Skip to main content
Top
Published in: European Journal of Nuclear Medicine and Molecular Imaging 6/2022

Open Access 01-05-2022 | Artificial Intelligence | Original Article

A cross-scanner and cross-tracer deep learning method for the recovery of standard-dose imaging quality from low-dose PET

Authors: Song Xue, Rui Guo, Karl Peter Bohn, Jared Matzke, Marco Viscione, Ian Alberts, Hongping Meng, Chenwei Sun, Miao Zhang, Min Zhang, Raphael Sznitman, Georges El Fakhri, Axel Rominger, Biao Li, Kuangyu Shi

Published in: European Journal of Nuclear Medicine and Molecular Imaging | Issue 6/2022

Login to get access

Abstract

Purpose

A critical bottleneck for the credibility of artificial intelligence (AI) is replicating the results in the diversity of clinical practice. We aimed to develop an AI that can be independently applied to recover high-quality imaging from low-dose scans on different scanners and tracers.

Methods

Brain [18F]FDG PET imaging of 237 patients scanned with one scanner was used for the development of AI technology. The developed algorithm was then tested on [18F]FDG PET images of 45 patients scanned with three different scanners, [18F]FET PET images of 18 patients scanned with two different scanners, as well as [18F]Florbetapir images of 10 patients. A conditional generative adversarial network (GAN) was customized for cross-scanner and cross-tracer optimization. Three nuclear medicine physicians independently assessed the utility of the results in a clinical setting.

Results

The improvement achieved by AI recovery significantly correlated with the baseline image quality indicated by structural similarity index measurement (SSIM) (r = −0.71, p < 0.05) and normalized dose acquisition (r = −0.60, p < 0.05). Our cross-scanner and cross-tracer AI methodology showed utility based on both physical and clinical image assessment (p < 0.05).

