Skip to main content
Top
Published in: Seminars in Immunopathology 3/2009

01-09-2009 | Review

Microanatomy of the liver immune system

Authors: Eszter Nemeth, Alan W. Baird, Cliona O’Farrelly

Published in: Seminars in Immunopathology | Issue 3/2009

Login to get access

Abstract

The critical metabolic functions of the liver often eclipse any perception of its role as an immune organ. However, the liver as a mediator of systemic and local innate immunity and an important site of immune regulation is now an accepted concept. Complex repertoires of lymphoid and non-lymphoid cells are key to hepatic defense and immunoregulation. Hepatic cells of myeloid lineage include Kupffer cells and dendritic cells. Intrahepatic lymphocytes are distinct both in phenotype and function from their counterparts in any other organ and include both conventional (CD4+ and CD8+ αβ T cell receptor (TCR)+ T cells, B cells, natural killer (NK) cells) and nonconventional lymphoid cells (natural killer T (NKT) cells, γδTCR+ T cells, CD4− CD8− T cells). Many hepatic T cells express the TCR at an intermediate level and the great majority of them either coexpress NK cell markers (NKT cells) or they are apoptosing peripheral T cells. The percentage of activated (CD69+) and memory (CD45RBlow+) lymphocytes is much higher while naïve (CD62Lhigh) and resting T cells as well as B lymphocytes are underrepresented in the liver. The discovery of major populations of lymphoid cells in the liver that differ phenotypically, functionally and even perhaps developmentally from populations in other regions has been key to the evolving perception of the liver as a regulatory lymphoid organ. This chapter will focus on these populations and how they contribute to immune surveillance against malignant, infectious and autoimmune disease of the liver.
Literature
1.
go back to reference Abel M, Sene D et al (2006) Intrahepatic virus-specific IL-10-producing CD8 T cells prevent liver damage during chronic hepatitis C virus infection. Hepatology 44(6):1607–1616PubMedCrossRef Abel M, Sene D et al (2006) Intrahepatic virus-specific IL-10-producing CD8 T cells prevent liver damage during chronic hepatitis C virus infection. Hepatology 44(6):1607–1616PubMedCrossRef
2.
go back to reference Accapezzato D, Francavilla V et al (2004) Hepatic expansion of a virus-specific regulatory CD8(+) T cell population in chronic hepatitis C virus infection. J Clin Invest 113(7):963–972PubMed Accapezzato D, Francavilla V et al (2004) Hepatic expansion of a virus-specific regulatory CD8(+) T cell population in chronic hepatitis C virus infection. J Clin Invest 113(7):963–972PubMed
3.
go back to reference Armbrust T, Batusic D et al (1997) Mast cells distribution in human liver disease and experimental rat liver fibrosis. Indications for mast cell participation in development of liver fibrosis. J Hepatol 26(5):1042–1054PubMedCrossRef Armbrust T, Batusic D et al (1997) Mast cells distribution in human liver disease and experimental rat liver fibrosis. Indications for mast cell participation in development of liver fibrosis. J Hepatol 26(5):1042–1054PubMedCrossRef
5.
go back to reference Befus D, Fujimaki H et al (1988) Mast cell polymorphisms. Present concepts, future directions. Dig Dis Sci 33(3 Suppl):16S–24SPubMedCrossRef Befus D, Fujimaki H et al (1988) Mast cell polymorphisms. Present concepts, future directions. Dig Dis Sci 33(3 Suppl):16S–24SPubMedCrossRef
6.
7.
go back to reference Berland R, Wortis HH (2002) Origins and functions of B-1 cells with notes on the role of CD5. Annu Rev Immunol 20:253–300PubMedCrossRef Berland R, Wortis HH (2002) Origins and functions of B-1 cells with notes on the role of CD5. Annu Rev Immunol 20:253–300PubMedCrossRef
8.
go back to reference Bertolino P, Trescol-Biemont MC et al (1998) Hepatocytes induce functional activation of naive CD8+ T lymphocytes but fail to promote survival. Eur J Immunol 28(1):221–236PubMedCrossRef Bertolino P, Trescol-Biemont MC et al (1998) Hepatocytes induce functional activation of naive CD8+ T lymphocytes but fail to promote survival. Eur J Immunol 28(1):221–236PubMedCrossRef
9.
go back to reference Bettelli E, Korn T et al (2007) Th17: the third member of the effector T cell trilogy. Curr Opin Immunol 19(6):652–657PubMedCrossRef Bettelli E, Korn T et al (2007) Th17: the third member of the effector T cell trilogy. Curr Opin Immunol 19(6):652–657PubMedCrossRef
10.
go back to reference Bilzer M, Roggel F et al (2006) Role of Kupffer cells in host defense and liver disease. Liver Int 26(10):1175–1186PubMedCrossRef Bilzer M, Roggel F et al (2006) Role of Kupffer cells in host defense and liver disease. Liver Int 26(10):1175–1186PubMedCrossRef
11.
go back to reference Blom KG, Qazi MR et al (2009) Isolation of murine intrahepatic immune cells employing a modified procedure for mechanical disruption and functional characterization of the B, T and natural killer T cells obtained. Clin Exp Immunol 155(2):320–329PubMedCrossRef Blom KG, Qazi MR et al (2009) Isolation of murine intrahepatic immune cells employing a modified procedure for mechanical disruption and functional characterization of the B, T and natural killer T cells obtained. Clin Exp Immunol 155(2):320–329PubMedCrossRef
12.
go back to reference Bochtler P, Riedl P et al (2008) Local accumulation and activation of regulatory Foxp3(+) CD4 T(R) cells accompanies the appearance of activated CD8 T cells in the liver. Hepatology 48:1954–1963PubMedCrossRef Bochtler P, Riedl P et al (2008) Local accumulation and activation of regulatory Foxp3(+) CD4 T(R) cells accompanies the appearance of activated CD8 T cells in the liver. Hepatology 48:1954–1963PubMedCrossRef
13.
go back to reference Born WK, Reardon CL et al (2006) The function of gammadelta T cells in innate immunity. Curr Opin Immunol 18(1):31–38PubMedCrossRef Born WK, Reardon CL et al (2006) The function of gammadelta T cells in innate immunity. Curr Opin Immunol 18(1):31–38PubMedCrossRef
14.
