference Velmurugan K, Grode L, Chang R, Fitzpatrick M, Laddy D, Hokey D et al (2013) Nonclinical development of BCG replacement vaccine candidates. Vaccines. 1(2):120–138PubMedPubMedCentralCrossRef Velmurugan K, Grode L, Chang R, Fitzpatrick M, Laddy D, Hokey D et al (2013) Nonclinical development of BCG replacement vaccine candidates. Vaccines. 1(2):120–138PubMedPubMedCentralCrossRef
129.
go back to reference Grode L, Ganoza CA, Brohm C, Weiner J 3rd, Eisele B, Kaufmann SH (2013) Safety and immunogenicity of the recombinant BCG vaccine VPM1002 in a phase 1 open-label randomized clinical trial. Vaccine. 31(9):1340–1348PubMedCrossRef Grode L, Ganoza CA, Brohm C, Weiner J 3rd, Eisele B, Kaufmann SH (2013) Safety and immunogenicity of the recombinant BCG vaccine VPM1002 in a phase 1 open-label randomized clinical trial. Vaccine. 31(9):1340–1348PubMedCrossRef
130.
go back to reference Loxton AG, Knaul JK, Grode L, Gutschmidt A, Meller C, Eisele B et al (2017) Safety and immunogenicity of the recombinant Mycobacterium bovis BCG vaccine VPM1002 in HIV-unexposed newborn infants in South Africa. Clin Vaccine Immunol 24(2):e00439–e00416PubMedPubMedCentralCrossRef Loxton AG, Knaul JK, Grode L, Gutschmidt A, Meller C, Eisele B et al (2017) Safety and immunogenicity of the recombinant Mycobacterium bovis BCG vaccine VPM1002 in HIV-unexposed newborn infants in South Africa. Clin Vaccine Immunol 24(2):e00439–e00416PubMedPubMedCentralCrossRef
131.
go back to reference Flynn JL, Chan J, Triebold KJ, Dalton DK, Stewart TA, Bloom BR (1993) An essential role for interferon gamma in resistance to Mycobacterium tuberculosis infection. J Exp Med 178(6):2249–2254PubMedCrossRef Flynn JL, Chan J, Triebold KJ, Dalton DK, Stewart TA, Bloom BR (1993) An essential role for interferon gamma in resistance to Mycobacterium tuberculosis infection. J Exp Med 178(6):2249–2254PubMedCrossRef
132.
go back to reference Cooper AM, Dalton DK, Stewart TA, Griffin JP, Russell DG, Orme IM (1993) Disseminated tuberculosis in interferon gamma gene-disrupted mice. J Exp Med 178(6):2243–2247PubMedCrossRef Cooper AM, Dalton DK, Stewart TA, Griffin JP, Russell DG, Orme IM (1993) Disseminated tuberculosis in interferon gamma gene-disrupted mice. J Exp Med 178(6):2243–2247PubMedCrossRef
134.
go back to reference Lin PL, Rutledge T, Green AM, Bigbee M, Fuhrman C, Klein E et al (2012) CD4 T cell depletion exacerbates acute Mycobacterium tuberculosis while reactivation of latent infection is dependent on severity of tissue depletion in cynomolgus macaques. AIDS Res Hum Retrovir 28(12):1693–1702PubMedCrossRefPubMedCentral Lin PL, Rutledge T, Green AM, Bigbee M, Fuhrman C, Klein E et al (2012) CD4 T cell depletion exacerbates acute Mycobacterium tuberculosis while reactivation of latent infection is dependent on severity of tissue depletion in cynomolgus macaques. AIDS Res Hum Retrovir 28(12):1693–1702PubMedCrossRefPubMedCentral
135.
go back to reference Filipe-Santos O, Bustamante J, Chapgier A, Vogt G, de Beaucoudrey L, Feinberg J et al (2006;Elsevier) Inborn errors of IL-12/23-and IFN-γ-mediated immunity: molecular, cellular, and clinical features. Semin Immunol 18(6):347–361PubMedCrossRef Filipe-Santos O, Bustamante J, Chapgier A, Vogt G, de Beaucoudrey L, Feinberg J et al (2006;Elsevier) Inborn errors of IL-12/23-and IFN-γ-mediated immunity: molecular, cellular, and clinical features. Semin Immunol 18(6):347–361PubMedCrossRef
136.
go back to reference Zeng G, Zhang G, Chen X (2018) Th1 cytokines, true functional signatures for protective immunity against TB? Cell Mol Immunol 15(3):206PubMedCrossRef Zeng G, Zhang G, Chen X (2018) Th1 cytokines, true functional signatures for protective immunity against TB? Cell Mol Immunol 15(3):206PubMedCrossRef
137.
go back to reference Sakai S, Kauffman KD, Schenkel JM, McBerry CC, Mayer-Barber KD, Masopust D et al (2014) Cutting edge: control of Mycobacterium tuberculosis infection by a subset of lung parenchyma–homing CD4 T cells. J Immunol 192(7):2965–2969PubMedCrossRef Sakai S, Kauffman KD, Schenkel JM, McBerry CC, Mayer-Barber KD, Masopust D et al (2014) Cutting edge: control of Mycobacterium tuberculosis infection by a subset of lung parenchyma–homing CD4 T cells. J Immunol 192(7):2965–2969PubMedCrossRef
138.
go back to reference Gebhardt T, Wakim LM, Eidsmo L, Reading PC, Heath WR, Carbone FR (2009) Memory T cells in nonlymphoid tissue that provide enhanced local immunity during infection with herpes simplex virus. Nat Immunol 10(5):524PubMedCrossRef Gebhardt T, Wakim LM, Eidsmo L, Reading PC, Heath WR, Carbone FR (2009) Memory T cells in nonlymphoid tissue that provide enhanced local immunity during infection with herpes simplex virus. Nat Immunol 10(5):524PubMedCrossRef
139.
go back to reference Bull N, Stylianou E, Kaveh D, Pinpathomrat N, Pasricha J, Harrington-Kandt R et al (2019) Enhanced protection conferred by mucosal BCG vaccination associates with presence of antigen-specific lung tissue-resident PD-1+ KLRG1− CD4+ T cells. Mucosal Immunol 12(2):555PubMedCrossRef Bull N, Stylianou E, Kaveh D, Pinpathomrat N, Pasricha J, Harrington-Kandt R et al (2019) Enhanced protection conferred by mucosal BCG vaccination associates with presence of antigen-specific lung tissue-resident PD-1+ KLRG1− CD4+ T cells. Mucosal Immunol 12(2):555PubMedCrossRef
140.
go back to reference Sallin MA, Sakai S, Kauffman KD, Young HA, Zhu J, Barber DL (2017) Th1 differentiation drives the accumulation of intravascular, non-protective CD4 T cells during tuberculosis. Cell Rep 18(13):3091–3104PubMedPubMedCentralCrossRef Sallin MA, Sakai S, Kauffman KD, Young HA, Zhu J, Barber DL (2017) Th1 differentiation drives the accumulation of intravascular, non-protective CD4 T cells during tuberculosis. Cell Rep 18(13):3091–3104PubMedPubMedCentralCrossRef
141.
go back to reference Perdomo C, Zedler U, Kühl AA, Lozza L, Saikali P, Sander LE et al (2016) Mucosal BCG vaccination induces protective lung-resident memory T cell populations against tuberculosis. MBio. 7(6):e01686–e01616PubMedPubMedCentralCrossRef Perdomo C, Zedler U, Kühl AA, Lozza L, Saikali P, Sander LE et al (2016) Mucosal BCG vaccination induces protective lung-resident memory T cell populations against tuberculosis. MBio. 7(6):e01686–e01616PubMedPubMedCentralCrossRef
142.
go back to reference Kauffman KD, Sallin MA, Sakai S, Kamenyeva O, Kabat J, Weiner D et al (2018) Defective positioning in granulomas but not lung-homing limits CD4 T-cell interactions with Mycobacterium tuberculosis-infected macrophages in rhesus macaques. Mucosal Immunol 11(2):462PubMedCrossRef Kauffman KD, Sallin MA, Sakai S, Kamenyeva O, Kabat J, Weiner D et al (2018) Defective positioning in granulomas but not lung-homing limits CD4 T-cell interactions with Mycobacterium tuberculosis-infected macrophages in rhesus macaques. Mucosal Immunol 11(2):462PubMedCrossRef
143.