Conclusion

The deep learning development for extensible application on unknown scanners and tracers may improve the trustworthiness and clinical acceptability of AI-based dose reduction.
Appendix
Available only for authorised users
Literature
2.
go back to reference Moskowitz AJ, Schoder H, Yahalom J, McCall SJ, Fox SY, Gerecitano J, et al. PET-adapted sequential salvage therapy with brentuximab vedotin followed by augmented ifosamide, carboplatin, and etoposide for patients with relapsed and refractory Hodgkin's lymphoma: a non-randomised, open-label, single-centre, phase 2 study. The lancet oncology. 2015;16:284–92. https://doi.org/10.1016/S1470-2045(15)70013-6.CrossRefPubMed Moskowitz AJ, Schoder H, Yahalom J, McCall SJ, Fox SY, Gerecitano J, et al. PET-adapted sequential salvage therapy with brentuximab vedotin followed by augmented ifosamide, carboplatin, and etoposide for patients with relapsed and refractory Hodgkin's lymphoma: a non-randomised, open-label, single-centre, phase 2 study. The lancet oncology. 2015;16:284–92. https://​doi.​org/​10.​1016/​S1470-2045(15)70013-6.CrossRefPubMed
5.
go back to reference Voss SD, Reaman GH, Kaste SC, Slovis TL. The ALARA concept in pediatric oncology. Pediatric radiology. 2009;39:1142.CrossRefPubMed Voss SD, Reaman GH, Kaste SC, Slovis TL. The ALARA concept in pediatric oncology. Pediatric radiology. 2009;39:1142.CrossRefPubMed
6.
go back to reference Martí-Climent JM, Prieto E, Morán V, Sancho L, Rodríguez-Fraile M, Arbizu J, et al. Effective dose estimation for oncological and neurological PET/CT procedures. EJNMMI research. 2017;7:37.CrossRefPubMedPubMedCentral Martí-Climent JM, Prieto E, Morán V, Sancho L, Rodríguez-Fraile M, Arbizu J, et al. Effective dose estimation for oncological and neurological PET/CT procedures. EJNMMI research. 2017;7:37.CrossRefPubMedPubMedCentral
7.
go back to reference Cherry SR, Jones T, Karp JS, Qi J, Moses WW, Badawi RD. Total-body PET: maximizing sensitivity to create new opportunities for clinical research and patient care. Journal of Nuclear Medicine. 2018;59:3–12.CrossRefPubMedPubMedCentral Cherry SR, Jones T, Karp JS, Qi J, Moses WW, Badawi RD. Total-body PET: maximizing sensitivity to create new opportunities for clinical research and patient care. Journal of Nuclear Medicine. 2018;59:3–12.CrossRefPubMedPubMedCentral
9.
go back to reference Lecoq P, Morel C, Prior JO, Visvikis D, Gundacker S, Auffray E, et al. Roadmap toward the 10 ps time-of-flight PET challenge. Physics in Medicine & Biology. 2020;65:21RM01. Lecoq P, Morel C, Prior JO, Visvikis D, Gundacker S, Auffray E, et al. Roadmap toward the 10 ps time-of-flight PET challenge. Physics in Medicine & Biology. 2020;65:21RM01.
10.
11.
go back to reference Lecoq P. Pushing the limits in time-of-flight PET imaging. IEEE Transactions on radiation and plasma medical sciences. 2017;1:473–85.CrossRef Lecoq P. Pushing the limits in time-of-flight PET imaging. IEEE Transactions on radiation and plasma medical sciences. 2017;1:473–85.CrossRef
12.
go back to reference Hsu DF, Ilan E, Peterson WT, Uribe J, Lubberink M, Levin CS. Studies of a next-generation silicon-photomultiplier–based time-of-flight PET/CT system. Journal of Nuclear Medicine. 2017;58:1511–8.CrossRefPubMed Hsu DF, Ilan E, Peterson WT, Uribe J, Lubberink M, Levin CS. Studies of a next-generation silicon-photomultiplier–based time-of-flight PET/CT system. Journal of Nuclear Medicine. 2017;58:1511–8.CrossRefPubMed
13.
go back to reference Van Sluis J, De Jong J, Schaar J, Noordzij W, Van Snick P, Dierckx R, et al. Performance characteristics of the digital Biograph Vision PET/CT system. Journal of Nuclear Medicine. 2019;60:1031–6.CrossRefPubMed Van Sluis J, De Jong J, Schaar J, Noordzij W, Van Snick P, Dierckx R, et al. Performance characteristics of the digital Biograph Vision PET/CT system. Journal of Nuclear Medicine. 2019;60:1031–6.CrossRefPubMed
14.
go back to reference Chen S, Hu P, Gu Y, Yu H, Shi H. Performance characteristics of the digital uMI550 PET/CT system according to the NEMA NU2-2018 standard. EJNMMI physics. 2020;7:1–14.CrossRef Chen S, Hu P, Gu Y, Yu H, Shi H. Performance characteristics of the digital uMI550 PET/CT system according to the NEMA NU2-2018 standard. EJNMMI physics. 2020;7:1–14.CrossRef
