Skip to main content
Top
Published in: Aesthetic Plastic Surgery 1/2020

01-02-2020 | Diazoxide | Original Article

Deferoxamine Protects Stromal/Stem Cells of “Lull pgm System”-Processed Lipoaspirates Against Damages Induced by Mitochondrial Respiration Inhibition

Authors: Paolo G. Morselli, Gioia Sorbi, Carlotta Feliziani, Claudio Muscari

Published in: Aesthetic Plastic Surgery | Issue 1/2020

Login to get access

Abstract

Background

The ischemic environment of the receiving area compromises the outcome of autologous fat grafts. The aim of this study was to isolate and expand the stromal vascular fraction from patient lipoaspirates and investigate the gain in cell viability exerted by some protective agents against the blockage of mitochondrial respiration.

Methods

The aspirates were (1) washed, using the “Lull pgm system,” (2) centrifuged and (3) decanted. The corresponding stromal vascular fractions were isolated, and after cell adherence selection, the stromal/stem cell subpopulations were exposed to Antimycin A for 1 h. Then, the protection induced by cell pretreatment with deferoxamine, diazoxide and IGF-1 was evaluated.

Results

The residual cell viability of the “Lull pgm system”-washed samples was greater than that of the centrifuged samples (p < 0.05), and this advantage was maintained during the following 12 days of culture. The administration of 400 μM deferoxamine before Antimycin A treatment increased the number of viable cells from 56.5 to 80.8% (p < 0.05). On the contrary, the pretreatment with 250 μM diazoxide or 0.1 μg/ml IGF-1 did not exert any significant pro-survival action. Echinomycin abolished the positive effect of deferoxamine, suggesting that its protection involved HIF-1α.

Conclusions

Adipose-derived stromal–stem cells survive the inhibition of mitochondrial respiration better if the lipoaspirate is washed using the “Lull pgm system” rather than centrifuged. Moreover, a significant contribution to cell survival can be obtained by preconditioning stromal–stem cells with deferoxamine. In a clinical perspective, this drug could be safely administered before surgery to patients undergoing autologous fat transfer.

No Level Assigned

This journal requires that authors assign a level of evidence to each submission to which Evidence-Based Medicine rankings are applicable. This excludes Review Articles, Book Reviews, and manuscripts that concern Basic Science, Animal Studies, Cadaver Studies, and Experimental Studies. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.​springer.​com/​00266.
Literature
2.
go back to reference Housman TS, Lawrence N, Mellen BG, George MN, Filippo JS, Cerveny KA, DeMarco M, Feldman SR, Fleischer AB (2002) The safety of liposuction: results of a national survey. Dermatol Surg 28:971–978PubMed Housman TS, Lawrence N, Mellen BG, George MN, Filippo JS, Cerveny KA, DeMarco M, Feldman SR, Fleischer AB (2002) The safety of liposuction: results of a national survey. Dermatol Surg 28:971–978PubMed
4.
go back to reference Strioga M, Viswanathan S, Darinskas A, Slaby O, Michalek J (2012) Same or not the same? Comparison of adipose tissue-derived versus bone marrow-derived mesenchymal stem and stromal cells. Stem Cells Dev 21:2724–2752CrossRef Strioga M, Viswanathan S, Darinskas A, Slaby O, Michalek J (2012) Same or not the same? Comparison of adipose tissue-derived versus bone marrow-derived mesenchymal stem and stromal cells. Stem Cells Dev 21:2724–2752CrossRef
5.
go back to reference Rinker BD, Vyas KS (2016) Do stem cells have an effect when we fat graft? Ann Plast Surg 76(Suppl 4):S359–S363CrossRef Rinker BD, Vyas KS (2016) Do stem cells have an effect when we fat graft? Ann Plast Surg 76(Suppl 4):S359–S363CrossRef
6.
go back to reference Shim YH, Zhang RH (2017) Literature review to optimize the autologous fat transplantation procedure and recent technologies to improve graft viability and overall outcome: a systematic and retrospective analytic approach. Aesthetic Plast Surg 41:815–883CrossRef Shim YH, Zhang RH (2017) Literature review to optimize the autologous fat transplantation procedure and recent technologies to improve graft viability and overall outcome: a systematic and retrospective analytic approach. Aesthetic Plast Surg 41:815–883CrossRef
7.
go back to reference Coleman SR (1995) Long-term survival of fat transplants: controlled demonstrations. Aesthetic Plast Surg 19:421–425CrossRef Coleman SR (1995) Long-term survival of fat transplants: controlled demonstrations. Aesthetic Plast Surg 19:421–425CrossRef
8.
go back to reference Condé-Green A, Baptista LS, de Amorin NF, de Oliveira ED, da Silva KR, Pedrosa Cda S, Borojevic R, Pitanguy I (2010) Effects of centrifugation on cell composition and viability of aspirated adipose tissue processed for transplantation. Aesthet Surg J 30:249–255CrossRef Condé-Green A, Baptista LS, de Amorin NF, de Oliveira ED, da Silva KR, Pedrosa Cda S, Borojevic R, Pitanguy I (2010) Effects of centrifugation on cell composition and viability of aspirated adipose tissue processed for transplantation. Aesthet Surg J 30:249–255CrossRef
9.
go back to reference Mecott GA, Gonzalez IZ, Montes de Oca R, Garza-Morales R, Gonzalez-Cantu I, Castro-Govea Y, Saucedo-Cárdenas O, García-Pérez MM (2019) Effect of decantation time on viability and apoptosis in adipocytes after liposuction. Aesthetic Plast Surg 43:228–232CrossRef Mecott GA, Gonzalez IZ, Montes de Oca R, Garza-Morales R, Gonzalez-Cantu I, Castro-Govea Y, Saucedo-Cárdenas O, García-Pérez MM (2019) Effect of decantation time on viability and apoptosis in adipocytes after liposuction. Aesthetic Plast Surg 43:228–232CrossRef
12.
go back to reference Morselli PG, Giorgini FA, Pazzini C, Muscari C (2017) Lull pgm system: a suitable technique to improve the regenerative potential of autologous fat grafting. Wound Repair Regen 25:722–729CrossRef Morselli PG, Giorgini FA, Pazzini C, Muscari C (2017) Lull pgm system: a suitable technique to improve the regenerative potential of autologous fat grafting. Wound Repair Regen 25:722–729CrossRef
13.
go back to reference Eto H, Kato H, Suga H, Aoi N, Doi K, Kuno S, Yoshimura K (2012) The fate of adipocytes after nonvascularized fat grafting: evidence of early death and replacement of adipocytes. Plast Reconstr Surg 129:1081–1092CrossRef Eto H, Kato H, Suga H, Aoi N, Doi K, Kuno S, Yoshimura K (2012) The fate of adipocytes after nonvascularized fat grafting: evidence of early death and replacement of adipocytes. Plast Reconstr Surg 129:1081–1092CrossRef
14.
go back to reference Zuk PA, Zhu M, Ashjian P, De Ugarte DA, Huang JI, Mizuno H, Alfonso ZC, Fraser JK, Benhaim P, Hedrick MH (2002) Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell 13:4279–4295CrossRef Zuk PA, Zhu M, Ashjian P, De Ugarte DA, Huang JI, Mizuno H, Alfonso ZC, Fraser JK, Benhaim P, Hedrick MH (2002) Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell 13:4279–4295CrossRef
15.
go back to reference Muscari C, Bonafè F, Fiumana E, Oranges CM, Pinto V, Caldarera CM, Guarnieri C, Morselli PG (2013) Comparison between stem cells harvested from wet and dry lipoaspirates. Connect Tissue Res 54:34–40CrossRef Muscari C, Bonafè F, Fiumana E, Oranges CM, Pinto V, Caldarera CM, Guarnieri C, Morselli PG (2013) Comparison between stem cells harvested from wet and dry lipoaspirates. Connect Tissue Res 54:34–40CrossRef
16.
go back to reference Kim YK, Lee SK, Ha MS, Woo JS, Jung JS (2002) Differential role of reactive oxygen species in chemical hypoxia-induced cell injury in opossum kidney cells and rabbit renal cortical slices. Exp Nephrol 10:275–284CrossRef Kim YK, Lee SK, Ha MS, Woo JS, Jung JS (2002) Differential role of reactive oxygen species in chemical hypoxia-induced cell injury in opossum kidney cells and rabbit renal cortical slices. Exp Nephrol 10:275–284CrossRef
18.
go back to reference Halliwell B (2014) Cell culture, oxidative stress, and antioxidants: avoiding pitfalls. Biomed J 37:99–105PubMed Halliwell B (2014) Cell culture, oxidative stress, and antioxidants: avoiding pitfalls. Biomed J 37:99–105PubMed
19.
go back to reference Maumus M, Peyrafitte JA, D’Angelo R, Fournier-Wirth C, Bouloumié A, Casteilla L, Sengenès C, Bourin P (2011) Native human adipose stromal cells: localization, morphology and phenotype. Int J Obes (Lond) 35:1141–1153CrossRef Maumus M, Peyrafitte JA, D’Angelo R, Fournier-Wirth C, Bouloumié A, Casteilla L, Sengenès C, Bourin P (2011) Native human adipose stromal cells: localization, morphology and phenotype. Int J Obes (Lond) 35:1141–1153CrossRef
20.
go back to reference Savi M, Bocchi L, Fiumana E, Karam JP, Frati C, Bonafé F, Cavalli S, Morselli PG, Guarnieri C, Caldarera CM, Muscari C, Montero-Menei CN, Stilli D, Quaini F, Musso E (2015) Enhanced engraftment and repairing ability of human adipose-derived stem cells, conveyed by pharmacologically active microcarriers continuously releasing HGF and IGF-1, in healing myocardial infarction in rats. J Biomed Mater Res A 103:3012–3025CrossRef Savi M, Bocchi L, Fiumana E, Karam JP, Frati C, Bonafé F, Cavalli S, Morselli PG, Guarnieri C, Caldarera CM, Muscari C, Montero-Menei CN, Stilli D, Quaini F, Musso E (2015) Enhanced engraftment and repairing ability of human adipose-derived stem cells, conveyed by pharmacologically active microcarriers continuously releasing HGF and IGF-1, in healing myocardial infarction in rats. J Biomed Mater Res A 103:3012–3025CrossRef
21.
go back to reference Matsuno-Yagi A, Hatefi Y (2001) Ubiquinol:cytochrome c oxidoreductase (complex III). Effect of inhibitors on cytochrome b reduction in submitochondrial particles and the role of ubiquinone in complex III. J Biol Chem 276:19006–19011CrossRef Matsuno-Yagi A, Hatefi Y (2001) Ubiquinol:cytochrome c oxidoreductase (complex III). Effect of inhibitors on cytochrome b reduction in submitochondrial particles and the role of ubiquinone in complex III. J Biol Chem 276:19006–19011CrossRef
22.
go back to reference Piskernik C, Haindl S, Behling T, Gerald Z, Kehrer I, Redl H, Kozlov AV (2008) Antimycin A and lipopolysaccharide cause the leakage of superoxide radicals from rat liver mitochondria. Biochim Biophys Acta 1782:280–285CrossRef Piskernik C, Haindl S, Behling T, Gerald Z, Kehrer I, Redl H, Kozlov AV (2008) Antimycin A and lipopolysaccharide cause the leakage of superoxide radicals from rat liver mitochondria. Biochim Biophys Acta 1782:280–285CrossRef
24.
go back to reference Tchanque-Fossuo CN, Dahle SE, Buchman SR, Isseroff RR (2017) Deferoxamine: potential novel topical therapeutic for chronic wounds. Br J Dermatol 176:1056–1059CrossRef Tchanque-Fossuo CN, Dahle SE, Buchman SR, Isseroff RR (2017) Deferoxamine: potential novel topical therapeutic for chronic wounds. Br J Dermatol 176:1056–1059CrossRef
25.
go back to reference Choudhry H, Harris AL (2018) Advances in hypoxia-inducible factor biology. Cell Metab 27:281–298CrossRef Choudhry H, Harris AL (2018) Advances in hypoxia-inducible factor biology. Cell Metab 27:281–298CrossRef
26.
go back to reference Gutteridge JM, Richmond R, Halliwell B (1979) Inhibition of the iron-catalysed formation of hydroxyl radicals from superoxide and of lipid peroxidation by desferrioxamine. Biochem J 184:469–472PubMedPubMedCentral Gutteridge JM, Richmond R, Halliwell B (1979) Inhibition of the iron-catalysed formation of hydroxyl radicals from superoxide and of lipid peroxidation by desferrioxamine. Biochem J 184:469–472PubMedPubMedCentral
27.
go back to reference Hernansanz-Agustín P, Izquierdo-Álvarez A, Sánchez-Gómez FJ, Ramos E, Villa-Piña T, Lamas S, Bogdanova A, Martínez-Ruiz A (2014) Acute hypoxia produces a superoxide burst in cells. Free Radic Biol Med 71:146–156CrossRef Hernansanz-Agustín P, Izquierdo-Álvarez A, Sánchez-Gómez FJ, Ramos E, Villa-Piña T, Lamas S, Bogdanova A, Martínez-Ruiz A (2014) Acute hypoxia produces a superoxide burst in cells. Free Radic Biol Med 71:146–156CrossRef
28.
go back to reference Kong D, Park EJ, Stephen AG, Calvani M, Cardellina JH, Monks A, Fisher RJ, Shoemaker RH, Melillo G (2005) Echinomycin, a small-molecule inhibitor of hypoxia-inducible factor-1 DNA-binding activity. Cancer Res 65:9047–9055CrossRef Kong D, Park EJ, Stephen AG, Calvani M, Cardellina JH, Monks A, Fisher RJ, Shoemaker RH, Melillo G (2005) Echinomycin, a small-molecule inhibitor of hypoxia-inducible factor-1 DNA-binding activity. Cancer Res 65:9047–9055CrossRef
29.
go back to reference Tsuzuki T, Okada H, Cho H, Tsuji S, Nishigaki A, Yasuda K, Kanzaki H (2012) Hypoxic stress simultaneously stimulates vascular endothelial growth factor via hypoxia-inducible factor-1α and inhibits stromal cell-derived factor-1 in human endometrial stromal cells. Hum Reprod 27:523–530CrossRef Tsuzuki T, Okada H, Cho H, Tsuji S, Nishigaki A, Yasuda K, Kanzaki H (2012) Hypoxic stress simultaneously stimulates vascular endothelial growth factor via hypoxia-inducible factor-1α and inhibits stromal cell-derived factor-1 in human endometrial stromal cells. Hum Reprod 27:523–530CrossRef
30.
go back to reference Hou Z, Nie C, Si Z, Ma Y (2013) Deferoxamine enhances neovascularization and accelerates wound healing in diabetic rats via the accumulation of hypoxia-inducible factor-1α. Diabetes Res Clin Pract 101:62–71CrossRef Hou Z, Nie C, Si Z, Ma Y (2013) Deferoxamine enhances neovascularization and accelerates wound healing in diabetic rats via the accumulation of hypoxia-inducible factor-1α. Diabetes Res Clin Pract 101:62–71CrossRef
31.
go back to reference Temiz G, Sirinoglu H, Yesiloglu N, Filinte D, Kaçmaz C (2016) Effects of deferoxamine on fat graft survival. Facial Plast Surg 32:438–443CrossRef Temiz G, Sirinoglu H, Yesiloglu N, Filinte D, Kaçmaz C (2016) Effects of deferoxamine on fat graft survival. Facial Plast Surg 32:438–443CrossRef
32.
