Skip to main content
Top
Published in: Abdominal Radiology 12/2018

01-12-2018 | Pictorial essay

3D CT of renal pathology: initial experience with cinematic rendering

Authors: Steven P. Rowe, Alexa R. Meyer, Michael A. Gorin, Pamela T. Johnson, Elliot K. Fishman

Published in: Abdominal Radiology | Issue 12/2018

Login to get access

Abstract

3D computed tomography (CT) visualizations of volumetric data have become an important aspect of diagnostic imaging. The utility of 3D CT has been well described for the imaging of a number of renal pathologies. Recently, a new 3D visualization technique known as cinematic rendering (CR) has become available and provides photorealistic images derived from standard CT acquisitions by use of a complex global lighting model. Herein, we describe a number of normal variant and pathologic conditions of the kidney visualized with CR. We provide comparisons of findings with CR to traditional methods of 3D imaging and comment on the potential applications of this new method of 3D CT rendering.
Literature
1.
go back to reference Fishman EK, Bluemke DA, Soyer P (2016) Three-dimensional imaging: past, present and future. Diagn Interv Imaging 97(3):283–285CrossRef Fishman EK, Bluemke DA, Soyer P (2016) Three-dimensional imaging: past, present and future. Diagn Interv Imaging 97(3):283–285CrossRef
2.
go back to reference Xu Y, Shao P, Zhu X, et al. (2013) Three-dimensional renal CT angiography for guiding segmental renal artery clamping during laparoscopic partial nephrectomy. Clin Radiol 68(11):e609–e616CrossRef Xu Y, Shao P, Zhu X, et al. (2013) Three-dimensional renal CT angiography for guiding segmental renal artery clamping during laparoscopic partial nephrectomy. Clin Radiol 68(11):e609–e616CrossRef
3.
go back to reference Coll DM, Herts BR, Davros WJ, et al. (2000) Preoperative use of 3D volume rendering to demonstrate renal tumors and renal anatomy. Radiographics 20(2):431–438CrossRef Coll DM, Herts BR, Davros WJ, et al. (2000) Preoperative use of 3D volume rendering to demonstrate renal tumors and renal anatomy. Radiographics 20(2):431–438CrossRef
4.
go back to reference Dappa E, Higashigaito K, Fornaro J, et al. (2016) Cinematic rendering—an alternative to volume rendering for 3D computed tomography imaging. Insights Imaging 7(6):849–856CrossRef Dappa E, Higashigaito K, Fornaro J, et al. (2016) Cinematic rendering—an alternative to volume rendering for 3D computed tomography imaging. Insights Imaging 7(6):849–856CrossRef
5.
go back to reference Eid M, De Cecco CN, Nance JW Jr, et al. (2017) Cinematic rendering in CT: a novel, lifelike 3D visualization technique. AJR Am J Roentgenol 209(2):370–379CrossRef Eid M, De Cecco CN, Nance JW Jr, et al. (2017) Cinematic rendering in CT: a novel, lifelike 3D visualization technique. AJR Am J Roentgenol 209(2):370–379CrossRef
6.
go back to reference Johnson PT, Schneider R, Lugo-Fagundo C, et al. (2017) MDCT angiography with 3D rendering: a novel cinematic rendering algorithm for enhanced anatomic detail. AJR Am J Roentgenol 209(2):309–312CrossRef Johnson PT, Schneider R, Lugo-Fagundo C, et al. (2017) MDCT angiography with 3D rendering: a novel cinematic rendering algorithm for enhanced anatomic detail. AJR Am J Roentgenol 209(2):309–312CrossRef
7.
go back to reference Schiappacasse G, Aguirre J, Soffia P, et al. (2015) CT findings of the main pathological conditions associated with horseshoe kidneys. Br J Radiol 88(1045):20140456CrossRef Schiappacasse G, Aguirre J, Soffia P, et al. (2015) CT findings of the main pathological conditions associated with horseshoe kidneys. Br J Radiol 88(1045):20140456CrossRef