15.
go back to reference Zhang J, Maniawski P, Knopp MV. Performance evaluation of the next generation solid-state digital photon counting PET/CT system. EJNMMI research. 2018;8:97.CrossRefPubMedPubMedCentral Zhang J, Maniawski P, Knopp MV. Performance evaluation of the next generation solid-state digital photon counting PET/CT system. EJNMMI research. 2018;8:97.CrossRefPubMedPubMedCentral
18.
go back to reference Nguyen NC, Vercher-Conejero JL, Sattar A, Miller MA, Maniawski PJ, Jordan DW, et al. Image quality and diagnostic performance of a digital PET prototype in patients with oncologic diseases: initial experience and comparison with analog PET. Journal of nuclear medicine : official publication, Society of Nuclear Medicine. 2015;56:1378–85. https://doi.org/10.2967/jnumed.114.148338.CrossRef Nguyen NC, Vercher-Conejero JL, Sattar A, Miller MA, Maniawski PJ, Jordan DW, et al. Image quality and diagnostic performance of a digital PET prototype in patients with oncologic diseases: initial experience and comparison with analog PET. Journal of nuclear medicine : official publication, Society of Nuclear Medicine. 2015;56:1378–85. https://​doi.​org/​10.​2967/​jnumed.​114.​148338.CrossRef
21.
go back to reference Alberts I, Sachpekidis C, Prenosil G, Viscione M, Bohn KP, Mingels C, et al. Digital PET/CT allows for shorter acquisition protocols or reduced radiopharmaceutical dose in [18 F]-FDG PET/CT. Annals of Nuclear Medicine. 2021;35:485–92.CrossRefPubMedPubMedCentral Alberts I, Sachpekidis C, Prenosil G, Viscione M, Bohn KP, Mingels C, et al. Digital PET/CT allows for shorter acquisition protocols or reduced radiopharmaceutical dose in [18 F]-FDG PET/CT. Annals of Nuclear Medicine. 2021;35:485–92.CrossRefPubMedPubMedCentral
23.
go back to reference Berg E, Gill H, Marik J, Ogasawara A, Williams S, van Dongen G, et al. Total-body PET and highly stable chelators together enable meaningful (89)Zr-antibody PET studies up to 30 days after injection. Journal of nuclear medicine : official publication, Society of Nuclear Medicine. 2020;61:453–60. https://doi.org/10.2967/jnumed.119.230961.CrossRef Berg E, Gill H, Marik J, Ogasawara A, Williams S, van Dongen G, et al. Total-body PET and highly stable chelators together enable meaningful (89)Zr-antibody PET studies up to 30 days after injection. Journal of nuclear medicine : official publication, Society of Nuclear Medicine. 2020;61:453–60. https://​doi.​org/​10.​2967/​jnumed.​119.​230961.CrossRef
25.
go back to reference Alberts I, Hünermund J-N, Prenosil G, Mingels C, Bohn KP, Viscione M, et al. Clinical performance of long axial field of view PET/CT: a head-to-head intra-individual comparison of the Biograph Vision Quadra with the Biograph Vision PET/CT. European Journal of Nuclear Medicine and Molecular Imaging. 2021;1-10. Alberts I, Hünermund J-N, Prenosil G, Mingels C, Bohn KP, Viscione M, et al. Clinical performance of long axial field of view PET/CT: a head-to-head intra-individual comparison of the Biograph Vision Quadra with the Biograph Vision PET/CT. European Journal of Nuclear Medicine and Molecular Imaging. 2021;1-10.
26.
go back to reference Dutta J, Leahy RM, Li Q. Non-local means denoising of dynamic PET images. PloS one. 2013;8. Dutta J, Leahy RM, Li Q. Non-local means denoising of dynamic PET images. PloS one. 2013;8.
27.
go back to reference Le Pogam A, Hanzouli H, Hatt M, Le Rest CC, Visvikis D. Denoising of PET images by combining wavelets and curvelets for improved preservation of resolution and quantitation. Medical image analysis. 2013;17:877–91.CrossRefPubMed Le Pogam A, Hanzouli H, Hatt M, Le Rest CC, Visvikis D. Denoising of PET images by combining wavelets and curvelets for improved preservation of resolution and quantitation. Medical image analysis. 2013;17:877–91.CrossRefPubMed
28.
go back to reference Kang J, Gao Y, Shi F, Lalush DS, Lin W, Shen D. Prediction of standard-dose brain PET image by using MRI and low-dose brain [18F] FDG PET images. Medical physics. 2015;42:5301–9.CrossRefPubMedPubMedCentral Kang J, Gao Y, Shi F, Lalush DS, Lin W, Shen D. Prediction of standard-dose brain PET image by using MRI and low-dose brain [18F] FDG PET images. Medical physics. 2015;42:5301–9.CrossRefPubMedPubMedCentral
29.
go back to reference Wang Y, Zhang P, An L, Ma G, Kang J, Shi F, et al. Predicting standard-dose PET image from low-dose PET and multimodal MR images using mapping-based sparse representation. Physics in Medicine & Biology. 2016;61:791.CrossRef Wang Y, Zhang P, An L, Ma G, Kang J, Shi F, et al. Predicting standard-dose PET image from low-dose PET and multimodal MR images using mapping-based sparse representation. Physics in Medicine & Biology. 2016;61:791.CrossRef
30.
go back to reference Wang Y, Ma G, An L, Shi F, Zhang P, Lalush DS, et al. Semisupervised tripled dictionary learning for standard-dose PET image prediction using low-dose PET and multimodal MRI. IEEE Transactions on Biomedical Engineering. 2016;64:569–79.CrossRefPubMed Wang Y, Ma G, An L, Shi F, Zhang P, Lalush DS, et al. Semisupervised tripled dictionary learning for standard-dose PET image prediction using low-dose PET and multimodal MRI. IEEE Transactions on Biomedical Engineering. 2016;64:569–79.CrossRefPubMed
31.
go back to reference An L, Zhang P, Adeli E, Wang Y, Ma G, Shi F, et al. Multi-level canonical correlation analysis for standard-dose PET image estimation. IEEE Transactions on Image Processing. 2016;25:3303–15.CrossRefPubMedPubMedCentral An L, Zhang P, Adeli E, Wang Y, Ma G, Shi F, et al. Multi-level canonical correlation analysis for standard-dose PET image estimation. IEEE Transactions on Image Processing. 2016;25:3303–15.CrossRefPubMedPubMedCentral
32.
go back to reference Xiang L, Qiao Y, Nie D, An L, Lin W, Wang Q, et al. Deep auto-context convolutional neural networks for standard-dose PET image estimation from low-dose PET/MRI. Neurocomputing. 2017;267:406–16.CrossRefPubMedPubMedCentral Xiang L, Qiao Y, Nie D, An L, Lin W, Wang Q, et al. Deep auto-context convolutional neural networks for standard-dose PET image estimation from low-dose PET/MRI. Neurocomputing. 2017;267:406–16.CrossRefPubMedPubMedCentral
33.
go back to reference Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, et al. Generative adversarial nets. Advances in neural information processing systems; 2014. p. 2672-80. Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, et al. Generative adversarial nets. Advances in neural information processing systems; 2014. p. 2672-80.
34.
go back to reference Wang Y, Yu B, Wang L, Zu C, Lalush DS, Lin W, et al. 3D conditional generative adversarial networks for high-quality PET image estimation at low dose. NeuroImage. 2018;174:550–62.CrossRefPubMed Wang Y, Yu B, Wang L, Zu C, Lalush DS, Lin W, et al. 3D conditional generative adversarial networks for high-quality PET image estimation at low dose. NeuroImage. 2018;174:550–62.CrossRefPubMed
35.
go back to reference Wang Y, Zhou L, Yu B, Wang L, Zu C, Lalush DS, et al. 3D auto-context-based locality adaptive multi-modality GANs for PET synthesis. IEEE transactions on medical imaging. 2018;38:1328–39.CrossRefPubMedPubMedCentral Wang Y, Zhou L, Yu B, Wang L, Zu C, Lalush DS, et al. 3D auto-context-based locality adaptive multi-modality GANs for PET synthesis. IEEE transactions on medical imaging. 2018;38:1328–39.CrossRefPubMedPubMedCentral
36.
go back to reference Galavis PE, Hollensen C, Jallow N, Paliwal B, Jeraj R. Variability of textural features in FDG PET images due to different acquisition modes and reconstruction parameters. Acta oncologica. 2010;49:1012–6.CrossRefPubMed Galavis PE, Hollensen C, Jallow N, Paliwal B, Jeraj R. Variability of textural features in FDG PET images due to different acquisition modes and reconstruction parameters. Acta oncologica. 2010;49:1012–6.CrossRefPubMed
37.
go back to reference Yan J, Chu-Shern JL, Loi HY, Khor LK, Sinha AK, Quek ST, et al. Impact of image reconstruction settings on texture features in 18F-FDG PET. Journal of nuclear medicine. 2015;56:1667–73.CrossRefPubMed Yan J, Chu-Shern JL, Loi HY, Khor LK, Sinha AK, Quek ST, et al. Impact of image reconstruction settings on texture features in 18F-FDG PET. Journal of nuclear medicine. 2015;56:1667–73.CrossRefPubMed
38.
go back to reference Moses W. Time of flight in PET revisited. IEEE Transactions on Nuclear Science. 2003;50:1325–30.CrossRef Moses W. Time of flight in PET revisited. IEEE Transactions on Nuclear Science. 2003;50:1325–30.CrossRef
39.
