Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Nuclear imaging of renal tumours: a step towards improved risk stratification

Key Points

  • The indeterminate renal mass is a diverse clinical entity which includes both benign and malignant tumour types

  • Accurate knowledge of tumour histology is required for a risk-adapted approach to patient care; for example, benign or indolent renal tumours can be observed and more aggressive tumours treated surgically

  • Anatomical imaging techniques, including CT, MRI and ultrasonography, are unable to reliably distinguish between the various types of renal tumours

  • Renal mass biopsy is infrequently performed owing to a high nondiagnostic rate and risk of complications; a number of nuclear imaging tests have been explored as an alternative

  • One of the most promising of these tests is 124I-girentuximab PET/CT, which was shown in a large prospective study to accurately distinguish clear cell renal cell carcinoma from other tumour histologies

  • Additional work is needed to better define the relative strengths and limitations of the various nuclear imaging tests before they can be fully incorporated into clinical practice

Abstract

Patients presenting with a clinically localized renal mass should ideally be managed with a risk-adapted approach that incorporates data regarding the metastatic potential of a given tumour. Unfortunately, currently available anatomical imaging techniques are unable to reliably distinguish between the various types of renal tumours, which include both benign and malignant histologies. Nuclear imaging offers a potential noninvasive means to characterize clinically localized renal tumours. A number of nuclear imaging tests are currently under investigation for this purpose and might one day be incorporated into patient care.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3: Representative images of a pathologically proven oncocytoma and ccRCC acquired with standard cross-sectional imaging and 99mTc-sestamibi SPECT/CT.
Figure 4: Proposed algorithm incorporating nuclear imaging data for the management of patients presenting with an indeterminate cT1 renal mass.

Similar content being viewed by others

References

  1. Siegel, R., Ma, J., Zou, Z. & Jemal, A. Cancer statistics, 2014. CA Cancer J. Clin. 64, 9–29 (2014).

    Article  Google Scholar 

  2. Jemal, A. et al. Global cancer statistics. CA Cancer J. Clin. 61, 69–90 (2011).

    Google Scholar 

  3. Ljungberg, B. et al. The epidemiology of renal cell carcinoma. Eur. Urol. 60, 615–621 (2011).

    Article  Google Scholar 

  4. Chow, W. H., Devesa, S. S., Warren, J. L. & Fraumeni, J. F. Rising incidence of renal cell cancer in the United States. JAMA 281, 1628–1631 (1999).

    Article  CAS  Google Scholar 

  5. King, S. C., Pollack, L. A., Li, J., King, J. B. & Master, V. A. Continued increase in incidence of renal cell carcinoma, especially in young patients and high grade disease: United States 2001 to 2010. J. Urol. 191, 1665–1670 (2014).

    Article  Google Scholar 

  6. De, P. et al. Trends in incidence, mortality, and survival for kidney cancer in Canada, 1986–2007. Cancer Causes Control 25, 1271–1281 (2014).

    Article  Google Scholar 

  7. Frank, I. et al. Solid renal tumors: an analysis of pathological features related to tumor size. J. Urol. 170, 2217–2220 (2003).

    Article  Google Scholar 

  8. Srigley, J. R. et al. The International Society of Urological Pathology (ISUP) Vancouver Classification of Renal Neoplasia. Am. J. Surg. Pathol. 37, 1469–1489 (2013).

    Article  Google Scholar 

  9. Halverson, S. J. et al. Accuracy of determining small renal mass management with risk stratified biopsies: confirmation by final pathology. J. Urol. 189, 441–446 (2013).

    Article  Google Scholar 

  10. Campbell, S. C. et al. Guideline for management of the clinical T1 renal mass. J. Urol. 182, 1271–1279 (2009).

    Article  Google Scholar 

  11. Ljungberg, B. et al. EAU guidelines on renal cell carcinoma: the 2010 update. Eur. Urol. 58, 398–406 (2010).

    Article  Google Scholar 

  12. NCCN Clinical Practice Guidelines in Oncology, Kidney Cancer version 3.2015 [online], (2015).

  13. Rosenkrantz, A. B. et al. MRI features of renal oncocytoma and chromophobe renal cell carcinoma. AJR Am. J. Roentgenol. 195, W421–W427 (2010).

    Article  Google Scholar 

  14. Kang, S. K., Huang, W. C., Pandharipande, P. V. & Chandarana, H. Solid renal masses: what the numbers tell us. AJR Am. J. Roentgenol. 202, 1196–1206 (2014).

    Article  Google Scholar 

  15. Sevcenco, S. et al. Utility and limitations of 3Tesla diffusion-weighted magnetic resonance imaging for differentiation of renal tumors. Eur. J. Radiol. 83, 909–913 (2014).