go back to reference Mangan PR, Harrington LE, O'Quinn DB, Helms WS, Bullard DC, Elson CO et al (2006) Transforming growth factor-β induces development of the T H 17 lineage. Nature. 441(7090):231PubMedCrossRef Mangan PR, Harrington LE, O'Quinn DB, Helms WS, Bullard DC, Elson CO et al (2006) Transforming growth factor-β induces development of the T H 17 lineage. Nature. 441(7090):231PubMedCrossRef
144.
go back to reference Veldhoen M, Hocking RJ, Atkins CJ, Locksley RM, Stockinger B (2006) TGFβ in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity. 24(2):179–189PubMedCrossRef Veldhoen M, Hocking RJ, Atkins CJ, Locksley RM, Stockinger B (2006) TGFβ in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity. 24(2):179–189PubMedCrossRef
145.
go back to reference Bettelli E, Carrier Y, Gao W, Korn T, Strom TB, Oukka M et al (2006) Reciprocal developmental pathways for the generation of pathogenic effector T H 17 and regulatory T cells. Nature. 441(7090):235PubMedCrossRef Bettelli E, Carrier Y, Gao W, Korn T, Strom TB, Oukka M et al (2006) Reciprocal developmental pathways for the generation of pathogenic effector T H 17 and regulatory T cells. Nature. 441(7090):235PubMedCrossRef
146.
go back to reference Langrish CL, Chen Y, Blumenschein WM, Mattson J, Basham B, Sedgwick JD et al (2005) IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J Exp Med 201(2):233–240PubMedPubMedCentralCrossRef Langrish CL, Chen Y, Blumenschein WM, Mattson J, Basham B, Sedgwick JD et al (2005) IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J Exp Med 201(2):233–240PubMedPubMedCentralCrossRef
147.
go back to reference Ye P, Rodriguez FH, Kanaly S, Stocking KL, Schurr J, Schwarzenberger P et al (2001) Requirement of interleukin 17 receptor signaling for lung CXC chemokine and granulocyte colony-stimulating factor expression, neutrophil recruitment, and host defense. J Exp Med 194(4):519–528PubMedPubMedCentralCrossRef Ye P, Rodriguez FH, Kanaly S, Stocking KL, Schurr J, Schwarzenberger P et al (2001) Requirement of interleukin 17 receptor signaling for lung CXC chemokine and granulocyte colony-stimulating factor expression, neutrophil recruitment, and host defense. J Exp Med 194(4):519–528PubMedPubMedCentralCrossRef
148.
go back to reference Fujiwara M, Hirose K, Kagami S-I, Takatori H, Wakashin H, Tamachi T et al (2007) T-bet inhibits both TH2 cell-mediated eosinophil recruitment and TH17 cell-mediated neutrophil recruitment into the airways. J Allergy Clin Immunol 119(3):662–670PubMedCrossRef Fujiwara M, Hirose K, Kagami S-I, Takatori H, Wakashin H, Tamachi T et al (2007) T-bet inhibits both TH2 cell-mediated eosinophil recruitment and TH17 cell-mediated neutrophil recruitment into the airways. J Allergy Clin Immunol 119(3):662–670PubMedCrossRef
149.
go back to reference Nakae S, Saijo S, Horai R, Sudo K, Mori S, Iwakura Y (2003) IL-17 production from activated T cells is required for the spontaneous development of destructive arthritis in mice deficient in IL-1 receptor antagonist. Proc Natl Acad Sci 100(10):5986–5990PubMedCrossRefPubMedCentral Nakae S, Saijo S, Horai R, Sudo K, Mori S, Iwakura Y (2003) IL-17 production from activated T cells is required for the spontaneous development of destructive arthritis in mice deficient in IL-1 receptor antagonist. Proc Natl Acad Sci 100(10):5986–5990PubMedCrossRefPubMedCentral
150.
go back to reference Nakae S, Nambu A, Sudo K, Iwakura Y (2003) Suppression of immune induction of collagen-induced arthritis in IL-17-deficient mice. J Immunol 171(11):6173–6177PubMedCrossRef Nakae S, Nambu A, Sudo K, Iwakura Y (2003) Suppression of immune induction of collagen-induced arthritis in IL-17-deficient mice. J Immunol 171(11):6173–6177PubMedCrossRef
151.
go back to reference Park H, Li Z, Yang XO, Chang SH, Nurieva R, Wang Y-H et al (2005) A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nat Immunol 6(11):1133PubMedPubMedCentralCrossRef Park H, Li Z, Yang XO, Chang SH, Nurieva R, Wang Y-H et al (2005) A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nat Immunol 6(11):1133PubMedPubMedCentralCrossRef
152.
go back to reference Harrington LE, Hatton RD, Mangan PR, Turner H, Murphy TL, Murphy KM et al (2005) Interleukin 17–producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat Immunol 6(11):1123PubMedCrossRef Harrington LE, Hatton RD, Mangan PR, Turner H, Murphy TL, Murphy KM et al (2005) Interleukin 17–producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat Immunol 6(11):1123PubMedCrossRef
153.
go back to reference Cruz A, Khader SA, Torrado E, Fraga A, Pearl JE, Pedrosa J et al (2006) Cutting edge: IFN-γ regulates the induction and expansion of IL-17-producing CD4 T cells during mycobacterial infection. J Immunol 177(3):1416–1420PubMedCrossRef Cruz A, Khader SA, Torrado E, Fraga A, Pearl JE, Pedrosa J et al (2006) Cutting edge: IFN-γ regulates the induction and expansion of IL-17-producing CD4 T cells during mycobacterial infection. J Immunol 177(3):1416–1420PubMedCrossRef
154.
go back to reference Gopal R, Lin Y, Obermajer N, Slight S, Nuthalapati N, Ahmed M et al (2012) IL-23-dependent IL-17 drives Th1-cell responses following Mycobacterium bovis BCG vaccination. Eur J Immunol 42(2):364–373PubMedCrossRef Gopal R, Lin Y, Obermajer N, Slight S, Nuthalapati N, Ahmed M et al (2012) IL-23-dependent IL-17 drives Th1-cell responses following Mycobacterium bovis BCG vaccination. Eur J Immunol 42(2):364–373PubMedCrossRef
155.
go back to reference Khader SA, Bell GK, Pearl JE, Fountain JJ, Rangel-Moreno J, Cilley GE et al (2007) IL-23 and IL-17 in the establishment of protective pulmonary CD4+ T cell responses after vaccination and during Mycobacterium tuberculosis challenge. Nat Immunol 8(4):369PubMedCrossRef Khader SA, Bell GK, Pearl JE, Fountain JJ, Rangel-Moreno J, Cilley GE et al (2007) IL-23 and IL-17 in the establishment of protective pulmonary CD4+ T cell responses after vaccination and during Mycobacterium tuberculosis challenge. Nat Immunol 8(4):369PubMedCrossRef
156.
go back to reference Nikitina IY, Panteleev AV, Kosmiadi GA, Serdyuk YV, Nenasheva TA, Nikolaev AA et al (2018) Th1, Th17, and Th1Th17 lymphocytes during tuberculosis: Th1 lymphocytes predominate and appear as low-differentiated CXCR3+ CCR6+ cells in the blood and highly differentiated CXCR3+/− CCR6− cells in the lungs. J Immunol 200(6):2090–2103PubMedCrossRef Nikitina IY, Panteleev AV, Kosmiadi GA, Serdyuk YV, Nenasheva TA, Nikolaev AA et al (2018) Th1, Th17, and Th1Th17 lymphocytes during tuberculosis: Th1 lymphocytes predominate and appear as low-differentiated CXCR3+ CCR6+ cells in the blood and highly differentiated CXCR3+/− CCR6− cells in the lungs. J Immunol 200(6):2090–2103PubMedCrossRef
157.
go back to reference Acosta-Rodriguez EV, Rivino L, Geginat J, Jarrossay D, Gattorno M, Lanzavecchia A et al (2007) Surface phenotype and antigenic specificity of human interleukin 17-producing T helper memory cells. Nat Immunol 8(6):639PubMedCrossRef Acosta-Rodriguez EV, Rivino L, Geginat J, Jarrossay D, Gattorno M, Lanzavecchia A et al (2007) Surface phenotype and antigenic specificity of human interleukin 17-producing T helper memory cells. Nat Immunol 8(6):639PubMedCrossRef
158.