go back to reference Ohi J, Tonami H. Investigation of a whole-body DOI-PET system. Nuclear instruments and methods in physics research section a: accelerators, spectrometers, detectors and associated equipment. 2007;571:223–6.CrossRef Ohi J, Tonami H. Investigation of a whole-body DOI-PET system. Nuclear instruments and methods in physics research section a: accelerators, spectrometers, detectors and associated equipment. 2007;571:223–6.CrossRef
40.
go back to reference Ronneberger O, Fischer P, Brox T. U-net: convolutional networks for biomedical image segmentation. International Conference on Medical image computing and computer-assisted intervention: Springer; 2015. p. 234-41. Ronneberger O, Fischer P, Brox T. U-net: convolutional networks for biomedical image segmentation. International Conference on Medical image computing and computer-assisted intervention: Springer; 2015. p. 234-41.
41.
go back to reference Ioffe S, Szegedy C. Batch normalization: accelerating deep network training by reducing internal covariate shift. arXiv preprint arXiv:150203167. 2015. Ioffe S, Szegedy C. Batch normalization: accelerating deep network training by reducing internal covariate shift. arXiv preprint arXiv:150203167. 2015.
42.
go back to reference Wang Z, Bovik AC, Sheikh HR, Simoncelli EP. Image quality assessment: from error visibility to structural similarity. IEEE transactions on image processing. 2004;13:600–12.CrossRefPubMed Wang Z, Bovik AC, Sheikh HR, Simoncelli EP. Image quality assessment: from error visibility to structural similarity. IEEE transactions on image processing. 2004;13:600–12.CrossRefPubMed
43.
go back to reference Minoshima S, Frey KA, Koeppe RA, Foster NL, Kuhl DE. A diagnostic approach in Alzheimer's disease using three-dimensional stereotactic surface projections of fluorine-18-FDG PET. Journal of Nuclear Medicine. 1995;36:1238–48.PubMed Minoshima S, Frey KA, Koeppe RA, Foster NL, Kuhl DE. A diagnostic approach in Alzheimer's disease using three-dimensional stereotactic surface projections of fluorine-18-FDG PET. Journal of Nuclear Medicine. 1995;36:1238–48.PubMed
44.
go back to reference Pascoal TA, Mathotaarachchi S, Shin M, Park AY, Mohades S, Benedet AL, et al. Amyloid and tau signatures of brain metabolic decline in preclinical Alzheimer’s disease. European journal of nuclear medicine and molecular imaging. 2018;45:1021–30.CrossRefPubMedPubMedCentral Pascoal TA, Mathotaarachchi S, Shin M, Park AY, Mohades S, Benedet AL, et al. Amyloid and tau signatures of brain metabolic decline in preclinical Alzheimer’s disease. European journal of nuclear medicine and molecular imaging. 2018;45:1021–30.CrossRefPubMedPubMedCentral
45.
go back to reference Ha S, Choi H, Paeng JC. Cheon GJJNm, imaging m. Radiomics in oncological PET/CT: a methodological overview. 2019;53:14–29. Ha S, Choi H, Paeng JC. Cheon GJJNm, imaging m. Radiomics in oncological PET/CT: a methodological overview. 2019;53:14–29.
46.
go back to reference Brooks FJ. Grigsby PWJJoNM. The effect of small tumor volumes on studies of intratumoral heterogeneity of tracer uptake. 2014;55:37–42. Brooks FJ. Grigsby PWJJoNM. The effect of small tumor volumes on studies of intratumoral heterogeneity of tracer uptake. 2014;55:37–42.
47.
go back to reference Hatt M, Majdoub M, Vallières M, Tixier F, Le Rest CC, Groheux D, et al. 18F-FDG PET uptake characterization through texture analysis: investigating the complementary nature of heterogeneity and functional tumor volume in a multi–cancer site patient cohort. 2015;56:38–44. Hatt M, Majdoub M, Vallières M, Tixier F, Le Rest CC, Groheux D, et al. 18F-FDG PET uptake characterization through texture analysis: investigating the complementary nature of heterogeneity and functional tumor volume in a multi–cancer site patient cohort. 2015;56:38–44.
48.
go back to reference Hatt M, Tixier F, Pierce L, Kinahan PE, Le Rest CC, DJEjonm V, et al. Characterization of PET/CT images using texture analysis: the past, the present… any future? 2017;44:151–65. Hatt M, Tixier F, Pierce L, Kinahan PE, Le Rest CC, DJEjonm V, et al. Characterization of PET/CT images using texture analysis: the past, the present… any future? 2017;44:151–65.
49.