go back to reference Braet F, de Zanger R et al (2001) A comparative atomic force microscopy study on living skin fibroblasts and liver endothelial cells. J Electron Microsc (Tokyo) 50(4):283–290CrossRef Braet F, de Zanger R et al (2001) A comparative atomic force microscopy study on living skin fibroblasts and liver endothelial cells. J Electron Microsc (Tokyo) 50(4):283–290CrossRef
15.
go back to reference Brandes M, Willimann K et al (2005) Professional antigen-presentation function by human gammadelta T Cells. Science 309(5732):264–268PubMedCrossRef Brandes M, Willimann K et al (2005) Professional antigen-presentation function by human gammadelta T Cells. Science 309(5732):264–268PubMedCrossRef
16.
go back to reference Bumgardner GL, Matas AJ et al (1990) Comparison of in vivo and in vitro immune response to purified hepatocytes. Transplantation 49(2):429–436PubMedCrossRef Bumgardner GL, Matas AJ et al (1990) Comparison of in vivo and in vitro immune response to purified hepatocytes. Transplantation 49(2):429–436PubMedCrossRef
17.
go back to reference Callery MP, Kamei T et al (1989) The effect of portacaval shunt on delayed-hypersensitivity responses following antigen feeding. J Surg Res 46(4):391–394PubMedCrossRef Callery MP, Kamei T et al (1989) The effect of portacaval shunt on delayed-hypersensitivity responses following antigen feeding. J Surg Res 46(4):391–394PubMedCrossRef
18.
go back to reference Calne RY, Sells RA et al (1969) Induction of immunological tolerance by porcine liver allografts. Nature 223(5205):472–476PubMedCrossRef Calne RY, Sells RA et al (1969) Induction of immunological tolerance by porcine liver allografts. Nature 223(5205):472–476PubMedCrossRef
19.
go back to reference Cantor HM, Dumont AE (1967) Hepatic suppression of sensitization to antigen absorbed into the portal system. Nature 215(5102):744–745PubMedCrossRef Cantor HM, Dumont AE (1967) Hepatic suppression of sensitization to antigen absorbed into the portal system. Nature 215(5102):744–745PubMedCrossRef
20.
go back to reference Cao O, Dobrzynski E et al (2007) Induction and role of regulatory CD4+ CD25+ T cells in tolerance to the transgene product following hepatic in vivo gene transfer. Blood 110(4):1132–1140PubMedCrossRef Cao O, Dobrzynski E et al (2007) Induction and role of regulatory CD4+ CD25+ T cells in tolerance to the transgene product following hepatic in vivo gene transfer. Blood 110(4):1132–1140PubMedCrossRef
21.
go back to reference Carding SR, Egan PJ (2002) Gammadelta T cells: functional plasticity and heterogeneity. Nat Rev Immunol 2(5):336–345PubMedCrossRef Carding SR, Egan PJ (2002) Gammadelta T cells: functional plasticity and heterogeneity. Nat Rev Immunol 2(5):336–345PubMedCrossRef
22.
go back to reference Chen Y, Ong CR et al (2001) Induction of immune hyporesponsiveness after portal vein immunization with ovalbumin. Surgery 129(1):66–75PubMedCrossRef Chen Y, Ong CR et al (2001) Induction of immune hyporesponsiveness after portal vein immunization with ovalbumin. Surgery 129(1):66–75PubMedCrossRef
23.
go back to reference Chen M, Tabaczewski P et al (2005) Hepatocytes express abundant surface class I MHC and efficiently use transporter associated with antigen processing, tapasin, and low molecular weight polypeptide proteasome subunit components of antigen processing and presentation pathway. J Immunol 175(2):1047–1055PubMed Chen M, Tabaczewski P et al (2005) Hepatocytes express abundant surface class I MHC and efficiently use transporter associated with antigen processing, tapasin, and low molecular weight polypeptide proteasome subunit components of antigen processing and presentation pathway. J Immunol 175(2):1047–1055PubMed
24.
go back to reference Chen L, Calomeni E et al (2007) Natural killer dendritic cells are an intermediate of developing dendritic cells. J Leukoc Biol 81(6):1422–1433PubMedCrossRef Chen L, Calomeni E et al (2007) Natural killer dendritic cells are an intermediate of developing dendritic cells. J Leukoc Biol 81(6):1422–1433PubMedCrossRef
25.
go back to reference Chen XM, O’Hara SP et al (2008) The immunobiology of cholangiocytes. Immunol Cell Biol 86(6):497–505PubMedCrossRef Chen XM, O’Hara SP et al (2008) The immunobiology of cholangiocytes. Immunol Cell Biol 86(6):497–505PubMedCrossRef
26.
go back to reference Codarri L, Vallotton L et al (2007) Expansion and tissue infiltration of an allospecific CD4+ CD25+ CD45RO+ IL-7Ralphahigh cell population in solid organ transplant recipients. J Exp Med 204(7):1533–1541PubMedCrossRef Codarri L, Vallotton L et al (2007) Expansion and tissue infiltration of an allospecific CD4+ CD25+ CD45RO+ IL-7Ralphahigh cell population in solid organ transplant recipients. J Exp Med 204(7):1533–1541PubMedCrossRef
27.
go back to reference Cooper MA, Fehniger TA et al (2001) Human natural killer cells: a unique innate immunoregulatory role for the CD56(bright) subset. Blood 97(10):3146–3151PubMedCrossRef Cooper MA, Fehniger TA et al (2001) Human natural killer cells: a unique innate immunoregulatory role for the CD56(bright) subset. Blood 97(10):3146–3151PubMedCrossRef
28.
go back to reference Coquet JM, Chakravarti S et al (2008) Diverse cytokine production by NKT cell subsets and identification of an IL-17-producing CD4− NK1.1− NKT cell population. Proc Natl Acad Sci U S A 105(32):11287–11292PubMedCrossRef Coquet JM, Chakravarti S et al (2008) Diverse cytokine production by NKT cell subsets and identification of an IL-17-producing CD4− NK1.1− NKT cell population. Proc Natl Acad Sci U S A 105(32):11287–11292PubMedCrossRef
31.
32.
go back to reference Crispe IN, Giannandrea M et al (2006) Cellular and molecular mechanisms of liver tolerance. Immunol Rev 213:101–118PubMedCrossRef Crispe IN, Giannandrea M et al (2006) Cellular and molecular mechanisms of liver tolerance. Immunol Rev 213:101–118PubMedCrossRef
33.
go back to reference Curry MP, Golden-Mason L et al (2000) Expansion of peripheral blood CD5+ B cells is associated with mild disease in chronic hepatitis C virus infection. J Hepatol 32(1):121–125PubMedCrossRef Curry MP, Golden-Mason L et al (2000) Expansion of peripheral blood CD5+ B cells is associated with mild disease in chronic hepatitis C virus infection. J Hepatol 32(1):121–125PubMedCrossRef
34.
go back to reference Curry MP, Golden-Mason L et al (2003) Expansion of innate CD5pos B cells expressing high levels of CD81 in hepatitis C virus infected liver. J Hepatol 38(5):642–650PubMedCrossRef Curry MP, Golden-Mason L et al (2003) Expansion of innate CD5pos B cells expressing high levels of CD81 in hepatitis C virus infected liver. J Hepatol 38(5):642–650PubMedCrossRef
35.
go back to reference Dalloul A (2009) CD5: a safeguard against autoimmunity and a shield for cancer cells. Autoimmun Rev 8(4):349–353PubMedCrossRef Dalloul A (2009) CD5: a safeguard against autoimmunity and a shield for cancer cells. Autoimmun Rev 8(4):349–353PubMedCrossRef
36.
go back to reference Deignan T, Curry MP, Doherty DG, Golden Mason L, Volkov Y, Norris S, Nolan N, Traynor O, McEntee G, Hegarty JE, O’Farrelly C (2002) (2002) Decrease in hepatic CD56+ T cells and Vα24+ natural killer T cells in chronic hepatitis C viral infection. J Hepatol 37:101–108PubMedCrossRef Deignan T, Curry MP, Doherty DG, Golden Mason L, Volkov Y, Norris S, Nolan N, Traynor O, McEntee G, Hegarty JE, O’Farrelly C (2002) (2002) Decrease in hepatic CD56+ T cells and Vα24+ natural killer T cells in chronic hepatitis C viral infection. J Hepatol 37:101–108PubMedCrossRef
37.
go back to reference Demirkiran A, Kok A et al (2006) Low circulating regulatory T-cell levels after acute rejection in liver transplantation. Liver Transpl 12(2):277–284PubMedCrossRef Demirkiran A, Kok A et al (2006) Low circulating regulatory T-cell levels after acute rejection in liver transplantation. Liver Transpl 12(2):277–284PubMedCrossRef
38.
go back to reference Doherty DG, O’Farrelly C (2000) Innate and adaptive lymphoid cells in the human liver. Immunol Rev 174:5–20PubMedCrossRef Doherty DG, O’Farrelly C (2000) Innate and adaptive lymphoid cells in the human liver. Immunol Rev 174:5–20PubMedCrossRef
39.
go back to reference Doherty D, O’Farrelly C (2001) Dendritic cells: regulators of hepatic immunity or tolerance. J Hepatol 34:156–160 PMID 11211894PubMedCrossRef Doherty D, O’Farrelly C (2001) Dendritic cells: regulators of hepatic immunity or tolerance. J Hepatol 34:156–160 PMID 11211894PubMedCrossRef
40.
go back to reference Doherty D, Norris S, Madrigal-Estebas L, McEntee G, Traynor O, Hegarty JE, O'Farrelly C (1999) The human liver contains multiple populations of NK cells, T cells and CD3+ CD56+ natural T cells with distinct cytotoxic activities and Th1, Th2 and Th0 cytokine secretion patterns. J Immunol 163:2314–2321PubMed Doherty D, Norris S, Madrigal-Estebas L, McEntee G, Traynor O, Hegarty JE, O'Farrelly C (1999) The human liver contains multiple populations of NK cells, T cells and CD3+ CD56+ natural T cells with distinct cytotoxic activities and Th1, Th2 and Th0 cytokine secretion patterns. J Immunol 163:2314–2321PubMed
41.
42.
go back to reference Emoto M, Kaufmann SH (2003) Liver NKT cells: an account of heterogeneity. Trends Immunol 24(7):364–369PubMedCrossRef Emoto M, Kaufmann SH (2003) Liver NKT cells: an account of heterogeneity. Trends Immunol 24(7):364–369PubMedCrossRef
43.
go back to reference Erhardt A, Biburger M et al (2007) IL-10, regulatory T cells, and Kupffer cells mediate tolerance in concanavalin A-induced liver injury in mice. Hepatology 45(2):475–485PubMedCrossRef Erhardt A, Biburger M et al (2007) IL-10, regulatory T cells, and Kupffer cells mediate tolerance in concanavalin A-induced liver injury in mice. Hepatology 45(2):475–485PubMedCrossRef
44.
go back to reference Fraser R, Dobbs BR et al (1995) Lipoproteins and the liver sieve: the role of the fenestrated sinusoidal endothelium in lipoprotein metabolism, atherosclerosis, and cirrhosis. Hepatology 21(3):863–874PubMed Fraser R, Dobbs BR et al (1995) Lipoproteins and the liver sieve: the role of the fenestrated sinusoidal endothelium in lipoprotein metabolism, atherosclerosis, and cirrhosis. Hepatology 21(3):863–874PubMed
45.
go back to reference Gao B, Jeong WI et al (2008) Liver: an organ with predominant innate immunity. Hepatology 47(2):729–736PubMedCrossRef Gao B, Jeong WI et al (2008) Liver: an organ with predominant innate immunity. Hepatology 47(2):729–736PubMedCrossRef
46.
go back to reference Godfrey DI, Kronenberg M (2004) Going both ways: immune regulation via CD1d-dependent NKT cells. J Clin Invest 114(10):1379–1388PubMed Godfrey DI, Kronenberg M (2004) Going both ways: immune regulation via CD1d-dependent NKT cells. J Clin Invest 114(10):1379–1388PubMed
47.
go back to reference Golden-Mason L, Rosen HR (2006) Natural killer cells: primary targets for hepatitis C virus immune evasion strategies. Liver Transpl 12:363–372PubMedCrossRef Golden-Mason L, Rosen HR (2006) Natural killer cells: primary targets for hepatitis C virus immune evasion strategies. Liver Transpl 12:363–372PubMedCrossRef
48.
go back to reference Godfrey DI, MacDonald HR et al (2004) NKT cells: what’s in a name? Nat Rev Immunol 4(3):231–237PubMedCrossRef Godfrey DI, MacDonald HR et al (2004) NKT cells: what’s in a name? Nat Rev Immunol 4(3):231–237PubMedCrossRef
49.
go back to reference Gorczynski RM, Chan Z et al (1994) Prolongation of rat small bowel or renal allograft survival by pretransplant transfusion and/or by varying the route of allograft venous drainage. Transplantation 58(7):816–820PubMedCrossRef Gorczynski RM, Chan Z et al (1994) Prolongation of rat small bowel or renal allograft survival by pretransplant transfusion and/or by varying the route of allograft venous drainage. Transplantation 58(7):816–820PubMedCrossRef
50.
go back to reference Gregoire C, Chasson L et al (2007) The trafficking of natural killer cells. Immunol Rev 220:169–182PubMedCrossRef Gregoire C, Chasson L et al (2007) The trafficking of natural killer cells. Immunol Rev 220:169–182PubMedCrossRef
51.
go back to reference Gregory SH, Wing EJ (1990) Accessory function of Kupffer cells in the antigen-specific blastogenic response of an L3T4+ T-lymphocyte clone to Listeria monocytogenes. Infect Immun 58(7):2313–2319PubMed Gregory SH, Wing EJ (1990) Accessory function of Kupffer cells in the antigen-specific blastogenic response of an L3T4+ T-lymphocyte clone to Listeria monocytogenes. Infect Immun 58(7):2313–2319PubMed
52.
go back to reference Gregory SH, Wing EJ (1998) Neutrophil–Kupffer-cell interaction in host defenses to systemic infections. Immunol Today 19(11):507–510PubMedCrossRef Gregory SH, Wing EJ (1998) Neutrophil–Kupffer-cell interaction in host defenses to systemic infections. Immunol Today 19(11):507–510PubMedCrossRef
53.
go back to reference Gregory SH, Sagnimeni AJ et al (1996) Bacteria in the bloodstream are trapped in the liver and killed by immigrating neutrophils. J Immunol 157(6):2514–2520PubMed Gregory SH, Sagnimeni AJ et al (1996) Bacteria in the bloodstream are trapped in the liver and killed by immigrating neutrophils. J Immunol 157(6):2514–2520PubMed
54.
go back to reference Grewe M, Duyster J et al (1992) Prostaglandin D2 and E2 syntheses in rat Kupffer cells are antagonistically regulated by lipopolysaccharide and phorbol ester. Biol Chem Hoppe Seyler 373(8):655–664PubMed Grewe M, Duyster J et al (1992) Prostaglandin D2 and E2 syntheses in rat Kupffer cells are antagonistically regulated by lipopolysaccharide and phorbol ester. Biol Chem Hoppe Seyler 373(8):655–664PubMed
55.
go back to reference Hagmann W, Hacker HJ et al (1992) Resident mast cells are the main initiators of anaphylactic leukotriene production in the liver. Hepatology 16(6):1477–1484PubMedCrossRef Hagmann W, Hacker HJ et al (1992) Resident mast cells are the main initiators of anaphylactic leukotriene production in the liver. Hepatology 16(6):1477–1484PubMedCrossRef
56.
go back to reference Hamada S, Umemura M et al (2008) IL-17A produced by gammadelta T cells plays a critical role in innate immunity against Listeria monocytogenes infection in the liver. J Immunol 181(5):3456–3463PubMed Hamada S, Umemura M et al (2008) IL-17A produced by gammadelta T cells plays a critical role in innate immunity against Listeria monocytogenes infection in the liver. J Immunol 181(5):3456–3463PubMed
57.
go back to reference Hayakawa K, Asano M et al (1999) Positive selection of natural autoreactive B cells. Science 285(5424):113–116PubMedCrossRef Hayakawa K, Asano M et al (1999) Positive selection of natural autoreactive B cells. Science 285(5424):113–116PubMedCrossRef
58.
go back to reference Herberman RB, Nunn ME, Holden HT, Lavrin DH (1975) Natural cytotoxic reactivity of mouse lymphoid cells against syngeneic and allogeneic tumors. II. Characterization of effector cells. Int J Cancer 16(2):230–239PubMedCrossRef Herberman RB, Nunn ME, Holden HT, Lavrin DH (1975) Natural cytotoxic reactivity of mouse lymphoid cells against syngeneic and allogeneic tumors. II. Characterization of effector cells. Int J Cancer 16(2):230–239PubMedCrossRef
59.
60.
go back to reference Hsu W, Shu SA et al (2007) The current immune function of hepatic dendritic cells. Cell Mol Immunol 4(5):321–328PubMed Hsu W, Shu SA et al (2007) The current immune function of hepatic dendritic cells. Cell Mol Immunol 4(5):321–328PubMed
61.
go back to reference Huang L, Soldevila G et al (1994) The liver eliminates T cells undergoing antigen-triggered apoptosis in vivo. Immunity 1(9):741–749PubMedCrossRef Huang L, Soldevila G et al (1994) The liver eliminates T cells undergoing antigen-triggered apoptosis in vivo. Immunity 1(9):741–749PubMedCrossRef
62.
go back to reference Itoh Y, Morita A et al (2001) Time course profile and cell-type-specific production of monokine induced by interferon-gamma in concanavalin A-induced hepatic injury in mice: comparative study with interferon-inducible protein-10. Scand J Gastroenterol 36(12):1344–1351PubMedCrossRef Itoh Y, Morita A et al (2001) Time course profile and cell-type-specific production of monokine induced by interferon-gamma in concanavalin A-induced hepatic injury in mice: comparative study with interferon-inducible protein-10. Scand J Gastroenterol 36(12):1344–1351PubMedCrossRef
63.
go back to reference Jomantaite I, Dikopoulos N et al (2004) Hepatic dendritic cell subsets in the mouse. Eur J Immunol 34(2):355–365PubMedCrossRef Jomantaite I, Dikopoulos N et al (2004) Hepatic dendritic cell subsets in the mouse. Eur J Immunol 34(2):355–365PubMedCrossRef
64.
go back to reference Kamada N, Wight DG (1984) Antigen-specific immunosuppression induced by liver transplantation in the rat. Transplantation 38(3):217–221PubMedCrossRef Kamada N, Wight DG (1984) Antigen-specific immunosuppression induced by liver transplantation in the rat. Transplantation 38(3):217–221PubMedCrossRef
65.
go back to reference Kenna T, Golden-Mason L, Norris S, Hegarty JE, O'Farrelly C, Doherty D (2004) Distinct subpopulations of γδT cells are present in normal and tumor-bearing human liver. Clin Immunol 113(1):56–63 PMID 15380530PubMedCrossRef Kenna T, Golden-Mason L, Norris S, Hegarty JE, O'Farrelly C, Doherty D (2004) Distinct subpopulations of γδT cells are present in normal and tumor-bearing human liver. Clin Immunol 113(1):56–63 PMID 15380530PubMedCrossRef
66.
go back to reference Klugewitz K, Adams DH et al (2004) The composition of intrahepatic lymphocytes: shaped by selective recruitment? Trends Immunol 25(11):590–594PubMedCrossRef Klugewitz K, Adams DH et al (2004) The composition of intrahepatic lymphocytes: shaped by selective recruitment? Trends Immunol 25(11):590–594PubMedCrossRef
67.
go back to reference Klugewitz K, Blumenthal-Barby F et al (2004) The spectrum of lymphoid subsets preferentially recruited into the liver reflects that of resident populations. Immunol Lett 93(2–3):159–162PubMedCrossRef Klugewitz K, Blumenthal-Barby F et al (2004) The spectrum of lymphoid subsets preferentially recruited into the liver reflects that of resident populations. Immunol Lett 93(2–3):159–162PubMedCrossRef
68.
go back to reference Knolle PA, Gerken G (2000) Local control of the immune response in the liver. Immunol Rev 174:21–34PubMedCrossRef Knolle PA, Gerken G (2000) Local control of the immune response in the liver. Immunol Rev 174:21–34PubMedCrossRef
69.
go back to reference Knolle PA, Limmer A (2001) Neighborhood politics: the immunoregulatory function of organ-resident liver endothelial cells. Trends Immunol 22(8):432–437PubMedCrossRef Knolle PA, Limmer A (2001) Neighborhood politics: the immunoregulatory function of organ-resident liver endothelial cells. Trends Immunol 22(8):432–437PubMedCrossRef
70.
go back to reference Knolle P, Schlaak J et al (1995) Human Kupffer cells secrete IL-10 in response to lipopolysaccharide (LPS) challenge. J Hepatol 22(2):226–229PubMedCrossRef Knolle P, Schlaak J et al (1995) Human Kupffer cells secrete IL-10 in response to lipopolysaccharide (LPS) challenge. J Hepatol 22(2):226–229PubMedCrossRef
71.
go back to reference Knolle PA, Uhrig A et al (1998) IL-10 down-regulates T cell activation by antigen-presenting liver sinusoidal endothelial cells through decreased antigen uptake via the mannose receptor and lowered surface expression of accessory molecules. Clin Exp Immunol 114(3):427–433PubMedCrossRef Knolle PA, Uhrig A et al (1998) IL-10 down-regulates T cell activation by antigen-presenting liver sinusoidal endothelial cells through decreased antigen uptake via the mannose receptor and lowered surface expression of accessory molecules. Clin Exp Immunol 114(3):427–433PubMedCrossRef
72.
go back to reference Knolle PA, Schmitt E et al (1999) Induction of cytokine production in naive CD4(+) T cells by antigen-presenting murine liver sinusoidal endothelial cells but failure to induce differentiation toward Th1 cells. Gastroenterology 116(6):1428–1440PubMedCrossRef Knolle PA, Schmitt E et al (1999) Induction of cytokine production in naive CD4(+) T cells by antigen-presenting murine liver sinusoidal endothelial cells but failure to induce differentiation toward Th1 cells. Gastroenterology 116(6):1428–1440PubMedCrossRef
73.
go back to reference Koch SD, Uss E et al (2008) Alloantigen-induced regulatory CD8(+)CD103(+) T cells. Hum Immunol 69:737–744PubMedCrossRef Koch SD, Uss E et al (2008) Alloantigen-induced regulatory CD8(+)CD103(+) T cells. Hum Immunol 69:737–744PubMedCrossRef
74.
go back to reference Kolios G, Valatas V et al (2006) Role of Kupffer cells in the pathogenesis of liver disease. World J Gastroenterol 12(46):7413–7420PubMed Kolios G, Valatas V et al (2006) Role of Kupffer cells in the pathogenesis of liver disease. World J Gastroenterol 12(46):7413–7420PubMed
75.
go back to reference Kono H, Fujii H et al (2002) Functional heterogeneity of the Kupffer cell population is involved in the mechanism of gadolinium chloride in rats administered endotoxin. J Surg Res 106(1):179–187PubMedCrossRef Kono H, Fujii H et al (2002) Functional heterogeneity of the Kupffer cell population is involved in the mechanism of gadolinium chloride in rats administered endotoxin. J Surg Res 106(1):179–187PubMedCrossRef
76.
go back to reference Kono H, Fujii H et al (2005) Role of Kupffer cells in lung injury in rats administered endotoxin 1. J Surg Res 129(2):176–189PubMedCrossRef Kono H, Fujii H et al (2005) Role of Kupffer cells in lung injury in rats administered endotoxin 1. J Surg Res 129(2):176–189PubMedCrossRef
77.
go back to reference Lan RY, Cheng C, Lian ZX, Tsuneyama K, Yang GX, Moritoki Y, Chuang YH, Nakamura T, Saito S, Shimoda S, Tanaka A, Bowlus CL, Takano Y, Ansari AA, Coppel RL, Gershwin ME (2006) Liver-targeted and peripheral blood alterations of regulatory T cells in primary biliary cirrhosis. Hepatology 43(4):729–737PubMedCrossRef Lan RY, Cheng C, Lian ZX, Tsuneyama K, Yang GX, Moritoki Y, Chuang YH, Nakamura T, Saito S, Shimoda S, Tanaka A, Bowlus CL, Takano Y, Ansari AA, Coppel RL, Gershwin ME (2006) Liver-targeted and peripheral blood alterations of regulatory T cells in primary biliary cirrhosis. Hepatology 43(4):729–737PubMedCrossRef
78.
go back to reference Lan RY, Salunga TL et al (2009) Hepatic IL-17 responses in human and murine primary biliary cirrhosis. J Autoimmun 32(1):43–51PubMedCrossRef Lan RY, Salunga TL et al (2009) Hepatic IL-17 responses in human and murine primary biliary cirrhosis. J Autoimmun 32(1):43–51PubMedCrossRef
79.
go back to reference Lankester AC, van Schijndel GM et al (1994) CD5 is associated with the human B cell antigen receptor complex. Eur J Immunol 24(4):812–816PubMedCrossRef Lankester AC, van Schijndel GM et al (1994) CD5 is associated with the human B cell antigen receptor complex. Eur J Immunol 24(4):812–816PubMedCrossRef
80.
go back to reference Li W, Kuhr CS, Zheng XX, Carper K, Thomson AW, Reyes JD, Perkins JD (2008) New insights into mechanisms of spontaneous liver transplant tolerance: the role of Foxp3-expressing CD25+CD4+ regulatory T cells. Am J Transplant 8(8):1639–1651PubMedCrossRef Li W, Kuhr CS, Zheng XX, Carper K, Thomson AW, Reyes JD, Perkins JD (2008) New insights into mechanisms of spontaneous liver transplant tolerance: the role of Foxp3-expressing CD25+CD4+ regulatory T cells. Am J Transplant 8(8):1639–1651PubMedCrossRef
81.
go back to reference Lian ZX, Okada T et al (2003) Heterogeneity of dendritic cells in the mouse liver: identification and characterization of four distinct populations. J Immunol 170(5):2323–2330PubMed Lian ZX, Okada T et al (2003) Heterogeneity of dendritic cells in the mouse liver: identification and characterization of four distinct populations. J Immunol 170(5):2323–2330PubMed
82.
83.
go back to reference Limmer A, Ohl J et al (2000) Efficient presentation of exogenous antigen by liver endothelial cells to CD8+ T cells results in antigen-specific T-cell tolerance. Nat Med 6(12):1348–1354PubMedCrossRef Limmer A, Ohl J et al (2000) Efficient presentation of exogenous antigen by liver endothelial cells to CD8+ T cells results in antigen-specific T-cell tolerance. Nat Med 6(12):1348–1354PubMedCrossRef
84.
go back to reference Lloyd CM, Phillips AR et al (2008) Three-colour fluorescence immunohistochemistry reveals the diversity of cells staining for macrophage markers in murine spleen and liver. J Immunol Methods 334(1–2):70–81PubMedCrossRef Lloyd CM, Phillips AR et al (2008) Three-colour fluorescence immunohistochemistry reveals the diversity of cells staining for macrophage markers in murine spleen and liver. J Immunol Methods 334(1–2):70–81PubMedCrossRef
85.
go back to reference Lodoen MB, Lanier LL (2006) Natural killer cells as an initial defense against pathogens. Curr Opin Immunol 18(4):391–398PubMedCrossRef Lodoen MB, Lanier LL (2006) Natural killer cells as an initial defense against pathogens. Curr Opin Immunol 18(4):391–398PubMedCrossRef
86.
go back to reference Longhi MS, Ma Y, Bogdanos DP, Cheeseman P, Mieli-Vergani G, Vergani D (1975) Impairment of CD4(+)CD25(+) regulatory T-cells in autoimmune liver disease. Int J Cancer 16(2):230–239CrossRef Longhi MS, Ma Y, Bogdanos DP, Cheeseman P, Mieli-Vergani G, Vergani D (1975) Impairment of CD4(+)CD25(+) regulatory T-cells in autoimmune liver disease. Int J Cancer 16(2):230–239CrossRef
87.
go back to reference Lumsden AB, Henderson JM et al (1988) Endotoxin levels measured by a chromogenic assay in portal, hepatic and peripheral venous blood in patients with cirrhosis. Hepatology 8(2):232–236PubMedCrossRef Lumsden AB, Henderson JM et al (1988) Endotoxin levels measured by a chromogenic assay in portal, hepatic and peripheral venous blood in patients with cirrhosis. Hepatology 8(2):232–236PubMedCrossRef
88.
go back to reference MacPhee PJ, Schmidt EE et al (1992) Evidence for Kupffer cell migration along liver sinusoids, from high-resolution in vivo microscopy. Am J Physiol 263(1 Pt 1):G17–G23PubMed MacPhee PJ, Schmidt EE et al (1992) Evidence for Kupffer cell migration along liver sinusoids, from high-resolution in vivo microscopy. Am J Physiol 263(1 Pt 1):G17–G23PubMed
89.
go back to reference MacPhee PJ, Schmidt EE et al (1995) Intermittence of blood flow in liver sinusoids, studied by high-resolution in vivo microscopy. Am J Physiol 269(5 Pt 1):G692–G698PubMed MacPhee PJ, Schmidt EE et al (1995) Intermittence of blood flow in liver sinusoids, studied by high-resolution in vivo microscopy. Am J Physiol 269(5 Pt 1):G692–G698PubMed
90.
go back to reference Malone F, Carper K et al (2009) gammadeltaT cells are involved in liver transplant tolerance. Transplant Proc 41(1):233–235PubMedCrossRef Malone F, Carper K et al (2009) gammadeltaT cells are involved in liver transplant tolerance. Transplant Proc 41(1):233–235PubMedCrossRef
91.
go back to reference Mandal M, Chen XR et al (1998) Tissue distribution, regulation and intracellular localization of murine CD1 molecules. Mol Immunol 35(9):525–536PubMedCrossRef Mandal M, Chen XR et al (1998) Tissue distribution, regulation and intracellular localization of murine CD1 molecules. Mol Immunol 35(9):525–536PubMedCrossRef
92.
go back to reference Martin F, Kearney JF (2000) Positive selection from newly formed to marginal zone B cells depends on the rate of clonal production, CD19, and btk. Immunity 12(1):39–49PubMedCrossRef Martin F, Kearney JF (2000) Positive selection from newly formed to marginal zone B cells depends on the rate of clonal production, CD19, and btk. Immunity 12(1):39–49PubMedCrossRef
93.
go back to reference Martin F, Kearney JF (2001) B1 cells: similarities and differences with other B cell subsets. Curr Opin Immunol 13(2):195–201PubMedCrossRef Martin F, Kearney JF (2001) B1 cells: similarities and differences with other B cell subsets. Curr Opin Immunol 13(2):195–201PubMedCrossRef
94.
go back to reference Mohrs K, Harris DP et al (2005) Systemic dissemination and persistence of Th2 and type 2 cells in response to infection with a strictly enteric nematode parasite. J Immunol 175(8):5306–5313PubMed Mohrs K, Harris DP et al (2005) Systemic dissemination and persistence of Th2 and type 2 cells in response to infection with a strictly enteric nematode parasite. J Immunol 175(8):5306–5313PubMed
95.
go back to reference Monteverde A, Ballare M et al (1997) Hepatic lymphoid aggregates in chronic hepatitis C and mixed cryoglobulinemia. Springer Semin Immunopathol 19(1):99–110PubMedCrossRef Monteverde A, Ballare M et al (1997) Hepatic lymphoid aggregates in chronic hepatitis C and mixed cryoglobulinemia. Springer Semin Immunopathol 19(1):99–110PubMedCrossRef
96.
go back to reference Morahan G, Brennan FE et al (1989) Expression in transgenic mice of class I histocompatibility antigens controlled by the metallothionein promoter. Proc Natl Acad Sci U S A 86(10):3782–3786PubMedCrossRef Morahan G, Brennan FE et al (1989) Expression in transgenic mice of class I histocompatibility antigens controlled by the metallothionein promoter. Proc Natl Acad Sci U S A 86(10):3782–3786PubMedCrossRef
97.
go back to reference Norris S, Collins C, Doherty D, Smith F, McEntee G, Traynor O, Nolan N, Hegarty J, O’Farrelly C (1998) Resident human hepatic lymphocytes are phenotypically different from circulating lymphocytes. J Hepatol 28:84–90 PMID 9537869PubMedCrossRef Norris S, Collins C, Doherty D, Smith F, McEntee G, Traynor O, Nolan N, Hegarty J, O’Farrelly C (1998) Resident human hepatic lymphocytes are phenotypically different from circulating lymphocytes. J Hepatol 28:84–90 PMID 9537869PubMedCrossRef
98.
go back to reference Novobrantseva TI, Majeau GR et al (2005) Attenuated liver fibrosis in the absence of B cells. J Clin Invest 115(11):3072–3082PubMedCrossRef Novobrantseva TI, Majeau GR et al (2005) Attenuated liver fibrosis in the absence of B cells. J Clin Invest 115(11):3072–3082PubMedCrossRef
99.
go back to reference O’Garra A, Chang R et al (1992) Ly-1 B (B-1) cells are the main source of B cell-derived interleukin 10. Eur J Immunol 22(3):711–717PubMedCrossRef O’Garra A, Chang R et al (1992) Ly-1 B (B-1) cells are the main source of B cell-derived interleukin 10. Eur J Immunol 22(3):711–717PubMedCrossRef
100.
go back to reference O’Keeffe C, Baird AW, Nolan N, McCormick PA (2002) Mast cell hyperplasia in chronic rejection after liver transplantation. Liver Transpl 8(1):50–57PubMedCrossRef O’Keeffe C, Baird AW, Nolan N, McCormick PA (2002) Mast cell hyperplasia in chronic rejection after liver transplantation. Liver Transpl 8(1):50–57PubMedCrossRef
101.
go back to reference Ogasawara K, Takeda K et al (1998) Involvement of NK1+ T cells and their IFN-gamma production in the generalized Shwartzman reaction. J Immunol 160(7):3522–3527PubMed Ogasawara K, Takeda K et al (1998) Involvement of NK1+ T cells and their IFN-gamma production in the generalized Shwartzman reaction. J Immunol 160(7):3522–3527PubMed
102.
go back to reference Prickett TC, McKenzie JL et al (1988) Characterization of interstitial dendritic cells in human liver. Transplantation 46(5):754–761PubMedCrossRef Prickett TC, McKenzie JL et al (1988) Characterization of interstitial dendritic cells in human liver. Transplantation 46(5):754–761PubMedCrossRef
103.
go back to reference Rao VK, Burris DE et al (1988) Evidence that donor spleen cells administered through the portal vein prolong the survival of cardiac allografts in rats. Transplantation 45(6):1145–1146PubMedCrossRef Rao VK, Burris DE et al (1988) Evidence that donor spleen cells administered through the portal vein prolong the survival of cardiac allografts in rats. Transplantation 45(6):1145–1146PubMedCrossRef
104.
105.
go back to reference Rioux KP, Sharkey KA et al (1996) Hepatic mucosal mast cell hyperplasia in rats with secondary biliary cirrhosis. Hepatology 23(4):888–895PubMedCrossRef Rioux KP, Sharkey KA et al (1996) Hepatic mucosal mast cell hyperplasia in rats with secondary biliary cirrhosis. Hepatology 23(4):888–895PubMedCrossRef
106.
go back to reference Rong G, Zhou Y et al (2009) Imbalance between T helper type 17 and T regulatory cells in patients with primary biliary cirrhosis: the serum cytokine profile and peripheral cell population. Clin Exp Immunol 156(2):217–225PubMedCrossRef Rong G, Zhou Y et al (2009) Imbalance between T helper type 17 and T regulatory cells in patients with primary biliary cirrhosis: the serum cytokine profile and peripheral cell population. Clin Exp Immunol 156(2):217–225PubMedCrossRef
107.
go back to reference Ruiter DJ, van der Meulen J et al (1981) Uptake by liver cells of endotoxin following its intravenous injection. Lab Invest 45(1):38–45PubMed Ruiter DJ, van der Meulen J et al (1981) Uptake by liver cells of endotoxin following its intravenous injection. Lab Invest 45(1):38–45PubMed
108.
go back to reference Sakaguchi S, Powrie F (2007) Emerging challenges in regulatory T cell function and biology. Science 317(5838):627–629PubMedCrossRef Sakaguchi S, Powrie F (2007) Emerging challenges in regulatory T cell function and biology. Science 317(5838):627–629PubMedCrossRef
109.
go back to reference Santodomingo-Garzon T, Han J et al (2009) Natural killer T cells regulate the homing of chemokine CXC receptor 3-positive regulatory T cells to the liver in mice. Hepatology 49(4):1267–1276PubMedCrossRef Santodomingo-Garzon T, Han J et al (2009) Natural killer T cells regulate the homing of chemokine CXC receptor 3-positive regulatory T cells to the liver in mice. Hepatology 49(4):1267–1276PubMedCrossRef
110.
go back to reference Shapiro AM, Lakey JR et al (2000) Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen. N Engl J Med 343(4):230–238PubMedCrossRef Shapiro AM, Lakey JR et al (2000) Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen. N Engl J Med 343(4):230–238PubMedCrossRef
111.
go back to reference Shi J, Fujieda H et al (1996) Apoptosis of neutrophils and their elimination by Kupffer cells in rat liver. Hepatology 24(5):1256–1263PubMedCrossRef Shi J, Fujieda H et al (1996) Apoptosis of neutrophils and their elimination by Kupffer cells in rat liver. Hepatology 24(5):1256–1263PubMedCrossRef
112.
go back to reference Shi J, Gilbert GE et al (2001) Role of the liver in regulating numbers of circulating neutrophils. Blood 98(4):1226–1230PubMedCrossRef Shi J, Gilbert GE et al (2001) Role of the liver in regulating numbers of circulating neutrophils. Blood 98(4):1226–1230PubMedCrossRef
113.
go back to reference Takeda K, Smyth MJ et al (2002) Critical role for tumor necrosis factor-related apoptosis-inducing ligand in immune surveillance against tumor development. J Exp Med 195(2):161–169PubMedCrossRef Takeda K, Smyth MJ et al (2002) Critical role for tumor necrosis factor-related apoptosis-inducing ligand in immune surveillance against tumor development. J Exp Med 195(2):161–169PubMedCrossRef
114.
go back to reference Tatu C, Ye J et al (1999) Selection at multiple checkpoints focuses V(H) 12 B cell differentiation toward a single B-1 cell specificity. J Exp Med 190(7):903–914PubMedCrossRef Tatu C, Ye J et al (1999) Selection at multiple checkpoints focuses V(H) 12 B cell differentiation toward a single B-1 cell specificity. J Exp Med 190(7):903–914PubMedCrossRef
115.
go back to reference Thomson CW, Lee BP et al (2006) Double-negative regulatory T cells: non-conventional regulators. Immunol Res 35(1–2):163–178PubMedCrossRef Thomson CW, Lee BP et al (2006) Double-negative regulatory T cells: non-conventional regulators. Immunol Res 35(1–2):163–178PubMedCrossRef
116.
go back to reference Toyabe S, Seki S et al (1997) Requirement of IL-4 and liver NK1+ T cells for concanavalin A-induced hepatic injury in mice. J Immunol 159(3):1537–1542PubMed Toyabe S, Seki S et al (1997) Requirement of IL-4 and liver NK1+ T cells for concanavalin A-induced hepatic injury in mice. J Immunol 159(3):1537–1542PubMed
117.
go back to reference Tu Z, Bozorgzadeh A, Crispe IN, Orloff MS (2007) The activation state of human intrahepatic lymphocytes. Clin Exp Immunol 149(1):186–193PubMed Tu Z, Bozorgzadeh A, Crispe IN, Orloff MS (2007) The activation state of human intrahepatic lymphocytes. Clin Exp Immunol 149(1):186–193PubMed
118.
go back to reference Unitt E, Rushbrook SM et al (2005) Compromised lymphocytes infiltrate hepatocellular carcinoma: the role of T-regulatory cells. Hepatology 41(4):722–730PubMedCrossRef Unitt E, Rushbrook SM et al (2005) Compromised lymphocytes infiltrate hepatocellular carcinoma: the role of T-regulatory cells. Hepatology 41(4):722–730PubMedCrossRef
119.
go back to reference Wallin RP, Screpanti V et al (2003) Regulation of perforin-independent NK cell-mediated cytotoxicity. Eur J Immunol 33(10):2727–2735PubMedCrossRef Wallin RP, Screpanti V et al (2003) Regulation of perforin-independent NK cell-mediated cytotoxicity. Eur J Immunol 33(10):2727–2735PubMedCrossRef
120.
go back to reference Ward SM, Fox BC et al (2007) Quantification and localisation of FOXP3+ T lymphocytes and relation to hepatic inflammation during chronic HCV infection. J Hepatol 47(3):316–324PubMedCrossRef Ward SM, Fox BC et al (2007) Quantification and localisation of FOXP3+ T lymphocytes and relation to hepatic inflammation during chronic HCV infection. J Hepatol 47(3):316–324PubMedCrossRef
121.
go back to reference Warren A, Le Couteur DG et al (2006) T lymphocytes interact with hepatocytes through fenestrations in murine liver sinusoidal endothelial cells. Hepatology 44(5):1182–1190PubMedCrossRef Warren A, Le Couteur DG et al (2006) T lymphocytes interact with hepatocytes through fenestrations in murine liver sinusoidal endothelial cells. Hepatology 44(5):1182–1190PubMedCrossRef
122.
go back to reference Webster DP, Klenerman P et al (2009) Development of novel treatments for hepatitis C. Lancet Infect Dis 9(2):108–117PubMedCrossRef Webster DP, Klenerman P et al (2009) Development of novel treatments for hepatitis C. Lancet Infect Dis 9(2):108–117PubMedCrossRef
123.
go back to reference Winau F, Quack C et al (2008) Starring stellate cells in liver immunology. Curr Opin Immunol 20(1):68–74PubMedCrossRef Winau F, Quack C et al (2008) Starring stellate cells in liver immunology. Curr Opin Immunol 20(1):68–74PubMedCrossRef
124.
go back to reference Wisse E (1970) An electron microscopic study of the fenestrated endothelial lining of rat liver sinusoids. J Ultrastruct Res 31(1):125–150PubMedCrossRef Wisse E (1970) An electron microscopic study of the fenestrated endothelial lining of rat liver sinusoids. J Ultrastruct Res 31(1):125–150PubMedCrossRef
125.
go back to reference Wisse E, De Zanger RB et al (1985) The liver sieve: considerations concerning the structure and function of endothelial fenestrae, the sinusoidal wall and the space of Disse. Hepatology 5(4):683–692PubMedCrossRef Wisse E, De Zanger RB et al (1985) The liver sieve: considerations concerning the structure and function of endothelial fenestrae, the sinusoidal wall and the space of Disse. Hepatology 5(4):683–692PubMedCrossRef
126.
go back to reference Xu D, Fu J et al (2006) Circulating and liver resident CD4+ CD25+ regulatory T cells actively influence the antiviral immune response and disease progression in patients with hepatitis B. J Immunol 177(1):739–747PubMed Xu D, Fu J et al (2006) Circulating and liver resident CD4+ CD25+ regulatory T cells actively influence the antiviral immune response and disease progression in patients with hepatitis B. J Immunol 177(1):739–747PubMed
127.
go back to reference Yamagiwa S, Sugahara S et al (1998) The primary site of CD4–8− B220+ alphabeta T cells in lpr mice: the appendix in normal mice. J Immunol 160(6):2665–2674PubMed Yamagiwa S, Sugahara S et al (1998) The primary site of CD4–8− B220+ alphabeta T cells in lpr mice: the appendix in normal mice. J Immunol 160(6):2665–2674PubMed
Metadata
Title
Microanatomy of the liver immune system
Authors
Eszter Nemeth
Alan W. Baird
Cliona O’Farrelly
Publication date
01-09-2009
Publisher
Springer-Verlag
Published in
Seminars in Immunopathology / Issue 3/2009
Print ISSN: 1863-2297
Electronic ISSN: 1863-2300
DOI
https://doi.org/10.1007/s00281-009-0173-4

Other articles of this Issue 3/2009

Seminars in Immunopathology 3/2009 Go to the issue