    Article  CAS  Google Scholar 

  16. Volpe, A. et al. Rationale for percutaneous biopsy and histologic characterisation of renal tumours. Eur. Urol. 62, 491–504 (2012).

    Article  Google Scholar 

  17. Caoili, E. M. & Davenport, M. S. Role of percutaneous needle biopsy for renal masses. Semin. Intervent. Radiol. 31, 20–26 (2014).

    Article  Google Scholar 

  18. Ball, M. W. et al. Grade heterogeneity in small renal masses: potential implications for renal mass biopsy. J. Urol. 193, 36–40 (2015).

    Article  Google Scholar 

  19. Leppert, J. T. et al. Utilization of renal mass biopsy in patients with renal cell carcinoma. Urology 83, 774–779 (2014).

    Article  Google Scholar 

  20. Johnson, D. C. et al. preoperatively misclassified, surgically removed benign renal masses: a systematic review of surgical series and United States population level burden estimate. J. Urol. 193, 30–35 (2015).

    Article  Google Scholar 

  21. Rahmim, A. & Zaidi, H. PET versus SPECT: strengths, limitations and challenges. Nucl. Med. Commun. 29, 193–207 (2008).

    Article  Google Scholar 

  22. Farwell, M. D., Pryma, D. A. & Mankoff, D. A. PET/CT imaging in cancer: current applications and future directions. Cancer 120, 3433–3445 (2014).

    Article  CAS  Google Scholar 

  23. Bensinger, S. J. & Christofk, H. R. New aspects of the Warburg effect in cancer cell biology. Semin. Cell Dev. Biol. 23, 352–361 (2012).

    Article  CAS  Google Scholar 

  24. Wang, H. Y. et al. Meta-analysis of the diagnostic performance of [18F]FDG-PET and PET/CT in renal cell carcinoma. Cancer Imaging 12, 464–474 (2012).

    Article  Google Scholar 

  25. Ozülker, T., Ozülker, F., Ozbek, E. & Ozpaçaci, T. A prospective diagnostic accuracy study of F18 fluorodeoxyglucose-positron emission tomography/computed tomography in the evaluation of indeterminate renal masses. Nucl. Med. Commun. 32, 265–272 (2011).

    Article  Google Scholar 

  26. Ho, C. L. et al. Dual-tracer PET/CT in renal angiomyolipoma and subtypes of renal cell carcinoma. Clin. Nucl. Med. 37, 1075–1082 (2012).

    Article  Google Scholar 

  27. Oyama, N. et al. Diagnosis of complex renal cystic masses and solid renal lesions using PET imaging: comparison of 11C-acetate and 18F-FDG PET imaging. Clin. Nucl. Med. 39, e208–e214 (2014).

    Article  Google Scholar 

  28. Lawrentschuk, N., Davis, I. D., Bolton, D. M. & Scott, A. M. Functional imaging of renal cell carcinoma. Nat. Rev. Urol. 7, 258–266 (2010).

    Article  Google Scholar 

  29. Eisenhauer, E. A. et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur. J. Cancer 45, 228–247 (2009).

    Article  CAS  Google Scholar 

  30. Oyama, N. et al. 11C-Acetate PET imaging for renal cell carcinoma. Eur. J. Nucl. Med. Mol. Imaging 36, 422–427 (2009).

    Article  Google Scholar 

  31. The Cancer Genome Atlas Research Network. Comprehensive molecular characterization of clear cell renal cell carcinoma. Nature 499, 43–49 (2013).

  32. Bui, M. H. T. et al. Carbonic anhydrase IX is an independent predictor of survival in advanced renal clear cell carcinoma: implications for prognosis and therapy. Clin. Cancer Res. 9, 802–811 (2003).

    CAS  Google Scholar 

  33. Giménez-Bachs, J. M. et al. Carbonic anhydrase IX as a specific biomarker for clear cell renal cell carcinoma: comparative study of Western blot and immunohistochemistry and implications for diagnosis. Scand. J. Urol. Nephrol. 46, 358–364 (2012).

    Article  Google Scholar 

  34. McDonald, P. C., Winum, J. Y., Supuran, C. T. & Dedhar, S. Recent developments in targeting carbonic anhydrase IX for cancer therapeutics. Oncotarget 3, 84–97 (2012).

    Article  Google Scholar 

  35. Divgi, C. R. et al. Preoperative characterisation of clear-cell renal carcinoma using iodine124labelled antibody chimeric G250 (124I-cG250) and PET in patients with renal masses: a phase I trial. Lancet. Oncol. 8, 304–310 (2007).