8.
go back to reference Srinivas MR, Adarsh KM, Jeeson R, et al. (2016) Congenital anatomic variants of the kidney and ureter: a pictorial essay. Jpn J Radiol 34(3):181–193CrossRef Srinivas MR, Adarsh KM, Jeeson R, et al. (2016) Congenital anatomic variants of the kidney and ureter: a pictorial essay. Jpn J Radiol 34(3):181–193CrossRef
9.
go back to reference Stunell H, Buckley O, Feeney J, et al. (2007) Imaging of acute pyelonephritis in the adult. Eur Radiol. 17(7):1820–1828CrossRef Stunell H, Buckley O, Feeney J, et al. (2007) Imaging of acute pyelonephritis in the adult. Eur Radiol. 17(7):1820–1828CrossRef
10.
go back to reference Craig WD, Wagner BJ, Travis MD (2008) Pyelonephritis—radiologic-pathologic review. Radiographics 28(1):255–277CrossRef Craig WD, Wagner BJ, Travis MD (2008) Pyelonephritis—radiologic-pathologic review. Radiographics 28(1):255–277CrossRef
11.
go back to reference Fraser IR, Birch D, Fairley KF, et al. (1995) A prospective study of cortical scarring in acute febrile pyelonephritis in adults: clinical and bacteriological characteristics. Clin Nephrol 43(3):159–164PubMed Fraser IR, Birch D, Fairley KF, et al. (1995) A prospective study of cortical scarring in acute febrile pyelonephritis in adults: clinical and bacteriological characteristics. Clin Nephrol 43(3):159–164PubMed
12.
go back to reference Barry BP, Hall N, Cornford E, et al. (1998) Improved ultrasound detection of renal scarring in children following urinary tract infection. Clin Radiol 53(10):747–751CrossRef Barry BP, Hall N, Cornford E, et al. (1998) Improved ultrasound detection of renal scarring in children following urinary tract infection. Clin Radiol 53(10):747–751CrossRef
13.
go back to reference Bourm KS, Menias CO, Ali K, Alhalabi K, Elsayes KM (2017) Spectrum of xanthogranulomatous processes in the abdomen and pelvis: a pictorial review of infectious, inflammatory, and proliferative responses. AJR Am J Roentgenol 208(3):475–484CrossRef Bourm KS, Menias CO, Ali K, Alhalabi K, Elsayes KM (2017) Spectrum of xanthogranulomatous processes in the abdomen and pelvis: a pictorial review of infectious, inflammatory, and proliferative responses. AJR Am J Roentgenol 208(3):475–484CrossRef
14.
go back to reference Hopf HL, Bahler CD, Sundaram CP (2016) Long-term outcomes of robot-assisted laparoscopic pyeloplasty for ureteropelvic junction obstruction. Urology 90:106–110CrossRef Hopf HL, Bahler CD, Sundaram CP (2016) Long-term outcomes of robot-assisted laparoscopic pyeloplasty for ureteropelvic junction obstruction. Urology 90:106–110CrossRef
15.
go back to reference Farrés MT, Pedron P, Gattegno B, et al. (1998) Helical CT and 3D reconstruction of ureteropelvic junction obstruction: accuracy in detection of crossing vessels. J Comput Assist Tomogr 22(2):300–303CrossRef Farrés MT, Pedron P, Gattegno B, et al. (1998) Helical CT and 3D reconstruction of ureteropelvic junction obstruction: accuracy in detection of crossing vessels. J Comput Assist Tomogr 22(2):300–303CrossRef
16.
go back to reference Hubert J, Blum A, Cormier L, et al. (1997) Three-dimensional CT-scan reconstruction of renal calculi. A new tool for mapping-out staghorn calculi and follow-up of radiolucent stones. Eur Urol 31(3):297–301CrossRef Hubert J, Blum A, Cormier L, et al. (1997) Three-dimensional CT-scan reconstruction of renal calculi. A new tool for mapping-out staghorn calculi and follow-up of radiolucent stones. Eur Urol 31(3):297–301CrossRef