go back to reference Aguilo N, Alvarez-Arguedas S, Uranga S, Marinova D, Monzón M, Badiola J et al (2015) Pulmonary but not subcutaneous delivery of BCG vaccine confers protection to tuberculosis-susceptible mice by an interleukin 17–dependent mechanism. J Infect Dis 213(5):831–839PubMedCrossRef Aguilo N, Alvarez-Arguedas S, Uranga S, Marinova D, Monzón M, Badiola J et al (2015) Pulmonary but not subcutaneous delivery of BCG vaccine confers protection to tuberculosis-susceptible mice by an interleukin 17–dependent mechanism. J Infect Dis 213(5):831–839PubMedCrossRef
159.
go back to reference Jaffar Z, Ferrini ME, Herritt LA, Roberts K (2009) Cutting edge: lung mucosal Th17-mediated responses induce polymeric Ig receptor expression by the airway epithelium and elevate secretory IgA levels. J Immunol 182(8):4507–4511PubMedCrossRef Jaffar Z, Ferrini ME, Herritt LA, Roberts K (2009) Cutting edge: lung mucosal Th17-mediated responses induce polymeric Ig receptor expression by the airway epithelium and elevate secretory IgA levels. J Immunol 182(8):4507–4511PubMedCrossRef
160.
go back to reference Purwar R, Campbell J, Murphy G, Richards WG, Clark RA, Kupper TS (2011) Resident memory T cells (TRM) are abundant in human lung: diversity, function, and antigen specificity. PLoS One 6(1):e16245PubMedPubMedCentralCrossRef Purwar R, Campbell J, Murphy G, Richards WG, Clark RA, Kupper TS (2011) Resident memory T cells (TRM) are abundant in human lung: diversity, function, and antigen specificity. PLoS One 6(1):e16245PubMedPubMedCentralCrossRef
161.
go back to reference Huster KM, Busch V, Schiemann M, Linkemann K, Kerksiek KM, Wagner H et al (2004) Selective expression of IL-7 receptor on memory T cells identifies early CD40L-dependent generation of distinct CD8+ memory T cell subsets. Proc Natl Acad Sci 101(15):5610–5615PubMedCrossRefPubMedCentral Huster KM, Busch V, Schiemann M, Linkemann K, Kerksiek KM, Wagner H et al (2004) Selective expression of IL-7 receptor on memory T cells identifies early CD40L-dependent generation of distinct CD8+ memory T cell subsets. Proc Natl Acad Sci 101(15):5610–5615PubMedCrossRefPubMedCentral
162.
go back to reference Henao-Tamayo M, Ordway DJ, Orme IM (2014) Memory T cell subsets in tuberculosis: what should we be targeting? Tuberculosis. 94(5):455–461PubMedCrossRef Henao-Tamayo M, Ordway DJ, Orme IM (2014) Memory T cell subsets in tuberculosis: what should we be targeting? Tuberculosis. 94(5):455–461PubMedCrossRef
163.
go back to reference Sallusto F, Lenig D, Förster R, Lipp M, Lanzavecchia A (1999) Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature. 401(6754):708PubMedCrossRef Sallusto F, Lenig D, Förster R, Lipp M, Lanzavecchia A (1999) Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature. 401(6754):708PubMedCrossRef
164.
go back to reference Adekambi T, Ibegbu CC, Kalokhe AS, Yu T, Ray SM, Rengarajan J (2012) Distinct effector memory CD4+ T cell signatures in latent Mycobacterium tuberculosis infection, BCG vaccination and clinically resolved tuberculosis. PLoS One 7(4):e36046PubMedPubMedCentralCrossRef Adekambi T, Ibegbu CC, Kalokhe AS, Yu T, Ray SM, Rengarajan J (2012) Distinct effector memory CD4+ T cell signatures in latent Mycobacterium tuberculosis infection, BCG vaccination and clinically resolved tuberculosis. PLoS One 7(4):e36046PubMedPubMedCentralCrossRef
165.
go back to reference Soares AP, Kwong Chung CK, Choice T, Hughes EJ, Jacobs G, van Rensburg EJ et al (2013) Longitudinal changes in CD4+ T-cell memory responses induced by BCG vaccination of newborns. J Infect Dis 207(7):1084–1094PubMedPubMedCentralCrossRef Soares AP, Kwong Chung CK, Choice T, Hughes EJ, Jacobs G, van Rensburg EJ et al (2013) Longitudinal changes in CD4+ T-cell memory responses induced by BCG vaccination of newborns. J Infect Dis 207(7):1084–1094PubMedPubMedCentralCrossRef
166.
go back to reference Kaveh DA, Garcia-Pelayo MC, Hogarth PJ (2014) Persistent BCG bacilli perpetuate CD4 T effector memory and optimal protection against tuberculosis. Vaccine. 32(51):6911–6918PubMedCrossRef Kaveh DA, Garcia-Pelayo MC, Hogarth PJ (2014) Persistent BCG bacilli perpetuate CD4 T effector memory and optimal protection against tuberculosis. Vaccine. 32(51):6911–6918PubMedCrossRef
168.
go back to reference Geginat J, Lanzavecchia A, Sallusto F (2003) Proliferation and differentiation potential of human CD8+ memory T-cell subsets in response to antigen or homeostatic cytokines. Blood. 101(11):4260–4266PubMedCrossRef Geginat J, Lanzavecchia A, Sallusto F (2003) Proliferation and differentiation potential of human CD8+ memory T-cell subsets in response to antigen or homeostatic cytokines. Blood. 101(11):4260–4266PubMedCrossRef
169.
go back to reference Obar JJ, Lefrançois L (2010) Early signals during CD8+ T cell priming regulate the generation of central memory cells. J Immunol 185(1):263–272PubMedCrossRef Obar JJ, Lefrançois L (2010) Early signals during CD8+ T cell priming regulate the generation of central memory cells. J Immunol 185(1):263–272PubMedCrossRef
171.
go back to reference Connor LM, Harvie MC, Rich FJ, Quinn KM, Brinkmann V, Gros GL et al (2010) A key role for lung-resident memory lymphocytes in protective immune responses after BCG vaccination. Eur J Immunol 40(9):2482–2492PubMedCrossRef Connor LM, Harvie MC, Rich FJ, Quinn KM, Brinkmann V, Gros GL et al (2010) A key role for lung-resident memory lymphocytes in protective immune responses after BCG vaccination. Eur J Immunol 40(9):2482–2492PubMedCrossRef
172.
go back to reference Hansen SG, Zak DE, Xu G, Ford JC, Marshall EE, Malouli D et al (2018) Prevention of tuberculosis in rhesus macaques by a cytomegalovirus-based vaccine. Nat Med 24(2):130–143PubMedPubMedCentralCrossRef Hansen SG, Zak DE, Xu G, Ford JC, Marshall EE, Malouli D et al (2018) Prevention of tuberculosis in rhesus macaques by a cytomegalovirus-based vaccine. Nat Med 24(2):130–143PubMedPubMedCentralCrossRef
173.
go back to reference Schenkel JM, Fraser KA, Beura LK, Pauken KE, Vezys V, Masopust D (2014) Resident memory CD8 T cells trigger protective innate and adaptive immune responses. Science. 346(6205):98–101PubMedPubMedCentralCrossRef Schenkel JM, Fraser KA, Beura LK, Pauken KE, Vezys V, Masopust D (2014) Resident memory CD8 T cells trigger protective innate and adaptive immune responses. Science. 346(6205):98–101PubMedPubMedCentralCrossRef
174.
go back to reference Woodworth JS, Christensen D, Cassidy JP, Agger EM, Mortensen R, Andersen P (2019) Mucosal boosting of H56: CAF01 immunization promotes lung-localized T cells and an accelerated pulmonary response to Mycobacterium tuberculosis infection without enhancing vaccine protection. Mucosal Immunol 12(3):816PubMedCrossRef Woodworth JS, Christensen D, Cassidy JP, Agger EM, Mortensen R, Andersen P (2019) Mucosal boosting of H56: CAF01 immunization promotes lung-localized T cells and an accelerated pulmonary response to Mycobacterium tuberculosis infection without enhancing vaccine protection. Mucosal Immunol 12(3):816PubMedCrossRef
175.
go back to reference Aagaard C, Hoang T, Dietrich J, Cardona P-J, Izzo A, Dolganov G et al (2011) A multistage tuberculosis vaccine that confers efficient protection before and after exposure. Nat Med 17(2):189PubMedCrossRef Aagaard C, Hoang T, Dietrich J, Cardona P-J, Izzo A, Dolganov G et al (2011) A multistage tuberculosis vaccine that confers efficient protection before and after exposure. Nat Med 17(2):189PubMedCrossRef
176.
go back to reference Suliman S, Luabeya AKK, Geldenhuys H, Tameris M, Hoff ST, Shi Z et al (2019) Dose optimization of H56: IC31 vaccine for tuberculosis-endemic populations. A double-blind, placebo-controlled, dose-selection trial. Am J Respir Crit Care Med 199(2):220–231PubMedCrossRef Suliman S, Luabeya AKK, Geldenhuys H, Tameris M, Hoff ST, Shi Z et al (2019) Dose optimization of H56: IC31 vaccine for tuberculosis-endemic populations. A double-blind, placebo-controlled, dose-selection trial. Am J Respir Crit Care Med 199(2):220–231PubMedCrossRef
177.
go back to reference Aagaard C, Hoang TTKT, Izzo A, Billeskov R, Troudt J, Arnett K et al (2009) Protection and polyfunctional T cells induced by Ag85B-TB10. 4/IC31® against Mycobacterium tuberculosis is highly dependent on the antigen dose. PLoS One 4(6):e5930PubMedPubMedCentralCrossRef Aagaard C, Hoang TTKT, Izzo A, Billeskov R, Troudt J, Arnett K et al (2009) Protection and polyfunctional T cells induced by Ag85B-TB10. 4/IC31® against Mycobacterium tuberculosis is highly dependent on the antigen dose. PLoS One 4(6):e5930PubMedPubMedCentralCrossRef
178.
go back to reference Rosenthal SR, McEnery JT, Raisys N (1968) Aerogenic BCG vaccination against tuberculosis in animal and human subjects. J Asthma Res 5(4):309–323PubMedCrossRef Rosenthal SR, McEnery JT, Raisys N (1968) Aerogenic BCG vaccination against tuberculosis in animal and human subjects. J Asthma Res 5(4):309–323PubMedCrossRef
179.
go back to reference Mutsch M, Zhou W, Rhodes P, Bopp M, Chen RT, Linder T et al (2004) Use of the inactivated intranasal influenza vaccine and the risk of Bell's palsy in Switzerland. N Engl J Med 350(9):896–903PubMedCrossRef Mutsch M, Zhou W, Rhodes P, Bopp M, Chen RT, Linder T et al (2004) Use of the inactivated intranasal influenza vaccine and the risk of Bell's palsy in Switzerland. N Engl J Med 350(9):896–903PubMedCrossRef
180.
go back to reference Lewis DJ, Huo Z, Barnett S, Kromann I, Giemza R, Galiza E et al (2009) Transient facial nerve paralysis (Bell’s palsy) following intranasal delivery of a genetically detoxified mutant of Escherichia coli heat labile toxin. PLoS One 4(9):e6999PubMedPubMedCentralCrossRef Lewis DJ, Huo Z, Barnett S, Kromann I, Giemza R, Galiza E et al (2009) Transient facial nerve paralysis (Bell’s palsy) following intranasal delivery of a genetically detoxified mutant of Escherichia coli heat labile toxin. PLoS One 4(9):e6999PubMedPubMedCentralCrossRef
182.
go back to reference Satti I, Meyer J, Harris SA, Thomas Z-RM, Griffiths K, Antrobus RD et al (2014) Safety and immunogenicity of a candidate tuberculosis vaccine MVA85A delivered by aerosol in BCG-vaccinated healthy adults: a phase 1, double-blind, randomised controlled trial. Lancet Infect Dis 14(10):939–946PubMedPubMedCentralCrossRef Satti I, Meyer J, Harris SA, Thomas Z-RM, Griffiths K, Antrobus RD et al (2014) Safety and immunogenicity of a candidate tuberculosis vaccine MVA85A delivered by aerosol in BCG-vaccinated healthy adults: a phase 1, double-blind, randomised controlled trial. Lancet Infect Dis 14(10):939–946PubMedPubMedCentralCrossRef
183.
go back to reference Arnberg N (2009) Adenovirus receptors: implications for tropism, treatment and targeting. Rev Med Virol 19(3):165–178PubMedCrossRef Arnberg N (2009) Adenovirus receptors: implications for tropism, treatment and targeting. Rev Med Virol 19(3):165–178PubMedCrossRef
184.
go back to reference Smaill F, Jeyanathan M, Smieja M, Medina MF, Thanthrige-Don N, Zganiacz A et al (2013) A human type 5 adenovirus-based tuberculosis vaccine induces robust T cell responses in humans despite preexisting anti-adenovirus immunity. Sci Transl Med 5(205):205ra134–205ra134PubMedCrossRef Smaill F, Jeyanathan M, Smieja M, Medina MF, Thanthrige-Don N, Zganiacz A et al (2013) A human type 5 adenovirus-based tuberculosis vaccine induces robust T cell responses in humans despite preexisting anti-adenovirus immunity. Sci Transl Med 5(205):205ra134–205ra134PubMedCrossRef
185.
go back to reference Wilkie M, Satti I, Minhinnick A, Harris S, Riste M, Ramon RL et al (2020) A phase I trial evaluating the safety and immunogenicity of a candidate tuberculosis vaccination regimen, ChAdOx1 85A prime—MVA85A boost in healthy UK adults. Vaccine. 38(4):779–789PubMedPubMedCentralCrossRef Wilkie M, Satti I, Minhinnick A, Harris S, Riste M, Ramon RL et al (2020) A phase I trial evaluating the safety and immunogenicity of a candidate tuberculosis vaccination regimen, ChAdOx1 85A prime—MVA85A boost in healthy UK adults. Vaccine. 38(4):779–789PubMedPubMedCentralCrossRef
186.
go back to reference Darrah PA, Bolton DL, Lackner AA, Kaushal D, Aye PP, Mehra S et al (2014) Aerosol vaccination with AERAS-402 elicits robust cellular immune responses in the lungs of rhesus macaques but fails to protect against high-dose Mycobacterium tuberculosis challenge. J Immunol 193(4):1799–1811PubMedCrossRef Darrah PA, Bolton DL, Lackner AA, Kaushal D, Aye PP, Mehra S et al (2014) Aerosol vaccination with AERAS-402 elicits robust cellular immune responses in the lungs of rhesus macaques but fails to protect against high-dose Mycobacterium tuberculosis challenge. J Immunol 193(4):1799–1811PubMedCrossRef
187.
go back to reference Garcia-Contreras L, Wong Y-L, Muttil P, Padilla D, Sadoff J, DeRousse J et al (2008) Immunization by a bacterial aerosol. Proc Natl Acad Sci 105(12):4656–4660PubMedCrossRefPubMedCentral Garcia-Contreras L, Wong Y-L, Muttil P, Padilla D, Sadoff J, DeRousse J et al (2008) Immunization by a bacterial aerosol. Proc Natl Acad Sci 105(12):4656–4660PubMedCrossRefPubMedCentral
188.
go back to reference Barclay WR, Busey WM, Dalgard DW, Good RC, Janicki BW, Kasik JE et al (1973) Protection of monkeys against airborne tuberculosis by aerosol vaccination with bacillus Calmette-Guerin. Am Rev Respir Dis 107(3):351–358PubMed Barclay WR, Busey WM, Dalgard DW, Good RC, Janicki BW, Kasik JE et al (1973) Protection of monkeys against airborne tuberculosis by aerosol vaccination with bacillus Calmette-Guerin. Am Rev Respir Dis 107(3):351–358PubMed
189.