    Article  CAS  Google Scholar 

  36. Divgi, C. R. et al. Positron emission tomography/computed tomography identification of clear cell renal cell carcinoma: results from the REDECT trial. J. Clin. Oncol. 31, 187–194 (2013).

    Article  Google Scholar 

  37. Gobbo, S. et al. Clear cell papillary renal cell carcinoma: a distinct histopathologic and molecular genetic entity. Am. J. Surg. Pathol. 32, 1239–1245 (2008).

    Article  Google Scholar 

  38. Kuroda, N. et al. Clear cell papillary renal cell carcinoma: a review. Int. J. Clin. Exp. Pathol. 7, 7312–7318 (2014).

    PubMed  PubMed Central  Google Scholar 

  39. Meeting Materials, Oncologic Drugs Advisory Committee [online], (2012).

  40. US National Library of Medicine. ClinicalTrials.gov[online], (2014).

  41. Wilex Focussed Cancer Therapies. Company Update January 2015 [online], (2015).

  42. Oosting, S. F. et al. 89Zr-bevacizumab PET visualizes heterogeneous tracer accumulation in tumor lesions of renal cell carcinoma patients and differential effects of anti-angiogenic treatment. J. Nucl. Med. 56, 63–69 (2015).

    Article  CAS  Google Scholar 

  43. Cho, S. Y. et al. Biodistribution, tumor detection, and radiation dosimetry of 18F-DCFBC, a lowmolecularweight inhibitor of prostate-specific membrane antigen, in patients with metastatic prostate cancer. J. Nucl. Med. 53, 1883–1891 (2012).

    Article  CAS  Google Scholar 

  44. Baccala, A., Sercia, L., Li, J., Heston, W. & Zhou, M. Expression of prostate-specific membrane antigen in tumor-associated neovasculature of renal neoplasms. Urology 70, 385–390 (2007).

    Article  Google Scholar 

  45. Demirci, E. et al. (68)Ga-PSMA PET/CT imaging of metastatic clear cell renal cell carcinoma. Eur. J. Nucl. Med. Mol. Imaging 41, 1461–1462 (2014).

    Article  Google Scholar 

  46. Schuster, D. M. et al. Initial experience with the radiotracer anti1amino3[18F]Fluorocyclobutane1carboxylic acid (anti[18F]FACBC) with PET in renal carcinoma. Mol. Imaging Biol. 11, 434–438 (2009).

    Article  Google Scholar 

  47. Middendorp, M., Maute, L., Sauter, B., Vogl, T. J. & Grünwald, F. Initial experience with 18F-fluoroethylcholine PET/CT in staging and monitoring therapy response of advanced renal cell carcinoma. Ann. Nucl. Med. 24, 441–446 (2010).

    Article  CAS  Google Scholar 

  48. Lawrentschuk, N. et al. Assessing regional hypoxia in human renal tumours using 18F-fluoromisonidazole positron emission tomography. BJU Int. 96, 540–546 (2005).

    Article  Google Scholar 

  49. Beller, G. A. & Watson, D. D. Physiological basis of myocardial perfusion imaging with the technetium 99m agents. Semin. Nucl. Med. 21, 173–181 (1991).

    Article  CAS  Google Scholar 

  50. Carvalho, P. A. et al. Subcellular distribution and analysis of technetium99mMIBI in isolated perfused rat hearts. J. Nucl. Med. 33, 1516–1522 (1992).

    CAS  PubMed  Google Scholar 

  51. Gormley, T. S., Van Every, M. J. & Moreno, A. J. Renal oncocytoma: preoperative diagnosis using technetium 99m sestamibi imaging. Urology 48, 33–39 (1996).

    Article  CAS  Google Scholar 

  52. Rowe, S. P. et al. Initial experience using 99mTc-MIBI SPECT/CT for the differentiation of oncocytoma from renal cell carcinoma. Clin. Nucl. Med. 40, 309–313 (2015).

    Article  Google Scholar 

  53. US National Library of Medicine. ClinicalTrials.gov[online], (2015).

Download references

Author information

Authors and Affiliations

Authors

Contributions

M.A.G. researched data for the article. M.A.G. and S.P.R. wrote the manuscript. All authors made substantial contributions to discussions of content and reviewed and edited the article before submission.

Corresponding author

Correspondence to Michael A. Gorin.

Ethics declarations

Competing interests

The authors have filed a provisional application for a patent regarding the use of 99mTc-sestamibi for the imaging of renal tumours.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gorin, M., Rowe, S. & Allaf, M. Nuclear imaging of renal tumours: a step towards improved risk stratification. Nat Rev Urol 12, 445–450 (2015). https://doi.org/10.1038/nrurol.2015.122

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrurol.2015.122

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing