Skip to main content
Top
Published in: Seminars in Immunopathology 3/2009

Open Access 01-09-2009 | Review

Contribution of human hematopoietic stem cells to liver repair

Authors: Ping Zhou, Louisa Wirthlin, Jeannine McGee, Geralyn Annett, Jan Nolta

Published in: Seminars in Immunopathology | Issue 3/2009

Login to get access

Abstract

Immune-deficient mouse models of liver damage allow examination of human stem cell migration to sites of damage and subsequent contribution to repair and survival. In our studies, in the absence of a selective advantage, transplanted human stem cells from adult sources did not robustly become hepatocytes, although some level of fusion or hepatic differentiation was documented. However, injected stem cells did home to the injured liver tissue and release paracrine factors that hastened endogenous repair and enhanced survival. There were significantly higher levels of survival in mice with a toxic liver insult that had been transplanted with human stem cells but not in those transplanted with committed progenitors. Transplantation of autologous adult stem cells without conditioning is a relatively safe therapy. Adult stem cells are known to secrete bioactive factors that suppress the local immune system, inhibit fibrosis (scar formation) and apoptosis, enhance angiogenesis, and stimulate recruitment, retention, mitosis, and differentiation of tissue-residing stem cells. These paracrine effects are distinct from the direct differentiation of stem cells to repair tissue. In patients at high risk while waiting for a liver transplant, autologous stem cell therapy could be considered, as it could delay the decline in liver function.
Literature
2.
go back to reference Grove JE, Bruscia E, Krause DS (2004) Plasticity of bone marrow-derived stem cells. Stem Cells 22:487–500CrossRefPubMed Grove JE, Bruscia E, Krause DS (2004) Plasticity of bone marrow-derived stem cells. Stem Cells 22:487–500CrossRefPubMed
3.
go back to reference Wagers AJ, Sherwood RI, Christensen JL, Weissman IL (2002) Little evidence for developmental plasticity of adult hematopoietic stem cells. Science 297:2256–2259CrossRefPubMed Wagers AJ, Sherwood RI, Christensen JL, Weissman IL (2002) Little evidence for developmental plasticity of adult hematopoietic stem cells. Science 297:2256–2259CrossRefPubMed
4.
go back to reference Lagasse E, Connors H, Al-Dhalimy M, Reitsma M, Dohse M, Osborne L, Wang X, Finegold M, Weissman IL, Grompe M (2000) Purified hematopoietic stem cells can differentiate into hepatocytes in vivo. Nat Med 6:1229–1234CrossRefPubMed Lagasse E, Connors H, Al-Dhalimy M, Reitsma M, Dohse M, Osborne L, Wang X, Finegold M, Weissman IL, Grompe M (2000) Purified hematopoietic stem cells can differentiate into hepatocytes in vivo. Nat Med 6:1229–1234CrossRefPubMed
5.
go back to reference Balsam LB, Wagers AJ, Christensen JL, Kofidis T, Weissman IL, Robbins RC (2004) Haematopoietic stem cells adopt mature haematopoietic fates in ischaemic myocardium. Nature 428:668–673CrossRefPubMed Balsam LB, Wagers AJ, Christensen JL, Kofidis T, Weissman IL, Robbins RC (2004) Haematopoietic stem cells adopt mature haematopoietic fates in ischaemic myocardium. Nature 428:668–673CrossRefPubMed
6.
go back to reference Nygren JM, Jovinge S, Breitbach M, Sawen P, Roll W, Hescheler J, Taneera J, Fleischmann BK, Jacobsen SE (2004) Bone marrow-derived hematopoietic cells generate cardiomyocytes at a low frequency through cell fusion, but not transdifferentiation. Nat Med 10:494–501CrossRefPubMed Nygren JM, Jovinge S, Breitbach M, Sawen P, Roll W, Hescheler J, Taneera J, Fleischmann BK, Jacobsen SE (2004) Bone marrow-derived hematopoietic cells generate cardiomyocytes at a low frequency through cell fusion, but not transdifferentiation. Nat Med 10:494–501CrossRefPubMed
7.
go back to reference Murry CE, Soonpaa MH, Reinecke H, Nakajima H, Nakajima HO, Rubart M, Pasumarthi KB, Virag JI, Bartelmez SH, Poppa V, Bradford G, Dowell JD, Williams DA, Field LJ (2004) Haematopoietic stem cells do not transdifferentiate into cardiac myocytes in myocardial infarcts. Nature 428:664–668CrossRefPubMed Murry CE, Soonpaa MH, Reinecke H, Nakajima H, Nakajima HO, Rubart M, Pasumarthi KB, Virag JI, Bartelmez SH, Poppa V, Bradford G, Dowell JD, Williams DA, Field LJ (2004) Haematopoietic stem cells do not transdifferentiate into cardiac myocytes in myocardial infarcts. Nature 428:664–668CrossRefPubMed
8.
go back to reference Orlic D, Kajstura J, Chimenti S, Jakoniuk I, Anderson SM, Li B, Pickel J, McKay R, Nadal-Ginard B, Bodine DM, Leri A, Anversa P (2001) Bone marrow cells regenerate infarcted myocardium. Nature 410:701–705CrossRefPubMed Orlic D, Kajstura J, Chimenti S, Jakoniuk I, Anderson SM, Li B, Pickel J, McKay R, Nadal-Ginard B, Bodine DM, Leri A, Anversa P (2001) Bone marrow cells regenerate infarcted myocardium. Nature 410:701–705CrossRefPubMed
9.
go back to reference Park KI, Teng YD, Snyder EY (2002) The injured brain interacts reciprocally with neural stem cells supported by scaffolds to reconstitute lost tissue. Nat Biotechnol 20:1111–1117CrossRefPubMed Park KI, Teng YD, Snyder EY (2002) The injured brain interacts reciprocally with neural stem cells supported by scaffolds to reconstitute lost tissue. Nat Biotechnol 20:1111–1117CrossRefPubMed
10.
go back to reference Hess D, Li L, Martin M, Sakano S, Hill D, Strutt B, Thyssen S, Gray DA, Bhatia M (2003) Bone marrow-derived stem cells initiate pancreatic regeneration. Nat Biotechnol 21:763–770CrossRefPubMed Hess D, Li L, Martin M, Sakano S, Hill D, Strutt B, Thyssen S, Gray DA, Bhatia M (2003) Bone marrow-derived stem cells initiate pancreatic regeneration. Nat Biotechnol 21:763–770CrossRefPubMed
11.