go back to reference Kohlmeier JE, Reiley WW, Perona-Wright G, Freeman ML, Yager EJ, Connor LM et al (2011) Inflammatory chemokine receptors regulate CD8+ T cell contraction and memory generation following infection. J Exp Med 208(8):1621–1634PubMedPubMedCentralCrossRef Kohlmeier JE, Reiley WW, Perona-Wright G, Freeman ML, Yager EJ, Connor LM et al (2011) Inflammatory chemokine receptors regulate CD8+ T cell contraction and memory generation following infection. J Exp Med 208(8):1621–1634PubMedPubMedCentralCrossRef
190.
go back to reference Dijkman K, Sombroek CC, Vervenne RAW, Hofman SO, Boot C, Remarque EJ et al (2019) Prevention of tuberculosis infection and disease by local BCG in repeatedly exposed rhesus macaques. Nat Med 25(2):255–262PubMedCrossRef Dijkman K, Sombroek CC, Vervenne RAW, Hofman SO, Boot C, Remarque EJ et al (2019) Prevention of tuberculosis infection and disease by local BCG in repeatedly exposed rhesus macaques. Nat Med 25(2):255–262PubMedCrossRef
191.
go back to reference Brown M, Varia H, Bassett P, Davidson RN, Wall R, Pasvol G (2007) Prospective study of sputum induction, gastric washing, and bronchoalveolar lavage for the diagnosis of pulmonary tuberculosis in patients who are unable to expectorate. Clin Infect Dis 44(11):1415–1420PubMedCrossRef Brown M, Varia H, Bassett P, Davidson RN, Wall R, Pasvol G (2007) Prospective study of sputum induction, gastric washing, and bronchoalveolar lavage for the diagnosis of pulmonary tuberculosis in patients who are unable to expectorate. Clin Infect Dis 44(11):1415–1420PubMedCrossRef
192.
go back to reference Manjaly Thomas Z-R, McShane H (2015) Aerosol immunisation for TB: matching route of vaccination to route of infection. Trans R Soc Trop Med Hyg 109(3):175–181PubMedPubMedCentralCrossRef Manjaly Thomas Z-R, McShane H (2015) Aerosol immunisation for TB: matching route of vaccination to route of infection. Trans R Soc Trop Med Hyg 109(3):175–181PubMedPubMedCentralCrossRef
193.
go back to reference Phuah J, Wong EA, Gideon HP, Maiello P, Coleman MT, Hendricks MR et al (2016) Effects of B cell depletion on early Mycobacterium tuberculosis infection in cynomolgus macaques. Infect Immun 84(5):1301–1311PubMedPubMedCentralCrossRef Phuah J, Wong EA, Gideon HP, Maiello P, Coleman MT, Hendricks MR et al (2016) Effects of B cell depletion on early Mycobacterium tuberculosis infection in cynomolgus macaques. Infect Immun 84(5):1301–1311PubMedPubMedCentralCrossRef
194.
go back to reference Barr TA, Shen P, Brown S, Lampropoulou V, Roch T, Lawrie S et al (2012) B cell depletion therapy ameliorates autoimmune disease through ablation of IL-6-producing B cells. J Exp Med 209(5):1001–1010PubMedPubMedCentralCrossRef Barr TA, Shen P, Brown S, Lampropoulou V, Roch T, Lawrie S et al (2012) B cell depletion therapy ameliorates autoimmune disease through ablation of IL-6-producing B cells. J Exp Med 209(5):1001–1010PubMedPubMedCentralCrossRef
195.
go back to reference Fillatreau S, Sweenie CH, McGeachy MJ, Gray D, Anderton SM (2002) B cells regulate autoimmunity by provision of IL-10. Nat Immunol 3(10):944PubMedCrossRef Fillatreau S, Sweenie CH, McGeachy MJ, Gray D, Anderton SM (2002) B cells regulate autoimmunity by provision of IL-10. Nat Immunol 3(10):944PubMedCrossRef
196.
go back to reference McGeachy MJ, Bak-Jensen KS, Chen Y, Tato CM, Blumenschein W, McClanahan T et al (2007) TGF-β and IL-6 drive the production of IL-17 and IL-10 by T cells and restrain T H-17 cell-mediated pathology. Nat Immunol 8(12):1390PubMedCrossRef McGeachy MJ, Bak-Jensen KS, Chen Y, Tato CM, Blumenschein W, McClanahan T et al (2007) TGF-β and IL-6 drive the production of IL-17 and IL-10 by T cells and restrain T H-17 cell-mediated pathology. Nat Immunol 8(12):1390PubMedCrossRef
197.
go back to reference Ireland SJ, Monson NL, Davis LS (2015) Seeking balance: potentiation and inhibition of multiple sclerosis autoimmune responses by IL-6 and IL-10. Cytokine. 73(2):236–244PubMedPubMedCentralCrossRef Ireland SJ, Monson NL, Davis LS (2015) Seeking balance: potentiation and inhibition of multiple sclerosis autoimmune responses by IL-6 and IL-10. Cytokine. 73(2):236–244PubMedPubMedCentralCrossRef
198.
go back to reference Nikonenko B, Apt A, Mezhlumova M, Avdienko V, Yeremeev V, Moroz A (1996) Influence of the mouse BcgTbc-1 and xid genes on resistance and immune responses to tuberculosis infection and efficacy of bacille Calmette–Guérin (BCG) vaccination. Clin Exp Immunol 104(1):37–43PubMedPubMedCentralCrossRef Nikonenko B, Apt A, Mezhlumova M, Avdienko V, Yeremeev V, Moroz A (1996) Influence of the mouse BcgTbc-1 and xid genes on resistance and immune responses to tuberculosis infection and efficacy of bacille Calmette–Guérin (BCG) vaccination. Clin Exp Immunol 104(1):37–43PubMedPubMedCentralCrossRef
199.
go back to reference Kozakiewicz L, Chen Y, Xu J, Wang Y, Dunussi-Joannopoulos K, Ou Q et al (2013) B cells regulate neutrophilia during Mycobacterium tuberculosis infection and BCG vaccination by modulating the interleukin-17 response. PLoS Pathog 9(7):e1003472PubMedPubMedCentralCrossRef Kozakiewicz L, Chen Y, Xu J, Wang Y, Dunussi-Joannopoulos K, Ou Q et al (2013) B cells regulate neutrophilia during Mycobacterium tuberculosis infection and BCG vaccination by modulating the interleukin-17 response. PLoS Pathog 9(7):e1003472PubMedPubMedCentralCrossRef
200.
go back to reference Kondratieva TK, Rubakova EI, Linge IA, Evstifeev VV, Majorov KB, Apt AS (2010) B cells delay neutrophil migration toward the site of stimulus: tardiness critical for effective bacillus Calmette-Guérin vaccination against tuberculosis infection in mice. J Immunol 184(3):1227–1234PubMedCrossRef Kondratieva TK, Rubakova EI, Linge IA, Evstifeev VV, Majorov KB, Apt AS (2010) B cells delay neutrophil migration toward the site of stimulus: tardiness critical for effective bacillus Calmette-Guérin vaccination against tuberculosis infection in mice. J Immunol 184(3):1227–1234PubMedCrossRef
201.
go back to reference Mahan AE, Jennewein MF, Suscovich T, Dionne K, Tedesco J, Chung AW et al (2016) Antigen-specific antibody glycosylation is regulated via vaccination. PLoS Pathog 12(3):e1005456PubMedPubMedCentralCrossRef Mahan AE, Jennewein MF, Suscovich T, Dionne K, Tedesco J, Chung AW et al (2016) Antigen-specific antibody glycosylation is regulated via vaccination. PLoS Pathog 12(3):e1005456PubMedPubMedCentralCrossRef
202.
go back to reference Ravetch JV, Perussia B (1989) Alternative membrane forms of Fc gamma RIII (CD16) on human natural killer cells and neutrophils. Cell type-specific expression of two genes that differ in single nucleotide substitutions. J Exp Med 170(2):481–497PubMedCrossRef Ravetch JV, Perussia B (1989) Alternative membrane forms of Fc gamma RIII (CD16) on human natural killer cells and neutrophils. Cell type-specific expression of two genes that differ in single nucleotide substitutions. J Exp Med 170(2):481–497PubMedCrossRef
203.
go back to reference Zimmermann N, Thormann V, Hu B, Köhler AB, Imai-Matsushima A, Locht C et al (2016) Human isotype-dependent inhibitory antibody responses against Mycobacterium tuberculosis. EMBO Molecular Medicine 8(11):1325–1339PubMedPubMedCentralCrossRef Zimmermann N, Thormann V, Hu B, Köhler AB, Imai-Matsushima A, Locht C et al (2016) Human isotype-dependent inhibitory antibody responses against Mycobacterium tuberculosis. EMBO Molecular Medicine 8(11):1325–1339PubMedPubMedCentralCrossRef
204.
go back to reference Li H, Wang X-X, Wang B, Fu L, Liu G, Lu Y et al (2017) Latently and uninfected healthcare workers exposed to TB make protective antibodies against Mycobacterium tuberculosis. Proc Natl Acad Sci 114(19):5023–5028PubMedCrossRefPubMedCentral Li H, Wang X-X, Wang B, Fu L, Liu G, Lu Y et al (2017) Latently and uninfected healthcare workers exposed to TB make protective antibodies against Mycobacterium tuberculosis. Proc Natl Acad Sci 114(19):5023–5028PubMedCrossRefPubMedCentral
205.
go back to reference Maglione PJ, Xu J, Casadevall A, Chan J (2008) Fcγ receptors regulate immune activation and susceptibility during Mycobacterium tuberculosis infection. J Immunol 180(5):3329–3338PubMedCrossRef Maglione PJ, Xu J, Casadevall A, Chan J (2008) Fcγ receptors regulate immune activation and susceptibility during Mycobacterium tuberculosis infection. J Immunol 180(5):3329–3338PubMedCrossRef
206.
go back to reference Sani M, Houben EN, Geurtsen J, Pierson J, De Punder K, van Zon M et al (2010) Direct visualization by cryo-EM of the mycobacterial capsular layer: a labile structure containing ESX-1-secreted proteins. PLoS Pathog 6(3):e1000794PubMedPubMedCentralCrossRef Sani M, Houben EN, Geurtsen J, Pierson J, De Punder K, van Zon M et al (2010) Direct visualization by cryo-EM of the mycobacterial capsular layer: a labile structure containing ESX-1-secreted proteins. PLoS Pathog 6(3):e1000794PubMedPubMedCentralCrossRef
207.
go back to reference Prados-Rosales R, Carreño LJ, Weinrick B, Batista-Gonzalez A, Glatman-Freedman A, Xu J et al (2016) The type of growth medium affects the presence of a mycobacterial capsule and is associated with differences in protective efficacy of BCG vaccination against Mycobacterium tuberculosis. J Infect Dis 214(3):426–437PubMedPubMedCentralCrossRef Prados-Rosales R, Carreño LJ, Weinrick B, Batista-Gonzalez A, Glatman-Freedman A, Xu J et al (2016) The type of growth medium affects the presence of a mycobacterial capsule and is associated with differences in protective efficacy of BCG vaccination against Mycobacterium tuberculosis. J Infect Dis 214(3):426–437PubMedPubMedCentralCrossRef
208.
go back to reference Prados-Rosales R, Carreño L, Cheng T, Blanc C, Weinrick B, Malek A et al (2017) Enhanced control of Mycobacterium tuberculosis extrapulmonary dissemination in mice by an arabinomannan-protein conjugate vaccine. PLoS Pathog 13(3):e1006250PubMedPubMedCentralCrossRef Prados-Rosales R, Carreño L, Cheng T, Blanc C, Weinrick B, Malek A et al (2017) Enhanced control of Mycobacterium tuberculosis extrapulmonary dissemination in mice by an arabinomannan-protein conjugate vaccine. PLoS Pathog 13(3):e1006250PubMedPubMedCentralCrossRef
209.
go back to reference Shin H-J, Franco LH, Nair VR, Collins AC, Shiloh MU (2017) A baculovirus-conjugated mimotope vaccine targeting Mycobacterium tuberculosis lipoarabinomannan. PLoS One 12(10):e0185945PubMedPubMedCentralCrossRef Shin H-J, Franco LH, Nair VR, Collins AC, Shiloh MU (2017) A baculovirus-conjugated mimotope vaccine targeting Mycobacterium tuberculosis lipoarabinomannan. PLoS One 12(10):e0185945PubMedPubMedCentralCrossRef
210.
go back to reference Qin L, Gilbert PB, Corey L, McElrath MJ, Self SG (2007) A framework for assessing immunological correlates of protection in vaccine trials. J Infect Dis 196(9):1304–1312PubMedCrossRef Qin L, Gilbert PB, Corey L, McElrath MJ, Self SG (2007) A framework for assessing immunological correlates of protection in vaccine trials. J Infect Dis 196(9):1304–1312PubMedCrossRef
211.
go back to reference Rodo MJ, Rozot V, Nemes E, Dintwe O, Hatherill M, Little F et al (2019) A comparison of antigen-specific T cell responses induced by six novel tuberculosis vaccine candidates. PLoS Pathog 15(3):e1007643PubMedPubMedCentralCrossRef Rodo MJ, Rozot V, Nemes E, Dintwe O, Hatherill M, Little F et al (2019) A comparison of antigen-specific T cell responses induced by six novel tuberculosis vaccine candidates. PLoS Pathog 15(3):e1007643PubMedPubMedCentralCrossRef
212.
go back to reference Fletcher HA, Schrager L (2016) TB vaccine development and the end TB strategy: importance and current status. Trans R Soc Trop Med Hyg 110(4):212–218PubMedPubMedCentralCrossRef Fletcher HA, Schrager L (2016) TB vaccine development and the end TB strategy: importance and current status. Trans R Soc Trop Med Hyg 110(4):212–218PubMedPubMedCentralCrossRef
213.
go back to reference Zhu B, Dockrell HM, Ottenhoff TH, Evans TG, Zhang Y (2018) Tuberculosis vaccines: opportunities and challenges. Respirology. 23(4):359–368PubMedCrossRef Zhu B, Dockrell HM, Ottenhoff TH, Evans TG, Zhang Y (2018) Tuberculosis vaccines: opportunities and challenges. Respirology. 23(4):359–368PubMedCrossRef
214.
go back to reference Nemes E, Geldenhuys H, Rozot V, Rutkowski KT, Ratangee F, Bilek N et al (2018) Prevention of M. tuberculosis infection with H4: IC31 vaccine or BCG revaccination. N Engl J Med 379(2):138–149PubMedPubMedCentralCrossRef Nemes E, Geldenhuys H, Rozot V, Rutkowski KT, Ratangee F, Bilek N et al (2018) Prevention of M. tuberculosis infection with H4: IC31 vaccine or BCG revaccination. N Engl J Med 379(2):138–149PubMedPubMedCentralCrossRef
215.
go back to reference Horwitz MA, Harth G (2003) A new vaccine against tuberculosis affords greater survival after challenge than the current vaccine in the guinea pig model of pulmonary tuberculosis. Infect Immun 71(4):1672–1679PubMedPubMedCentralCrossRef Horwitz MA, Harth G (2003) A new vaccine against tuberculosis affords greater survival after challenge than the current vaccine in the guinea pig model of pulmonary tuberculosis. Infect Immun 71(4):1672–1679PubMedPubMedCentralCrossRef
216.
go back to reference Hoft DF, Blazevic A, Abate G, Hanekom WA, Kaplan G, Soler JH et al (2008) A new recombinant bacille Calmette-Guerin vaccine safely induces significantly enhanced tuberculosis-specific immunity in human volunteers. J Infect Dis 198(10):1491–1501PubMedCrossRef Hoft DF, Blazevic A, Abate G, Hanekom WA, Kaplan G, Soler JH et al (2008) A new recombinant bacille Calmette-Guerin vaccine safely induces significantly enhanced tuberculosis-specific immunity in human volunteers. J Infect Dis 198(10):1491–1501PubMedCrossRef
217.
go back to reference Li G, Liu G, Song N, Kong C, Huang Q, Su H et al (2015) A novel recombinant BCG-expressing pro-apoptotic protein BAX enhances Th1 protective immune responses in mice. Mol Immunol 66(2):346–356PubMedCrossRef Li G, Liu G, Song N, Kong C, Huang Q, Su H et al (2015) A novel recombinant BCG-expressing pro-apoptotic protein BAX enhances Th1 protective immune responses in mice. Mol Immunol 66(2):346–356PubMedCrossRef
218.
go back to reference Hoft DF, Blazevic A, Selimovic A, Turan A, Tennant J, Abate G et al (2016) Safety and immunogenicity of the recombinant BCG vaccine AERAS-422 in healthy BCG-naïve adults: a randomized, active-controlled, first-in-human phase 1 trial. EBioMedicine. 7:278–286PubMedPubMedCentralCrossRef Hoft DF, Blazevic A, Selimovic A, Turan A, Tennant J, Abate G et al (2016) Safety and immunogenicity of the recombinant BCG vaccine AERAS-422 in healthy BCG-naïve adults: a randomized, active-controlled, first-in-human phase 1 trial. EBioMedicine. 7:278–286PubMedPubMedCentralCrossRef
219.
go back to reference Arbues A, Aguilo JI, Gonzalo-Asensio J, Marinova D, Uranga S, Puentes E et al (2013) Construction, characterization and preclinical evaluation of MTBVAC, the first live-attenuated M. tuberculosis-based vaccine to enter clinical trials. Vaccine. 31(42):4867–4873PubMedCrossRef Arbues A, Aguilo JI, Gonzalo-Asensio J, Marinova D, Uranga S, Puentes E et al (2013) Construction, characterization and preclinical evaluation of MTBVAC, the first live-attenuated M. tuberculosis-based vaccine to enter clinical trials. Vaccine. 31(42):4867–4873PubMedCrossRef
220.
go back to reference Frigui W, Bottai D, Majlessi L, Monot M, Josselin E, Brodin P et al (2008) Control of M. tuberculosis ESAT-6 secretion and specific T cell recognition by PhoP. PLoS Pathog 4(2):e33PubMedPubMedCentralCrossRef Frigui W, Bottai D, Majlessi L, Monot M, Josselin E, Brodin P et al (2008) Control of M. tuberculosis ESAT-6 secretion and specific T cell recognition by PhoP. PLoS Pathog 4(2):e33PubMedPubMedCentralCrossRef
221.
go back to reference Walters SB, Dubnau E, Kolesnikova I, Laval F, Daffe M, Smith I (2006) The Mycobacterium tuberculosis PhoPR two-component system regulates genes essential for virulence and complex lipid biosynthesis. Mol Microbiol 60(2):312–330PubMedCrossRef Walters SB, Dubnau E, Kolesnikova I, Laval F, Daffe M, Smith I (2006) The Mycobacterium tuberculosis PhoPR two-component system regulates genes essential for virulence and complex lipid biosynthesis. Mol Microbiol 60(2):312–330PubMedCrossRef
222.
go back to reference Camacho LR, Ensergueix D, Perez E, Gicquel B, Guilhot C (1999) Identification of a virulence gene cluster of Mycobacterium tuberculosis by signature-tagged transposon mutagenesis. Mol Microbiol 34(2):257–267PubMedCrossRef Camacho LR, Ensergueix D, Perez E, Gicquel B, Guilhot C (1999) Identification of a virulence gene cluster of Mycobacterium tuberculosis by signature-tagged transposon mutagenesis. Mol Microbiol 34(2):257–267PubMedCrossRef
223.
go back to reference Cox JS, Chen B, McNeil M, Jacobs WR Jr (1999) Complex lipid determines tissue-specific replication of Mycobacterium tuberculosis in mice. Nature. 402(6757):79PubMedCrossRef Cox JS, Chen B, McNeil M, Jacobs WR Jr (1999) Complex lipid determines tissue-specific replication of Mycobacterium tuberculosis in mice. Nature. 402(6757):79PubMedCrossRef
224.
go back to reference Tameris M, Mearns H, Penn-Nicholson A, Gregg Y, Bilek N, Mabwe S et al (2019) Live-attenuated Mycobacterium tuberculosis vaccine MTBVAC versus BCG in adults and neonates: a randomised controlled, double-blind dose-escalation trial. Lancet Respir Med 7(9):757–770PubMedCrossRef Tameris M, Mearns H, Penn-Nicholson A, Gregg Y, Bilek N, Mabwe S et al (2019) Live-attenuated Mycobacterium tuberculosis vaccine MTBVAC versus BCG in adults and neonates: a randomised controlled, double-blind dose-escalation trial. Lancet Respir Med 7(9):757–770PubMedCrossRef
225.
go back to reference Butov DA, Pashkov YN, Stepanenko AL, Choporova AI, Butova TS, Batdelger D et al (2011) Phase IIb randomized trial of adjunct immunotherapy in patients with first-diagnosed tuberculosis, relapsed and multi-drug-resistant (MDR) TB. J Immune Based Ther Vaccines 9(1):3PubMedPubMedCentralCrossRef Butov DA, Pashkov YN, Stepanenko AL, Choporova AI, Butova TS, Batdelger D et al (2011) Phase IIb randomized trial of adjunct immunotherapy in patients with first-diagnosed tuberculosis, relapsed and multi-drug-resistant (MDR) TB. J Immune Based Ther Vaccines 9(1):3PubMedPubMedCentralCrossRef
226.
go back to reference von Reyn CF, Mtei L, Arbeit RD, Waddell R, Cole B, Mackenzie T et al (2010) Prevention of tuberculosis in bacille Calmette–Guérin-primed, HIV-infected adults boosted with an inactivated whole-cell mycobacterial vaccine. Aids. 24(5):675–685CrossRef von Reyn CF, Mtei L, Arbeit RD, Waddell R, Cole B, Mackenzie T et al (2010) Prevention of tuberculosis in bacille Calmette–Guérin-primed, HIV-infected adults boosted with an inactivated whole-cell mycobacterial vaccine. Aids. 24(5):675–685CrossRef
228.
go back to reference Sharma SK, Katoch K, Sarin R, Balambal R, Jain NK, Patel N et al (2017) Efficacy and safety of Mycobacterium indicus pranii as an adjunct therapy in category II pulmonary tuberculosis in a randomized trial. Sci Rep 7(1):3354PubMedPubMedCentralCrossRef Sharma SK, Katoch K, Sarin R, Balambal R, Jain NK, Patel N et al (2017) Efficacy and safety of Mycobacterium indicus pranii as an adjunct therapy in category II pulmonary tuberculosis in a randomized trial. Sci Rep 7(1):3354PubMedPubMedCentralCrossRef
229.
go back to reference Cardona P-J (2006) RUTI: a new chance to shorten the treatment of latent tuberculosis infection. Tuberculosis. 86(3–4):273–289PubMedCrossRef Cardona P-J (2006) RUTI: a new chance to shorten the treatment of latent tuberculosis infection. Tuberculosis. 86(3–4):273–289PubMedCrossRef
230.
go back to reference McShane H, Hill A (2005) Prime-boost immunisation strategies for tuberculosis. Microbes Infect 7(5–6):962–967PubMedCrossRef McShane H, Hill A (2005) Prime-boost immunisation strategies for tuberculosis. Microbes Infect 7(5–6):962–967PubMedCrossRef
231.
go back to reference Andersen P, Woodworth JS (2014) Tuberculosis vaccines—rethinking the current paradigm. Trends Immunol 35(8):387–395PubMedCrossRef Andersen P, Woodworth JS (2014) Tuberculosis vaccines—rethinking the current paradigm. Trends Immunol 35(8):387–395PubMedCrossRef
232.
go back to reference Lindenstrøm T, Agger EM, Korsholm KS, Darrah PA, Aagaard C, Seder RA et al (2009) Tuberculosis subunit vaccination provides long-term protective immunity characterized by multifunctional CD4 memory T cells. J Immunol 182(12):8047–8055PubMedCrossRef Lindenstrøm T, Agger EM, Korsholm KS, Darrah PA, Aagaard C, Seder RA et al (2009) Tuberculosis subunit vaccination provides long-term protective immunity characterized by multifunctional CD4 memory T cells. J Immunol 182(12):8047–8055PubMedCrossRef
233.
go back to reference Van Der Meeren O, Hatherill M, Nduba V, Wilkinson RJ, Muyoyeta M, Van Brakel E et al (2018) Phase 2b controlled trial of M72/AS01E vaccine to prevent tuberculosis. N Engl J Med 379(17):1621–1634CrossRef Van Der Meeren O, Hatherill M, Nduba V, Wilkinson RJ, Muyoyeta M, Van Brakel E et al (2018) Phase 2b controlled trial of M72/AS01E vaccine to prevent tuberculosis. N Engl J Med 379(17):1621–1634CrossRef
234.
go back to reference Reed SG, Coler RN, Dalemans W, Tan EV, DeLa Cruz EC, Basaraba RJ et al (2009) Defined tuberculosis vaccine, Mtb72F/AS02A, evidence of protection in cynomolgus monkeys. Proc Natl Acad Sci U S A 106(7):2301–2306PubMedPubMedCentralCrossRef Reed SG, Coler RN, Dalemans W, Tan EV, DeLa Cruz EC, Basaraba RJ et al (2009) Defined tuberculosis vaccine, Mtb72F/AS02A, evidence of protection in cynomolgus monkeys. Proc Natl Acad Sci U S A 106(7):2301–2306PubMedPubMedCentralCrossRef
235.
go back to reference Brandt L, Skeiky YA, Alderson MR, Lobet Y, Dalemans W, Turner OC et al (2004) The protective effect of the Mycobacterium bovis BCG vaccine is increased by coadministration with the Mycobacterium tuberculosis 72-kilodalton fusion polyprotein Mtb72F in M. tuberculosis-infected guinea pigs. Infect Immun 72(11):6622–6632PubMedPubMedCentralCrossRef Brandt L, Skeiky YA, Alderson MR, Lobet Y, Dalemans W, Turner OC et al (2004) The protective effect of the Mycobacterium bovis BCG vaccine is increased by coadministration with the Mycobacterium tuberculosis 72-kilodalton fusion polyprotein Mtb72F in M. tuberculosis-infected guinea pigs. Infect Immun 72(11):6622–6632PubMedPubMedCentralCrossRef
236.
go back to reference Bertholet S, Ireton GC, Ordway DJ, Windish HP, Pine SO, Kahn M et al (2010) A defined tuberculosis vaccine candidate boosts BCG and protects against multidrug-resistant Mycobacterium tuberculosis. Sci Transl Med 2(53):53ra74–53ra74PubMedPubMedCentralCrossRef Bertholet S, Ireton GC, Ordway DJ, Windish HP, Pine SO, Kahn M et al (2010) A defined tuberculosis vaccine candidate boosts BCG and protects against multidrug-resistant Mycobacterium tuberculosis. Sci Transl Med 2(53):53ra74–53ra74PubMedPubMedCentralCrossRef
237.
go back to reference Anderson RC, Fox CB, Dutill TS, Shaverdian N, Evers TL, Poshusta GR et al (2010) Physicochemical characterization and biological activity of synthetic TLR4 agonist formulations. Colloids Surf B: Biointerfaces 75(1):123–132PubMedCrossRef Anderson RC, Fox CB, Dutill TS, Shaverdian N, Evers TL, Poshusta GR et al (2010) Physicochemical characterization and biological activity of synthetic TLR4 agonist formulations. Colloids Surf B: Biointerfaces 75(1):123–132PubMedCrossRef
238.
go back to reference Penn-Nicholson A, Tameris M, Smit E, Day TA, Musvosvi M, Jayashankar L et al (2018) Safety and immunogenicity of the novel tuberculosis vaccine ID93+ GLA-SE in BCG-vaccinated healthy adults in South Africa: a randomised, double-blind, placebo-controlled phase 1 trial. Lancet Respir Med 6(4):287–298PubMedCrossRef Penn-Nicholson A, Tameris M, Smit E, Day TA, Musvosvi M, Jayashankar L et al (2018) Safety and immunogenicity of the novel tuberculosis vaccine ID93+ GLA-SE in BCG-vaccinated healthy adults in South Africa: a randomised, double-blind, placebo-controlled phase 1 trial. Lancet Respir Med 6(4):287–298PubMedCrossRef
239.
go back to reference McShane H, Pathan AA, Sander CR, Keating SM, Gilbert SC, Huygen K et al (2004) Recombinant modified vaccinia virus Ankara expressing antigen 85A boosts BCG-primed and naturally acquired antimycobacterial immunity in humans. Nat Med 10(11):1240PubMedCrossRef McShane H, Pathan AA, Sander CR, Keating SM, Gilbert SC, Huygen K et al (2004) Recombinant modified vaccinia virus Ankara expressing antigen 85A boosts BCG-primed and naturally acquired antimycobacterial immunity in humans. Nat Med 10(11):1240PubMedCrossRef
240.
go back to reference Scriba TJ, Tameris M, Mansoor N, Smit E, van der Merwe L, Mauff K et al (2011) Dose-finding study of the novel tuberculosis vaccine, MVA85A, in healthy BCG-vaccinated infants. J Infect Dis 203(12):1832–1843PubMedCrossRef Scriba TJ, Tameris M, Mansoor N, Smit E, van der Merwe L, Mauff K et al (2011) Dose-finding study of the novel tuberculosis vaccine, MVA85A, in healthy BCG-vaccinated infants. J Infect Dis 203(12):1832–1843PubMedCrossRef
241.
go back to reference Fletcher HA, Snowden MA, Landry B, Rida W, Satti I, Harris SA et al (2016) T-cell activation is an immune correlate of risk in BCG vaccinated infants. Nat Commun 7:11290PubMedPubMedCentralCrossRef Fletcher HA, Snowden MA, Landry B, Rida W, Satti I, Harris SA et al (2016) T-cell activation is an immune correlate of risk in BCG vaccinated infants. Nat Commun 7:11290PubMedPubMedCentralCrossRef
242.
go back to reference Čičin-Šain L, Sylwester AW, Hagen SI, Siess DC, Currier N, Legasse AW et al (2011) Cytomegalovirus-specific T cell immunity is maintained in immunosenescent rhesus macaques. J Immunol 187(4):1722–1732PubMedCrossRef Čičin-Šain L, Sylwester AW, Hagen SI, Siess DC, Currier N, Legasse AW et al (2011) Cytomegalovirus-specific T cell immunity is maintained in immunosenescent rhesus macaques. J Immunol 187(4):1722–1732PubMedCrossRef
243.
go back to reference Jarvis MA, Hansen SG, Nelson JA, Picker LJ, Fruh K (2013) Vaccine vectors using the unique biology and immunology of cytomegalovirus. Cytomegaloviruses: from Molecular Pathogenesis to Intervention 2:450–463 Jarvis MA, Hansen SG, Nelson JA, Picker LJ, Fruh K (2013) Vaccine vectors using the unique biology and immunology of cytomegalovirus. Cytomegaloviruses: from Molecular Pathogenesis to Intervention 2:450–463
244.
go back to reference Hansen SG, Wu HL, Burwitz BJ, Hughes CM, Hammond KB, Ventura AB et al (2016) Broadly targeted CD8+ T cell responses restricted by major histocompatibility complex E. Science. 351(6274):714–720PubMedPubMedCentralCrossRef Hansen SG, Wu HL, Burwitz BJ, Hughes CM, Hammond KB, Ventura AB et al (2016) Broadly targeted CD8+ T cell responses restricted by major histocompatibility complex E. Science. 351(6274):714–720PubMedPubMedCentralCrossRef
245.
go back to reference Gutierrez MC, Brisse S, Brosch R, Fabre M, Omaïs B, Marmiesse M et al (2005) Ancient origin and gene mosaicism of the progenitor of Mycobacterium tuberculosis. PLoS Pathog 1(1):e5PubMedPubMedCentralCrossRef Gutierrez MC, Brisse S, Brosch R, Fabre M, Omaïs B, Marmiesse M et al (2005) Ancient origin and gene mosaicism of the progenitor of Mycobacterium tuberculosis. PLoS Pathog 1(1):e5PubMedPubMedCentralCrossRef
Metadata
Title
Towards new TB vaccines
Authors
Benedict Brazier
Helen McShane
Publication date
01-06-2020
Publisher
Springer Berlin Heidelberg
Published in
Seminars in Immunopathology / Issue 3/2020
Print ISSN: 1863-2297
Electronic ISSN: 1863-2300
DOI
https://doi.org/10.1007/s00281-020-00794-0

Other articles of this Issue 3/2020

Seminars in Immunopathology 3/2020 Go to the issue
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discuss last year's major advances in heart failure and cardiomyopathies.