go back to reference Flacco J, Chung N, Blackshear CP, Irizarry D, Momeni A, Lee GK, Nguyen D, Gurtner GC, Longaker MT, Wan DC (2018) Deferoxamine preconditioning of irradiated tissue improves perfusion and fat graft retention. Plast Reconstr Surg 141:655–665CrossRef Flacco J, Chung N, Blackshear CP, Irizarry D, Momeni A, Lee GK, Nguyen D, Gurtner GC, Longaker MT, Wan DC (2018) Deferoxamine preconditioning of irradiated tissue improves perfusion and fat graft retention. Plast Reconstr Surg 141:655–665CrossRef
33.
go back to reference Okyay MF, Kömürcü H, Bağhaki S, Demiröz A, Aydın Ö, Arslan H (2019) Effects of insulin, metoprolol and deferoxamine on fat graft survival. Aesthetic Plast Surg 43:845–852CrossRef Okyay MF, Kömürcü H, Bağhaki S, Demiröz A, Aydın Ö, Arslan H (2019) Effects of insulin, metoprolol and deferoxamine on fat graft survival. Aesthetic Plast Surg 43:845–852CrossRef
35.
go back to reference Coetzee WA (2013) Multiplicity of effectors of the cardioprotective agent, diazoxide. Pharmacol Ther 140:167–175CrossRef Coetzee WA (2013) Multiplicity of effectors of the cardioprotective agent, diazoxide. Pharmacol Ther 140:167–175CrossRef
36.
go back to reference Prendes MG, Hermann R, Torresin ME, Vélez D, Savino EA, Varela A (2014) Role of mitochondrial permeability transition pore and mitochondrial ATP-sensitive potassium channels in the protective effects of ischemic preconditioning in isolated hearts from fed and fasted rats. J Physiol Biochem 70:791–800CrossRef Prendes MG, Hermann R, Torresin ME, Vélez D, Savino EA, Varela A (2014) Role of mitochondrial permeability transition pore and mitochondrial ATP-sensitive potassium channels in the protective effects of ischemic preconditioning in isolated hearts from fed and fasted rats. J Physiol Biochem 70:791–800CrossRef
37.
go back to reference Dröse S, Hanley PJ, Brandt U (2009) Ambivalent effects of diazoxide on mitochondrial ROS production at respiratory chain complexes I and III. Biochim Biophys Acta 1790:558–565CrossRef Dröse S, Hanley PJ, Brandt U (2009) Ambivalent effects of diazoxide on mitochondrial ROS production at respiratory chain complexes I and III. Biochim Biophys Acta 1790:558–565CrossRef
38.
go back to reference Yang F, Chen WL, Zheng MZ, Yu GW, Xu HJ, Shen YL, Chen YY (2011) Heat shock protein 90 mediates anti-apoptotic effect of diazoxide by preventing the cleavage of Bid in hypothermic preservation rat hearts. J Heart Lung Transplant 30:928–934PubMed Yang F, Chen WL, Zheng MZ, Yu GW, Xu HJ, Shen YL, Chen YY (2011) Heat shock protein 90 mediates anti-apoptotic effect of diazoxide by preventing the cleavage of Bid in hypothermic preservation rat hearts. J Heart Lung Transplant 30:928–934PubMed
39.
go back to reference Suleiman MS, Singh RJ, Stewart CE (2007) Apoptosis and the cardiac action of insulin-like growth factor I. Pharmacol Ther 114:278–294CrossRef Suleiman MS, Singh RJ, Stewart CE (2007) Apoptosis and the cardiac action of insulin-like growth factor I. Pharmacol Ther 114:278–294CrossRef
40.
go back to reference Laviola L, Natalicchio A, Giorgino F (2007) The IGF-I signaling pathway. Curr Pharm Des 13:663–669CrossRef Laviola L, Natalicchio A, Giorgino F (2007) The IGF-I signaling pathway. Curr Pharm Des 13:663–669CrossRef
41.
go back to reference Kontoghiorghes GJ, Pattichi K, Hadjigavriel M, Kolnagou A (2000) Transfusional iron overload and chelation therapy with deferoxamine and deferiprone (L1). Transfus Sci 23:211–223CrossRef Kontoghiorghes GJ, Pattichi K, Hadjigavriel M, Kolnagou A (2000) Transfusional iron overload and chelation therapy with deferoxamine and deferiprone (L1). Transfus Sci 23:211–223CrossRef
Metadata
Title
Deferoxamine Protects Stromal/Stem Cells of “Lull pgm System”-Processed Lipoaspirates Against Damages Induced by Mitochondrial Respiration Inhibition
Authors
Paolo G. Morselli
Gioia Sorbi
Carlotta Feliziani
Claudio Muscari
Publication date
01-02-2020
Publisher
Springer US
Keyword
Diazoxide
Published in
Aesthetic Plastic Surgery / Issue 1/2020
Print ISSN: 0364-216X
Electronic ISSN: 1432-5241
DOI
https://doi.org/10.1007/s00266-019-01544-w

Other articles of this Issue 1/2020

Aesthetic Plastic Surgery 1/2020 Go to the issue