go back to reference Terada N, Hamazaki T, Oka M, Hoki M, Mastalerz DM, Nakano Y, Meyer EM, Morel L, Petersen BE, Scott EW (2002) Bone marrow cells adopt the phenotype of other cells by spontaneous cell fusion. Nature 416:542–545CrossRefPubMed Terada N, Hamazaki T, Oka M, Hoki M, Mastalerz DM, Nakano Y, Meyer EM, Morel L, Petersen BE, Scott EW (2002) Bone marrow cells adopt the phenotype of other cells by spontaneous cell fusion. Nature 416:542–545CrossRefPubMed
12.
go back to reference Vassilopoulos G, Wang PR, Russell DW (2003) Transplanted bone marrow regenerates liver by cell fusion. Nature 422:901–904CrossRefPubMed Vassilopoulos G, Wang PR, Russell DW (2003) Transplanted bone marrow regenerates liver by cell fusion. Nature 422:901–904CrossRefPubMed
13.
go back to reference Wang X, Willenbring H, Akkari Y, Torimaru Y, Foster M, Al-Dhalimy M, Lagasse E, Finegold M, Olson S, Grompe M (2003) Cell fusion is the principal source of bone-marrow-derived hepatocytes. Nature 422:897–901CrossRefPubMed Wang X, Willenbring H, Akkari Y, Torimaru Y, Foster M, Al-Dhalimy M, Lagasse E, Finegold M, Olson S, Grompe M (2003) Cell fusion is the principal source of bone-marrow-derived hepatocytes. Nature 422:897–901CrossRefPubMed
14.
go back to reference Corbel SY, Lee A, Yi L, Duenas J, Brazelton TR, Blau HM, Rossi FM (2003) Contribution of hematopoietic stem cells to skeletal muscle. Nat Med 9:1528–1532CrossRefPubMed Corbel SY, Lee A, Yi L, Duenas J, Brazelton TR, Blau HM, Rossi FM (2003) Contribution of hematopoietic stem cells to skeletal muscle. Nat Med 9:1528–1532CrossRefPubMed
15.
go back to reference Alvarez-Dolado M, Pardal R, Garcia-Verdugo JM, Fike JR, Lee HO, Pfeffer K, Lois C, Morrison SJ, Alvarez-Buylla A (2003) Fusion of bone-marrow-derived cells with Purkinje neurons, cardiomyocytes and hepatocytes. Nature 425:968–973CrossRefPubMed Alvarez-Dolado M, Pardal R, Garcia-Verdugo JM, Fike JR, Lee HO, Pfeffer K, Lois C, Morrison SJ, Alvarez-Buylla A (2003) Fusion of bone-marrow-derived cells with Purkinje neurons, cardiomyocytes and hepatocytes. Nature 425:968–973CrossRefPubMed
16.
go back to reference Willenbring H, Bailey AS, Foster M, Akkari Y, Dorrell C, Olson S, Finegold M, Fleming WH, Grompe M (2004) Myelomonocytic cells are sufficient for therapeutic cell fusion in liver. Nat Med 10:744–748CrossRefPubMed Willenbring H, Bailey AS, Foster M, Akkari Y, Dorrell C, Olson S, Finegold M, Fleming WH, Grompe M (2004) Myelomonocytic cells are sufficient for therapeutic cell fusion in liver. Nat Med 10:744–748CrossRefPubMed
17.
go back to reference Ianus A, Holz GG, Theise ND, Hussain MA (2003) In vivo derivation of glucose-competent pancreatic endocrine cells from bone marrow without evidence of cell fusion. J Clin Invest 111:843–850PubMed Ianus A, Holz GG, Theise ND, Hussain MA (2003) In vivo derivation of glucose-competent pancreatic endocrine cells from bone marrow without evidence of cell fusion. J Clin Invest 111:843–850PubMed
18.
go back to reference Harris RG, Herzog EL, Bruscia EM, Grove JE, Van Arnam JS, Krause DS (2004) Lack of a fusion requirement for development of bone marrow-derived epithelia. Science 305:90–93CrossRefPubMed Harris RG, Herzog EL, Bruscia EM, Grove JE, Van Arnam JS, Krause DS (2004) Lack of a fusion requirement for development of bone marrow-derived epithelia. Science 305:90–93CrossRefPubMed
19.
go back to reference Zhou P, Hohm S, Olusanya Y, Hess DA, Nolta J (2009) Human progenitor cells with high aldehyde dehydrogenase activity efficiently engraft into damaged liver in a novel model. Hepatology 49:1992–2000CrossRefPubMed Zhou P, Hohm S, Olusanya Y, Hess DA, Nolta J (2009) Human progenitor cells with high aldehyde dehydrogenase activity efficiently engraft into damaged liver in a novel model. Hepatology 49:1992–2000CrossRefPubMed
20.
go back to reference Botta R, Gao E, Stassi G, Bonci D, Pelosi E, Zwas D, Patti M, Colonna L, Baiocchi M, Coppola S, Ma X, Condorelli G, Peschle C (2004) Heart infarct in NOD-SCID mice: therapeutic vasculogenesis by transplantation of human CD34+ cells and low dose CD34+KDR+ cells. Faseb J 1:1 Botta R, Gao E, Stassi G, Bonci D, Pelosi E, Zwas D, Patti M, Colonna L, Baiocchi M, Coppola S, Ma X, Condorelli G, Peschle C (2004) Heart infarct in NOD-SCID mice: therapeutic vasculogenesis by transplantation of human CD34+ cells and low dose CD34+KDR+ cells. Faseb J 1:1
21.
go back to reference Thorgeirsson SS, Grisham JW (2006) Hematopoietic cells as hepatocyte stem cells: a critical review of the evidence. Hepatology 43:2–8CrossRefPubMed Thorgeirsson SS, Grisham JW (2006) Hematopoietic cells as hepatocyte stem cells: a critical review of the evidence. Hepatology 43:2–8CrossRefPubMed
22.
go back to reference Kashofer K, Siapati EK, Bonnet D (2006) In vivo formation of unstable heterokaryons after liver damage and hematopoietic stem cell/progenitor transplantation. Stem Cells 24:1104–1112CrossRefPubMed Kashofer K, Siapati EK, Bonnet D (2006) In vivo formation of unstable heterokaryons after liver damage and hematopoietic stem cell/progenitor transplantation. Stem Cells 24:1104–1112CrossRefPubMed
23.
go back to reference Zhou P, Hohm S, Capoccia B, Wirthlin L, Hess D, Link D, Nolta J (2008) Immunodeficient mouse models to study human stem cell-mediated tissue repair. Methods Mol Biol 430:213–225CrossRefPubMed Zhou P, Hohm S, Capoccia B, Wirthlin L, Hess D, Link D, Nolta J (2008) Immunodeficient mouse models to study human stem cell-mediated tissue repair. Methods Mol Biol 430:213–225CrossRefPubMed
24.
go back to reference Goodell MA, Brose K, Paradis G, Conner AS, Mulligan RC (1996) Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo. J Exp Med 183:1797–1806CrossRefPubMed Goodell MA, Brose K, Paradis G, Conner AS, Mulligan RC (1996) Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo. J Exp Med 183:1797–1806CrossRefPubMed
25.
go back to reference Goodell MA, Rosenzweig M, Kim H, Marks DF, DeMaria M, Paradis G, Grupp SA, Sieff CA, Mulligan RC, Johnson RP (1997) Dye efflux studies suggest that hematopoietic stem cells expressing low or undetectable levels of CD34 antigen exist in multiple species. Nat Med 3:1337–1345CrossRefPubMed Goodell MA, Rosenzweig M, Kim H, Marks DF, DeMaria M, Paradis G, Grupp SA, Sieff CA, Mulligan RC, Johnson RP (1997) Dye efflux studies suggest that hematopoietic stem cells expressing low or undetectable levels of CD34 antigen exist in multiple species. Nat Med 3:1337–1345CrossRefPubMed
26.
go back to reference Bhatia M, Bonnet D, Murdoch B, Gan OI, Dick JE (1998) A newly discovered class of human hematopoietic cells with SCID- repopulating activity [see comments]. Nat Med 4:1038–1045CrossRefPubMed Bhatia M, Bonnet D, Murdoch B, Gan OI, Dick JE (1998) A newly discovered class of human hematopoietic cells with SCID- repopulating activity [see comments]. Nat Med 4:1038–1045CrossRefPubMed
27.
go back to reference Dao MA, Arevalo J, Nolta JA (2003) Reversibility of CD34 expression on human hematopoietic stem cells that retain the capacity for secondary reconstitution. Blood 101:112–118CrossRefPubMed Dao MA, Arevalo J, Nolta JA (2003) Reversibility of CD34 expression on human hematopoietic stem cells that retain the capacity for secondary reconstitution. Blood 101:112–118CrossRefPubMed
28.
go back to reference Dao MA, Shah AJ, Crooks GM, Nolta JA (1998) Engraftment and retroviral marking of CD34+ and CD34+CD38− human hematopoietic progenitors assessed in immune-deficient mice. Blood 91:1243–1255PubMed Dao MA, Shah AJ, Crooks GM, Nolta JA (1998) Engraftment and retroviral marking of CD34+ and CD34+CD38− human hematopoietic progenitors assessed in immune-deficient mice. Blood 91:1243–1255PubMed
29.
go back to reference Dao MA, Taylor N, Nolta JA (1998) Reduction in levels of the cyclin-dependent kinase inhibitor p27(kip-1) coupled with transforming growth factor beta neutralization induces cell-cycle entry and increases retroviral transduction of primitive human hematopoietic cells. Proc Natl Acad Sci U S A 95:13006–13011CrossRefPubMed Dao MA, Taylor N, Nolta JA (1998) Reduction in levels of the cyclin-dependent kinase inhibitor p27(kip-1) coupled with transforming growth factor beta neutralization induces cell-cycle entry and increases retroviral transduction of primitive human hematopoietic cells. Proc Natl Acad Sci U S A 95:13006–13011CrossRefPubMed
30.
go back to reference Sato T, Laver JH, Ogawa M (1999) Reversible expression of CD34 by murine hematopoietic stem cells [see comments]. Blood 94:2548–2554PubMed Sato T, Laver JH, Ogawa M (1999) Reversible expression of CD34 by murine hematopoietic stem cells [see comments]. Blood 94:2548–2554PubMed
31.
go back to reference Hess DA, Karanu FN, Levac K, Gallacher L, Bhatia M (2003) Coculture and transplant of purified CD34(+) Lin(−) and CD34(−) Lin(−) cells reveals functional interaction between repopulating hematopoietic stem cells. Leukemia 17:1613–1625CrossRefPubMed Hess DA, Karanu FN, Levac K, Gallacher L, Bhatia M (2003) Coculture and transplant of purified CD34(+) Lin(−) and CD34(−) Lin(−) cells reveals functional interaction between repopulating hematopoietic stem cells. Leukemia 17:1613–1625CrossRefPubMed
32.
go back to reference Dao MA, Nolta JA (2000) CD34: to select or not to select? That is the question. Leukemia 14:773–776CrossRefPubMed Dao MA, Nolta JA (2000) CD34: to select or not to select? That is the question. Leukemia 14:773–776CrossRefPubMed
33.
go back to reference Zanjani ED, Almeida-Porada G, Livingston AG, Porada CD, Ogawa M (1999) Engraftment and multilineage expression of human bone marrow CD34− cells in vivo. Ann N Y Acad Sci 872:220–231 discussion 231–222CrossRefPubMed Zanjani ED, Almeida-Porada G, Livingston AG, Porada CD, Ogawa M (1999) Engraftment and multilineage expression of human bone marrow CD34− cells in vivo. Ann N Y Acad Sci 872:220–231 discussion 231–222CrossRefPubMed
34.
go back to reference Storms RW, Goodell MA, Fisher A, Mulligan RC, Smith C (2000) Hoechst dye efflux reveals a novel CD7(+) CD34(−) lymphoid progenitor in human umbilical cord blood. Blood 96:2125–2133PubMed Storms RW, Goodell MA, Fisher A, Mulligan RC, Smith C (2000) Hoechst dye efflux reveals a novel CD7(+) CD34(−) lymphoid progenitor in human umbilical cord blood. Blood 96:2125–2133PubMed
36.
go back to reference Fallon P, Gentry T, Balber AE, Boulware D, Janssen WE, Smilee R, Storms RW, Smith C (2003) Mobilized peripheral blood SSCloALDHbr cells have the phenotypic and functional properties of primitive haematopoietic cells and their number correlates with engraftment following autologous transplantation. Br J Haematol 122:99–108CrossRefPubMed Fallon P, Gentry T, Balber AE, Boulware D, Janssen WE, Smilee R, Storms RW, Smith C (2003) Mobilized peripheral blood SSCloALDHbr cells have the phenotypic and functional properties of primitive haematopoietic cells and their number correlates with engraftment following autologous transplantation. Br J Haematol 122:99–108CrossRefPubMed
37.
go back to reference Storms RW, Trujillo AP, Springer JB, Shah L, Colvin OM, Ludeman SM, Smith C (1999) Isolation of primitive human hematopoietic progenitors on the basis of aldehyde dehydrogenase activity. Proc Natl Acad Sci U S A 96:9118–9123CrossRefPubMed Storms RW, Trujillo AP, Springer JB, Shah L, Colvin OM, Ludeman SM, Smith C (1999) Isolation of primitive human hematopoietic progenitors on the basis of aldehyde dehydrogenase activity. Proc Natl Acad Sci U S A 96:9118–9123CrossRefPubMed
38.
go back to reference Hess DA, Meyerrose TE, Wirthlin L, Craft TP, Herrbrich PE, Creer MH, Nolta JA (2004) Functional characterization of highly purified human hematopoietic repopulating cells isolated based on aldehyde dehydrogenase activity. Blood 104:1648–1655CrossRefPubMed Hess DA, Meyerrose TE, Wirthlin L, Craft TP, Herrbrich PE, Creer MH, Nolta JA (2004) Functional characterization of highly purified human hematopoietic repopulating cells isolated based on aldehyde dehydrogenase activity. Blood 104:1648–1655CrossRefPubMed
39.
go back to reference Lang P, Bader P, Schumm M, Feuchtinger T, Einsele H, Fuhrer M, Weinstock C, Handgretinger R, Kuci S, Martin D, Niethammer D, Greil J (2004) Transplantation of a combination of CD133+ and CD34+ selected progenitor cells from alternative donors. Br J Haematol 124:72–79CrossRefPubMed Lang P, Bader P, Schumm M, Feuchtinger T, Einsele H, Fuhrer M, Weinstock C, Handgretinger R, Kuci S, Martin D, Niethammer D, Greil J (2004) Transplantation of a combination of CD133+ and CD34+ selected progenitor cells from alternative donors. Br J Haematol 124:72–79CrossRefPubMed
40.
go back to reference Forraz N, Pettengell R, McGuckin CP (2004) Characterization of a lineage-negative stem-progenitor cell population optimized for ex vivo expansion and enriched for LTC-IC. Stem Cells 22:100–108CrossRefPubMed Forraz N, Pettengell R, McGuckin CP (2004) Characterization of a lineage-negative stem-progenitor cell population optimized for ex vivo expansion and enriched for LTC-IC. Stem Cells 22:100–108CrossRefPubMed
41.
go back to reference Wagner W, Ansorge A, Wirkner U, Eckstein V, Schwager C, Blake J, Miesala K, Selig J, Saffrich R, Ansorge W, Ho AD (2004) Molecular evidence for stem cell function of the slow-dividing fraction among human hematopoietic progenitor cells by genome-wide analysis. Blood 104:675–686CrossRefPubMed Wagner W, Ansorge A, Wirkner U, Eckstein V, Schwager C, Blake J, Miesala K, Selig J, Saffrich R, Ansorge W, Ho AD (2004) Molecular evidence for stem cell function of the slow-dividing fraction among human hematopoietic progenitor cells by genome-wide analysis. Blood 104:675–686CrossRefPubMed
42.
go back to reference Ruzicka K, Grskovic B, Pavlovic V, Qujeq D, Karimi A, Mueller MM (2004) Differentiation of human umbilical cord blood CD133+ stem cells towards myelomonocytic lineage. Clin Chim Acta 343:85–92CrossRefPubMed Ruzicka K, Grskovic B, Pavlovic V, Qujeq D, Karimi A, Mueller MM (2004) Differentiation of human umbilical cord blood CD133+ stem cells towards myelomonocytic lineage. Clin Chim Acta 343:85–92CrossRefPubMed
43.
go back to reference Bhatia M (2001) AC133 expression in human stem cells. Leukemia 15:1685–1688PubMed Bhatia M (2001) AC133 expression in human stem cells. Leukemia 15:1685–1688PubMed
44.
go back to reference Hess DA, Wirthlin L, Craft TP, Herrbrich PE, Hohm SA, Lahey R, Eades WC, Creer MH, Nolta JA (2006) Selection based on CD133 and high aldehyde dehydrogenase activity isolates long-term reconstituting human hematopoietic stem cells. Blood 107:2162–2169CrossRefPubMed Hess DA, Wirthlin L, Craft TP, Herrbrich PE, Hohm SA, Lahey R, Eades WC, Creer MH, Nolta JA (2006) Selection based on CD133 and high aldehyde dehydrogenase activity isolates long-term reconstituting human hematopoietic stem cells. Blood 107:2162–2169CrossRefPubMed
45.
go back to reference Capoccia BJ, Robson DL, Levac KD, Maxwell DJ, Hohm SA, Neelamkavil MJ, Bell GI, Xenocostas A, Link DC, Piwnica-Worms D, Nolta JA, Hess DA (2009) Revascularization of ischemic limbs after transplantation of human bone marrow cells with high aldehyde dehydrogenase activity. Blood 113:5340–5351CrossRefPubMed Capoccia BJ, Robson DL, Levac KD, Maxwell DJ, Hohm SA, Neelamkavil MJ, Bell GI, Xenocostas A, Link DC, Piwnica-Worms D, Nolta JA, Hess DA (2009) Revascularization of ischemic limbs after transplantation of human bone marrow cells with high aldehyde dehydrogenase activity. Blood 113:5340–5351CrossRefPubMed
46.
go back to reference Bhargava M, Joseph A, Knesel J, Halaban R, Li Y, Pang S, Goldberg I, Setter E, Donovan MA, Zarnegar R et al (1992) Scatter factor and hepatocyte growth factor: activities, properties, and mechanism. Cell Growth Differ 3:11–20PubMed Bhargava M, Joseph A, Knesel J, Halaban R, Li Y, Pang S, Goldberg I, Setter E, Donovan MA, Zarnegar R et al (1992) Scatter factor and hepatocyte growth factor: activities, properties, and mechanism. Cell Growth Differ 3:11–20PubMed
47.
go back to reference Weidner KM, Behrens J, Vandekerckhove J, Birchmeier W (1990) Scatter factor: molecular characteristics and effect on the invasiveness of epithelial cells. J Cell Biol 111:2097–2108CrossRefPubMed Weidner KM, Behrens J, Vandekerckhove J, Birchmeier W (1990) Scatter factor: molecular characteristics and effect on the invasiveness of epithelial cells. J Cell Biol 111:2097–2108CrossRefPubMed
48.
go back to reference Rosen EM, Goldberg ID, Liu D, Setter E, Donovan MA, Bhargava M, Reiss M, Kacinski BM (1991) Tumor necrosis factor stimulates epithelial tumor cell motility. Cancer Res 51:5315–5321PubMed Rosen EM, Goldberg ID, Liu D, Setter E, Donovan MA, Bhargava M, Reiss M, Kacinski BM (1991) Tumor necrosis factor stimulates epithelial tumor cell motility. Cancer Res 51:5315–5321PubMed
49.
go back to reference Gao C, Jokerst R, Gondipalli P, Cai SR, Kennedy S, Ponder KP (1999) Intramuscular injection of an adenoviral vector expressing hepatocyte growth factor facilitates hepatic transduction with a retroviral vector in mice. Hum Gene Ther 10:911–922CrossRefPubMed Gao C, Jokerst R, Gondipalli P, Cai SR, Kennedy S, Ponder KP (1999) Intramuscular injection of an adenoviral vector expressing hepatocyte growth factor facilitates hepatic transduction with a retroviral vector in mice. Hum Gene Ther 10:911–922CrossRefPubMed
50.
go back to reference Lee HS, Huang GT, Sheu JC, Chiou LL, Lai MY, Chen DS, Lee SC (1993) Characterization of hepatocyte growth factor expressed by baculovirus. Biochem Biophys Res Commun 197:591–598CrossRefPubMed Lee HS, Huang GT, Sheu JC, Chiou LL, Lai MY, Chen DS, Lee SC (1993) Characterization of hepatocyte growth factor expressed by baculovirus. Biochem Biophys Res Commun 197:591–598CrossRefPubMed
51.
go back to reference Bottaro DP, Rubin JS, Faletto DL, Chan AM, Kmiecik TE, Vande Woude GF, Aaronson SA (1991) Identification of the hepatocyte growth factor receptor as the c-Met proto-oncogene product. Science 251:802–804CrossRefPubMed Bottaro DP, Rubin JS, Faletto DL, Chan AM, Kmiecik TE, Vande Woude GF, Aaronson SA (1991) Identification of the hepatocyte growth factor receptor as the c-Met proto-oncogene product. Science 251:802–804CrossRefPubMed
52.
go back to reference Mizuno K, Higuchi O, Ihle JN, Nakamura T (1993) Hepatocyte growth factor stimulates growth of hematopoietic progenitor cells. Biochem Biophys Res Commun 194:178–186CrossRefPubMed Mizuno K, Higuchi O, Ihle JN, Nakamura T (1993) Hepatocyte growth factor stimulates growth of hematopoietic progenitor cells. Biochem Biophys Res Commun 194:178–186CrossRefPubMed
53.
go back to reference Galimi F, Bagnara GP, Bonsi L, Cottone E, Follenzi A, Simeone A, Comoglio PM (1994) Hepatocyte growth factor induces proliferation and differentiation of multipotent and erythroid hematopoietic progenitors. J Cell Biol 127:1743–1754CrossRefPubMed Galimi F, Bagnara GP, Bonsi L, Cottone E, Follenzi A, Simeone A, Comoglio PM (1994) Hepatocyte growth factor induces proliferation and differentiation of multipotent and erythroid hematopoietic progenitors. J Cell Biol 127:1743–1754CrossRefPubMed
54.
go back to reference Nishino T, Hisha H, Nishino N, Adachi M, Ikehara S (1995) Hepatocyte growth factor as a hematopoietic regulator. Blood 85:3093–3100PubMed Nishino T, Hisha H, Nishino N, Adachi M, Ikehara S (1995) Hepatocyte growth factor as a hematopoietic regulator. Blood 85:3093–3100PubMed
55.
56.
go back to reference Ratajczak MZ, Marlicz W, Ratajczak J, Wasik M, Machalinski B, Carter A, Gewirtz AM (1997) Effect of hepatocyte growth factor on early human haemopoietic cell development. Br J Haematol 99:228–236CrossRefPubMed Ratajczak MZ, Marlicz W, Ratajczak J, Wasik M, Machalinski B, Carter A, Gewirtz AM (1997) Effect of hepatocyte growth factor on early human haemopoietic cell development. Br J Haematol 99:228–236CrossRefPubMed
57.
go back to reference Yu CZ, Hisha H, Li Y, Lian Z, Nishino T, Toki J, Adachi Y, Inaba M, Fan TX, Jin T, Iguchi T, Sogo S, Hosaka N, Song TH, Xing J, Ikehara S (1998) Stimulatory effects of hepatocyte growth factor on hemopoiesis of SCF/c-kit system-deficient mice. Stem Cells 16:66–77CrossRefPubMed Yu CZ, Hisha H, Li Y, Lian Z, Nishino T, Toki J, Adachi Y, Inaba M, Fan TX, Jin T, Iguchi T, Sogo S, Hosaka N, Song TH, Xing J, Ikehara S (1998) Stimulatory effects of hepatocyte growth factor on hemopoiesis of SCF/c-kit system-deficient mice. Stem Cells 16:66–77CrossRefPubMed
58.
go back to reference Iguchi T, Sogo S, Hisha H, Taketani S, Adachi Y, Miyazaki R, Ogata H, Masuda S, Sasaki R, Ito M, Fukuhara S, Ikehara S (1999) HGF activates signal transduction from EPO receptor on human cord blood CD34+/CD45+ cells. Stem Cells 17:82–91CrossRefPubMed Iguchi T, Sogo S, Hisha H, Taketani S, Adachi Y, Miyazaki R, Ogata H, Masuda S, Sasaki R, Ito M, Fukuhara S, Ikehara S (1999) HGF activates signal transduction from EPO receptor on human cord blood CD34+/CD45+ cells. Stem Cells 17:82–91CrossRefPubMed
59.
go back to reference Weimar IS, Miranda N, Muller EJ, Hekman A, Kerst JM, de Gast GC, Gerritsen WR (1998) Hepatocyte growth factor/scatter factor (HGF/SF) is produced by human bone marrow stromal cells and promotes proliferation, adhesion and survival of human hematopoietic progenitor cells (CD34+). Exp Hematol 26:885–894PubMed Weimar IS, Miranda N, Muller EJ, Hekman A, Kerst JM, de Gast GC, Gerritsen WR (1998) Hepatocyte growth factor/scatter factor (HGF/SF) is produced by human bone marrow stromal cells and promotes proliferation, adhesion and survival of human hematopoietic progenitor cells (CD34+). Exp Hematol 26:885–894PubMed
60.
go back to reference Goff JP, Shields DS, Petersen BE, Zajac VF, Michalopoulos GK, Greenberger JS (1996) Synergistic effects of hepatocyte growth factor on human cord blood CD34+ progenitor cells are the result of c-Met receptor expression. Stem Cells 14:592–602CrossRefPubMed Goff JP, Shields DS, Petersen BE, Zajac VF, Michalopoulos GK, Greenberger JS (1996) Synergistic effects of hepatocyte growth factor on human cord blood CD34+ progenitor cells are the result of c-Met receptor expression. Stem Cells 14:592–602CrossRefPubMed
61.
go back to reference Rosen IDGaEM (1995) Epithelial–mesenchymal interactions in cancer. Birkhauser, Basel Rosen IDGaEM (1995) Epithelial–mesenchymal interactions in cancer. Birkhauser, Basel
62.
go back to reference Nakamura T, Nishizawa T, Hagiya M, Seki T, Shimonishi M, Sugimura A, Tashiro K, Shimizu S (1989) Molecular cloning and expression of human hepatocyte growth factor. Nature 342:440–443CrossRefPubMed Nakamura T, Nishizawa T, Hagiya M, Seki T, Shimonishi M, Sugimura A, Tashiro K, Shimizu S (1989) Molecular cloning and expression of human hepatocyte growth factor. Nature 342:440–443CrossRefPubMed
63.
go back to reference Sonnenberg E, Meyer D, Weidner KM, Birchmeier C (1993) Scatter factor/hepatocyte growth factor and its receptor, the c-met tyrosine kinase, can mediate a signal exchange between mesenchyme and epithelia during mouse development. J Cell Biol 123:223–235CrossRefPubMed Sonnenberg E, Meyer D, Weidner KM, Birchmeier C (1993) Scatter factor/hepatocyte growth factor and its receptor, the c-met tyrosine kinase, can mediate a signal exchange between mesenchyme and epithelia during mouse development. J Cell Biol 123:223–235CrossRefPubMed
64.
go back to reference Noji S, Tashiro K, Koyama E, Nohno T, Ohyama K, Taniguchi S, Nakamura T (1990) Expression of hepatocyte growth factor gene in endothelial and Kupffer cells of damaged rat livers, as revealed by in situ hybridization. Biochem Biophys Res Commun 173:42–47CrossRefPubMed Noji S, Tashiro K, Koyama E, Nohno T, Ohyama K, Taniguchi S, Nakamura T (1990) Expression of hepatocyte growth factor gene in endothelial and Kupffer cells of damaged rat livers, as revealed by in situ hybridization. Biochem Biophys Res Commun 173:42–47CrossRefPubMed
65.
66.
go back to reference Yasuda S, Goto Y, Baba T, Satoh T, Sumida H, Miyazaki S, Nonogi H (2000) Enhanced secretion of cardiac hepatocyte growth factor from an infarct region is associated with less severe ventricular enlargement and improved cardiac function. J Am Coll Cardiol 36:115–121CrossRefPubMed Yasuda S, Goto Y, Baba T, Satoh T, Sumida H, Miyazaki S, Nonogi H (2000) Enhanced secretion of cardiac hepatocyte growth factor from an infarct region is associated with less severe ventricular enlargement and improved cardiac function. J Am Coll Cardiol 36:115–121CrossRefPubMed
67.
go back to reference Sato T, Fujieda H, Murao S, Sato H, Takeuchi T, Ohtsuki Y (1999) Sequential changes of hepatocyte growth factor in the serum and enhanced c-Met expression in the myocardium in acute myocardial infarction. Jpn Circ J 63:906–908CrossRefPubMed Sato T, Fujieda H, Murao S, Sato H, Takeuchi T, Ohtsuki Y (1999) Sequential changes of hepatocyte growth factor in the serum and enhanced c-Met expression in the myocardium in acute myocardial infarction. Jpn Circ J 63:906–908CrossRefPubMed
68.
go back to reference Sheehan SM, Tatsumi R, Temm-Grove CJ, Allen RE (2000) HGF is an autocrine growth factor for skeletal muscle satellite cells in vitro. Muscle Nerve 23:239–245CrossRefPubMed Sheehan SM, Tatsumi R, Temm-Grove CJ, Allen RE (2000) HGF is an autocrine growth factor for skeletal muscle satellite cells in vitro. Muscle Nerve 23:239–245CrossRefPubMed
69.
go back to reference Danet GH, Pan Y, Luongo JL, Bonnet DA, Simon MC (2003) Expansion of human SCID-repopulating cells under hypoxic conditions. J Clin Invest 112:126–135PubMed Danet GH, Pan Y, Luongo JL, Bonnet DA, Simon MC (2003) Expansion of human SCID-repopulating cells under hypoxic conditions. J Clin Invest 112:126–135PubMed
70.
go back to reference Ceradini DJ, Kulkarni AR, Callaghan MJ, Tepper OM, Bastidas N, Kleinman ME, Capla JM, Galiano RD, Levine JP, Gurtner GC (2004) Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1. Nat Med 10:858–864CrossRefPubMed Ceradini DJ, Kulkarni AR, Callaghan MJ, Tepper OM, Bastidas N, Kleinman ME, Capla JM, Galiano RD, Levine JP, Gurtner GC (2004) Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1. Nat Med 10:858–864CrossRefPubMed
71.
go back to reference Avecilla ST, Hattori K, Heissig B, Tejada R, Liao F, Shido K, Jin DK, Dias S, Zhang F, Hartman TE, Hackett NR, Crystal RG, Witte L, Hicklin DJ, Bohlen P, Eaton D, Lyden D, de Sauvage F, Rafii S (2004) Chemokine-mediated interaction of hematopoietic progenitors with the bone marrow vascular niche is required for thrombopoiesis. Nat Med 10:64–71CrossRefPubMed Avecilla ST, Hattori K, Heissig B, Tejada R, Liao F, Shido K, Jin DK, Dias S, Zhang F, Hartman TE, Hackett NR, Crystal RG, Witte L, Hicklin DJ, Bohlen P, Eaton D, Lyden D, de Sauvage F, Rafii S (2004) Chemokine-mediated interaction of hematopoietic progenitors with the bone marrow vascular niche is required for thrombopoiesis. Nat Med 10:64–71CrossRefPubMed
72.
go back to reference Rosova I, Dao M, Capoccia B, Link D, Nolta JA (2008) Hypoxic preconditioning results in increased motility and improved therapeutic potential of human mesenchymal stem cells. Stem Cells 26:2173–2182CrossRefPubMed Rosova I, Dao M, Capoccia B, Link D, Nolta JA (2008) Hypoxic preconditioning results in increased motility and improved therapeutic potential of human mesenchymal stem cells. Stem Cells 26:2173–2182CrossRefPubMed
73.
go back to reference Pennacchietti S, Michieli P, Galluzzo M, Mazzone M, Giordano S, Comoglio PM (2003) Hypoxia promotes invasive growth by transcriptional activation of the met protooncogene. Cancer Cell 3:347–361CrossRefPubMed Pennacchietti S, Michieli P, Galluzzo M, Mazzone M, Giordano S, Comoglio PM (2003) Hypoxia promotes invasive growth by transcriptional activation of the met protooncogene. Cancer Cell 3:347–361CrossRefPubMed
74.
go back to reference Hao QL, Shah AJ, Thiemann FT, Smogorzewska EM, Crooks GM (1995) A functional comparison of CD34+ CD38− cells in cord blood and bone marrow. Blood 86:3745–3753PubMed Hao QL, Shah AJ, Thiemann FT, Smogorzewska EM, Crooks GM (1995) A functional comparison of CD34+ CD38− cells in cord blood and bone marrow. Blood 86:3745–3753PubMed
75.
go back to reference Hao QL, Thiemann FT, Petersen D, Smogorzewska EM, Crooks GM (1996) Extended long-term culture reveals a highly quiescent and primitive human hematopoietic progenitor population. Blood 88:3306–3313PubMed Hao QL, Thiemann FT, Petersen D, Smogorzewska EM, Crooks GM (1996) Extended long-term culture reveals a highly quiescent and primitive human hematopoietic progenitor population. Blood 88:3306–3313PubMed
76.
go back to reference Hao QL, Smogorzewska EM, Barsky LW, Crooks GM (1998) In vitro identification of single CD34+ CD38− cells with both lymphoid and myeloid potential. Blood 91:4145–4151PubMed Hao QL, Smogorzewska EM, Barsky LW, Crooks GM (1998) In vitro identification of single CD34+ CD38− cells with both lymphoid and myeloid potential. Blood 91:4145–4151PubMed
77.
go back to reference Shah AJ, Smogorzewska EM, Hannum C, Crooks GM (1996) Flt3 ligand induces proliferation of quiescent human bone marrow CD34+ CD38− cells and maintains progenitor cells in vitro. Blood 87:3563–3570PubMed Shah AJ, Smogorzewska EM, Hannum C, Crooks GM (1996) Flt3 ligand induces proliferation of quiescent human bone marrow CD34+ CD38− cells and maintains progenitor cells in vitro. Blood 87:3563–3570PubMed
78.
go back to reference Hao QL, Zhu J, Price MA, Payne KJ, Barsky LW, Crooks GM (2001) Identification of a novel, human multilymphoid progenitor in cord blood. Blood 97:3683–3690CrossRefPubMed Hao QL, Zhu J, Price MA, Payne KJ, Barsky LW, Crooks GM (2001) Identification of a novel, human multilymphoid progenitor in cord blood. Blood 97:3683–3690CrossRefPubMed
79.
go back to reference Wang X, Ge S, McNamara G, Hao QL, Crooks GM, Nolta JA (2003) Albumin expressing hepatocyte-like cells develop in the livers of immune-deficient mice transmitted with highly purified human hematopoietic stem cells. Blood 101(10):4201–4208CrossRefPubMed Wang X, Ge S, McNamara G, Hao QL, Crooks GM, Nolta JA (2003) Albumin expressing hepatocyte-like cells develop in the livers of immune-deficient mice transmitted with highly purified human hematopoietic stem cells. Blood 101(10):4201–4208CrossRefPubMed
80.
go back to reference Dao MA, Pepper KA, Nolta JA (1997) Long-term cytokine production from engineered primary human stromal cells influences human hematopoiesis in an in vivo xenograft model. Stem Cells 15:443–454CrossRefPubMed Dao MA, Pepper KA, Nolta JA (1997) Long-term cytokine production from engineered primary human stromal cells influences human hematopoiesis in an in vivo xenograft model. Stem Cells 15:443–454CrossRefPubMed
81.
go back to reference Nolta JA, Hanley MB, Kohn DB (1994) Sustained human hematopoiesis in immunodeficient mice by cotransplantation of marrow stroma expressing human interleukin-3: analysis of gene transduction of long-lived progenitors. Blood 83:3041–3051PubMed Nolta JA, Hanley MB, Kohn DB (1994) Sustained human hematopoiesis in immunodeficient mice by cotransplantation of marrow stroma expressing human interleukin-3: analysis of gene transduction of long-lived progenitors. Blood 83:3041–3051PubMed
82.
go back to reference Tsark E, Dao M, Wang X, Weinberg K, Nolta J (2001) IL-7 enhances the responsiveness of human T cells that develop in the bone marrow of athymic mice. J Immunol 166:170–181PubMed Tsark E, Dao M, Wang X, Weinberg K, Nolta J (2001) IL-7 enhances the responsiveness of human T cells that develop in the bone marrow of athymic mice. J Immunol 166:170–181PubMed
83.
go back to reference Hofling AA, Vogler C, Creer MH, Sands MS (2003) Engraftment of human CD34+ cells leads to widespread distribution of donor-derived cells and correction of tissue pathology in a novel murine xenotransplantation model of lysosomal storage disease. Blood 101:2054–2063CrossRefPubMed Hofling AA, Vogler C, Creer MH, Sands MS (2003) Engraftment of human CD34+ cells leads to widespread distribution of donor-derived cells and correction of tissue pathology in a novel murine xenotransplantation model of lysosomal storage disease. Blood 101:2054–2063CrossRefPubMed
84.