17.
go back to reference Lidén M, Thunberg P, Broxvall M, et al. (2015) Two- and three-dimensional CT measurements of urinary calculi length and width: a comparative study. Acta Radiol 56(4):487–492CrossRef Lidén M, Thunberg P, Broxvall M, et al. (2015) Two- and three-dimensional CT measurements of urinary calculi length and width: a comparative study. Acta Radiol 56(4):487–492CrossRef
18.
go back to reference Brehmer M, Beckman MO, Magnusson A (2014) Three-dimensional computed tomography planning improves percutaneous stone surgery. Scand J Urol 48(3):316–323CrossRef Brehmer M, Beckman MO, Magnusson A (2014) Three-dimensional computed tomography planning improves percutaneous stone surgery. Scand J Urol 48(3):316–323CrossRef
19.
go back to reference Thiruchelvam N, Mostafid H, Ubhayakar G (2005) Planning percutaneous nephrolithotomy using multidetector computed tomography urography, multiplanar reconstruction and three-dimensional reformatting. BJU Int 95(9):1280–1284CrossRef Thiruchelvam N, Mostafid H, Ubhayakar G (2005) Planning percutaneous nephrolithotomy using multidetector computed tomography urography, multiplanar reconstruction and three-dimensional reformatting. BJU Int 95(9):1280–1284CrossRef
20.
go back to reference Moore CJ, Horton KM, Fishman EK (2003) 3D CT angiography of the kidney. Crit Rev Comput Tomogr 44(5):279–304CrossRef Moore CJ, Horton KM, Fishman EK (2003) 3D CT angiography of the kidney. Crit Rev Comput Tomogr 44(5):279–304CrossRef
21.
go back to reference Johnson PT, Horton KM, Fishman EK (2010) Noncontrast multidetector CT of the kidneys: utility of 2D MPR and 3D rendering to elucidate genitourinary pathology. Emerg Radiol 17(4):329–333CrossRef Johnson PT, Horton KM, Fishman EK (2010) Noncontrast multidetector CT of the kidneys: utility of 2D MPR and 3D rendering to elucidate genitourinary pathology. Emerg Radiol 17(4):329–333CrossRef
22.
go back to reference Lewis S, Kadian-Dodov D, Bansal A, et al. (2016) Multimodality imaging of fibromuscular dysplasia. Abdom Radiol (NY) 41(10):2048–2060CrossRef Lewis S, Kadian-Dodov D, Bansal A, et al. (2016) Multimodality imaging of fibromuscular dysplasia. Abdom Radiol (NY) 41(10):2048–2060CrossRef
23.
go back to reference Urban BA, Ratner LE, Fishman EK (2001) Three-dimensional volume-rendered CT angiography of the renal arteries and veins: normal anatomy, variants, and clinical applications. Radiographics 21(2):373–386CrossRef Urban BA, Ratner LE, Fishman EK (2001) Three-dimensional volume-rendered CT angiography of the renal arteries and veins: normal anatomy, variants, and clinical applications. Radiographics 21(2):373–386CrossRef
24.
go back to reference Siegel RL, Miller KD, Jemal A (2017) Cancer statistics, 2017. CA Cancer J Clin 67(1):7–30CrossRef Siegel RL, Miller KD, Jemal A (2017) Cancer statistics, 2017. CA Cancer J Clin 67(1):7–30CrossRef
25.
go back to reference Gorin MA, Rowe SP, Allaf ME (2015) Nuclear imaging of renal tumours: a step towards improved risk stratification. Nat Rev Urol 12(8):445–450CrossRef Gorin MA, Rowe SP, Allaf ME (2015) Nuclear imaging of renal tumours: a step towards improved risk stratification. Nat Rev Urol 12(8):445–450CrossRef
26.
go back to reference Rowe SP, Javadi MS, Allaf ME, Gorin MA (2017) Characterization of indeterminate renal masses with molecular imaging: how do we turn potential into reality? EJNMMI Res 7(1):34CrossRef Rowe SP, Javadi MS, Allaf ME, Gorin MA (2017) Characterization of indeterminate renal masses with molecular imaging: how do we turn potential into reality? EJNMMI Res 7(1):34CrossRef
27.
go back to reference Chernoff DM, Silverman SG, Kikinis R, et al. (1994) Three-dimensional imaging and display of tumors using spiral CT: a potential aid to partial nephrectomy. Urology 43(1):125–129CrossRef Chernoff DM, Silverman SG, Kikinis R, et al. (1994) Three-dimensional imaging and display of tumors using spiral CT: a potential aid to partial nephrectomy. Urology 43(1):125–129CrossRef
28.
go back to reference Smith PA, Marshall FF, Urban BA, et al. (1997) Three-dimensional CT stereoscopic visualization of renal masses: impact on diagnosis and management. AJR Am J Roentgenol 169(5):1331–1334CrossRef Smith PA, Marshall FF, Urban BA, et al. (1997) Three-dimensional CT stereoscopic visualization of renal masses: impact on diagnosis and management. AJR Am J Roentgenol 169(5):1331–1334CrossRef
29.
go back to reference Coll DM, Herts BR, Davros WJ, et al. (2000) Preoperative use of 3D volume rendering to demonstrate renal tumors and renal anatomy. Radiographics 20(2):431–438CrossRef Coll DM, Herts BR, Davros WJ, et al. (2000) Preoperative use of 3D volume rendering to demonstrate renal tumors and renal anatomy. Radiographics 20(2):431–438CrossRef
30.
go back to reference Sheth S, Scatarige JC, Horton KM, et al. (2001) Current concepts in the diagnosis and management of renal cell carcinoma: role of multidetector CT and three-dimensional CT. Radiographics 21 Spec No. S237–S254. Sheth S, Scatarige JC, Horton KM, et al. (2001) Current concepts in the diagnosis and management of renal cell carcinoma: role of multidetector CT and three-dimensional CT. Radiographics 21 Spec No. S237–S254.
31.
go back to reference Raman SP, Chen Y, Schroeder JL, et al. (2014) CT texture analysis of renal masses: pilot study using random forest classification for prediction of pathology. Acad Rad 21(12):1587–1596CrossRef Raman SP, Chen Y, Schroeder JL, et al. (2014) CT texture analysis of renal masses: pilot study using random forest classification for prediction of pathology. Acad Rad 21(12):1587–1596CrossRef
32.
go back to reference Raman SP, Horton KM, Fishman EK (2012) Transitional cell carcinoma of the upper urinary tract: optimizing image interpretation with 3D reconstructions. Abdom Imaging 37(6):1129–1140CrossRef Raman SP, Horton KM, Fishman EK (2012) Transitional cell carcinoma of the upper urinary tract: optimizing image interpretation with 3D reconstructions. Abdom Imaging 37(6):1129–1140CrossRef
33.
go back to reference Kawamoto S, Horton KM, Fishman EK (2008) Transitional cell neoplasm of the upper urinary tract: evaluation with MDCT. AJR Am J Roentgenol 191(2):416–422CrossRef Kawamoto S, Horton KM, Fishman EK (2008) Transitional cell neoplasm of the upper urinary tract: evaluation with MDCT. AJR Am J Roentgenol 191(2):416–422CrossRef
Metadata
Title
3D CT of renal pathology: initial experience with cinematic rendering
Authors
Steven P. Rowe
Alexa R. Meyer
Michael A. Gorin
Pamela T. Johnson
Elliot K. Fishman
Publication date
01-12-2018
Publisher
Springer US
Published in
Abdominal Radiology / Issue 12/2018
Print ISSN: 2366-004X
Electronic ISSN: 2366-0058
DOI
https://doi.org/10.1007/s00261-018-1644-7

Other articles of this Issue 12/2018

Abdominal Radiology 12/2018 Go to the issue

Classics in Abdominal Radiology

The “geographic” liver

Classics in Abdominal Radiology

The collar button ulcer sign