go back to reference Hess DA, Craft TP, Wirthlin L, Hohm S, Zhou P, Eades WC, Creer MH, Sands MS, Nolta JA (2008) Widespread nonhematopoietic tissue distribution by transplanted human progenitor cells with high aldehyde dehydrogenase activity. Stem Cells 26:611–620CrossRefPubMed Hess DA, Craft TP, Wirthlin L, Hohm S, Zhou P, Eades WC, Creer MH, Sands MS, Nolta JA (2008) Widespread nonhematopoietic tissue distribution by transplanted human progenitor cells with high aldehyde dehydrogenase activity. Stem Cells 26:611–620CrossRefPubMed
85.
go back to reference Camargo FD, Green R, Capetenaki Y, Jackson KA, Goodell MA (2003) Single hematopoietic stem cells generate skeletal muscle through myeloid intermediates. Nat Med 9:1520–1527CrossRefPubMed Camargo FD, Green R, Capetenaki Y, Jackson KA, Goodell MA (2003) Single hematopoietic stem cells generate skeletal muscle through myeloid intermediates. Nat Med 9:1520–1527CrossRefPubMed
86.
go back to reference Zhou PRL, Hohm S, Tran H, Hess D, Nolta J (2009) Liver engraftment by transplanted human cord blood progenitors and human embryonic stem cells in a novel model, the NOD/SCID/MPSVII mouse. Hepatology (in press) Zhou PRL, Hohm S, Tran H, Hess D, Nolta J (2009) Liver engraftment by transplanted human cord blood progenitors and human embryonic stem cells in a novel model, the NOD/SCID/MPSVII mouse. Hepatology (in press)
87.
go back to reference Jang YY, Collector MI, Baylin SB, Diehl AM, Sharkis SJ (2004) Hematopoietic stem cells convert into liver cells within days without fusion. Nat Cell Biol 6:532–539CrossRefPubMed Jang YY, Collector MI, Baylin SB, Diehl AM, Sharkis SJ (2004) Hematopoietic stem cells convert into liver cells within days without fusion. Nat Cell Biol 6:532–539CrossRefPubMed
88.
go back to reference Muraca M, Ferraresso C, Vilei MT, Granato A, Quarta M, Cozzi E, Rugge M, Pauwelyn KA, Caruso M, Avital I, Inderbitzin D, Demetriou AA, Forbes SJ, Realdi G (2007) Liver repopulation with bone marrow derived cells improves the metabolic disorder in the Gunn rat. Gut 56:1725–1735CrossRefPubMed Muraca M, Ferraresso C, Vilei MT, Granato A, Quarta M, Cozzi E, Rugge M, Pauwelyn KA, Caruso M, Avital I, Inderbitzin D, Demetriou AA, Forbes SJ, Realdi G (2007) Liver repopulation with bone marrow derived cells improves the metabolic disorder in the Gunn rat. Gut 56:1725–1735CrossRefPubMed
89.
go back to reference Camargo FD, Finegold M, Goodell MA (2004) Hematopoietic myelomonocytic cells are the major source of hepatocyte fusion partners. J Clin Invest 113:1266–1270PubMed Camargo FD, Finegold M, Goodell MA (2004) Hematopoietic myelomonocytic cells are the major source of hepatocyte fusion partners. J Clin Invest 113:1266–1270PubMed
90.
go back to reference Sharma AD, Cantz T, Richter R, Eckert K, Henschler R, Wilkens L, Jochheim-Richter A, Arseniev L, Ott M (2005) Human cord blood stem cells generate human cytokeratin 18-negative hepatocyte-like cells in injured mouse liver. Am J Pathol 167:555–564PubMed Sharma AD, Cantz T, Richter R, Eckert K, Henschler R, Wilkens L, Jochheim-Richter A, Arseniev L, Ott M (2005) Human cord blood stem cells generate human cytokeratin 18-negative hepatocyte-like cells in injured mouse liver. Am J Pathol 167:555–564PubMed
91.
go back to reference Fujino H, Hiramatsu H, Tsuchiya A, Niwa A, Noma H, Shiota M, Umeda K, Yoshimoto M, Ito M, Heike T, Nakahata T (2007) Human cord blood CD34+ cells develop into hepatocytes in the livers of NOD/SCID/gamma(c) null mice through cell fusion. Faseb J 21:3499–3510CrossRefPubMed Fujino H, Hiramatsu H, Tsuchiya A, Niwa A, Noma H, Shiota M, Umeda K, Yoshimoto M, Ito M, Heike T, Nakahata T (2007) Human cord blood CD34+ cells develop into hepatocytes in the livers of NOD/SCID/gamma(c) null mice through cell fusion. Faseb J 21:3499–3510CrossRefPubMed
92.
go back to reference Selzner N, Selzner M, Odermatt B, Tian Y, Van Rooijen N, Clavien PA (2003) ICAM-1 triggers liver regeneration through leukocyte recruitment and Kupffer cell-dependent release of TNF-alpha/IL-6 in mice. Gastroenterology 124:692–700CrossRefPubMed Selzner N, Selzner M, Odermatt B, Tian Y, Van Rooijen N, Clavien PA (2003) ICAM-1 triggers liver regeneration through leukocyte recruitment and Kupffer cell-dependent release of TNF-alpha/IL-6 in mice. Gastroenterology 124:692–700CrossRefPubMed
94.
go back to reference Sakaida I, Terai S, Yamamoto N, Aoyama K, Ishikawa T, Nishina H, Okita K (2004) Transplantation of bone marrow cells reduces CCl4-induced liver fibrosis in mice. Hepatology 40:1304–1311CrossRefPubMed Sakaida I, Terai S, Yamamoto N, Aoyama K, Ishikawa T, Nishina H, Okita K (2004) Transplantation of bone marrow cells reduces CCl4-induced liver fibrosis in mice. Hepatology 40:1304–1311CrossRefPubMed
Metadata
Title
Contribution of human hematopoietic stem cells to liver repair
Authors
Ping Zhou
Louisa Wirthlin
Jeannine McGee
Geralyn Annett
Jan Nolta
Publication date
01-09-2009
Publisher
Springer-Verlag
Published in
Seminars in Immunopathology / Issue 3/2009
Print ISSN: 1863-2297
Electronic ISSN: 1863-2300
DOI
https://doi.org/10.1007/s00281-009-0166-3

Other articles of this Issue 3/2009

Seminars in Immunopathology 3/2009 Go to the issue
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discuss last year's major advances in heart failure and cardiomyopathies.