go back to reference Presotto L, Bettinardi V, De Bernardi E, Belli M, Cattaneo G, Broggi S, et al. PET textural features stability and pattern discrimination power for radiomics analysis: an “ad-hoc” phantoms study. 2018;50:66–74. Presotto L, Bettinardi V, De Bernardi E, Belli M, Cattaneo G, Broggi S, et al. PET textural features stability and pattern discrimination power for radiomics analysis: an “ad-hoc” phantoms study. 2018;50:66–74.
50.
go back to reference Kim BH, Kim S-J, Kim K, Kim H, Kim SJ, Kim WJ, et al. High metabolic tumor volume and total lesion glycolysis are associated with lateral lymph node metastasis in patients with incidentally detected thyroid carcinoma. 2015;29:721–9. Kim BH, Kim S-J, Kim K, Kim H, Kim SJ, Kim WJ, et al. High metabolic tumor volume and total lesion glycolysis are associated with lateral lymph node metastasis in patients with incidentally detected thyroid carcinoma. 2015;29:721–9.
51.
go back to reference Kong Z, Lin Y, Jiang C, Li L, Liu Z, Wang Y, et al. 18 F-FDG-PET-based radiomics signature predicts MGMT promoter methylation status in primary diffuse glioma. 2019;19:58. Kong Z, Lin Y, Jiang C, Li L, Liu Z, Wang Y, et al. 18 F-FDG-PET-based radiomics signature predicts MGMT promoter methylation status in primary diffuse glioma. 2019;19:58.
52.
go back to reference Li L, Mu W, LIU Z, Liu Z, Wang Y, Ma W, et al. A non-invasive radiomic method us 18F-FDG PET predicts isocitrate dehydrogenase genotype and prognosis in patients with glioma. 2019;9:1183. Li L, Mu W, LIU Z, Liu Z, Wang Y, Ma W, et al. A non-invasive radiomic method us 18F-FDG PET predicts isocitrate dehydrogenase genotype and prognosis in patients with glioma. 2019;9:1183.
53.
go back to reference Wu Y, Jiang J-H, Chen L, Lu J-Y, Ge J-J, Liu F-T, et al. Use of radiomic features and support vector machine to distinguish Parkinson’s disease cases from normal controls. 2019;7. Wu Y, Jiang J-H, Chen L, Lu J-Y, Ge J-J, Liu F-T, et al. Use of radiomic features and support vector machine to distinguish Parkinson’s disease cases from normal controls. 2019;7.
54.
go back to reference Lohmann P, Kocher M, Ceccon G, Bauer EK, Stoffels G, Viswanathan S, et al. Combined FET PET/MRI radiomics differentiates radiation injury from recurrent brain metastasis. 2018;20:537–42. Lohmann P, Kocher M, Ceccon G, Bauer EK, Stoffels G, Viswanathan S, et al. Combined FET PET/MRI radiomics differentiates radiation injury from recurrent brain metastasis. 2018;20:537–42.
55.
go back to reference Lohmann P, Stoffels G, Ceccon G, Rapp M, Sabel M, Filss CP, et al. Radiation injury vs. recurrent brain metastasis: combining textural feature radiomics analysis and standard parameters may increase 18 F-FET PET accuracy without dynamic scans. 2017;27:2916–27. Lohmann P, Stoffels G, Ceccon G, Rapp M, Sabel M, Filss CP, et al. Radiation injury vs. recurrent brain metastasis: combining textural feature radiomics analysis and standard parameters may increase 18 F-FET PET accuracy without dynamic scans. 2017;27:2916–27.
56.
go back to reference Roberts M, Driggs D, Thorpe M, Gilbey J, Yeung M, Ursprung S, et al. Common pitfalls and recommendations for using machine learning to detect and prognosticate for COVID-19 using chest radiographs and CT scans. Nature Machine Intelligence. 2021;3:199–217.CrossRef Roberts M, Driggs D, Thorpe M, Gilbey J, Yeung M, Ursprung S, et al. Common pitfalls and recommendations for using machine learning to detect and prognosticate for COVID-19 using chest radiographs and CT scans. Nature Machine Intelligence. 2021;3:199–217.CrossRef
57.
go back to reference Maier-Hein L, Eisenmann M, Reinke A, Onogur S, Stankovic M, Scholz P, et al. Why rankings of biomedical image analysis competitions should be interpreted with care. Nat Commun. 2018;9:1–13.CrossRef Maier-Hein L, Eisenmann M, Reinke A, Onogur S, Stankovic M, Scholz P, et al. Why rankings of biomedical image analysis competitions should be interpreted with care. Nat Commun. 2018;9:1–13.CrossRef
58.
go back to reference Degenhardt C, Rodrigues P, Trindade A, Zwaans B, Mülhens O, Dorscheid R, et al. Performance evaluation of a prototype positron emission tomography scanner using digital photon counters (DPC). 2012 IEEE Nuclear Science Symposium and Medical Imaging Conference Record (NSS/MIC): IEEE; 2012. p. 2820-4. Degenhardt C, Rodrigues P, Trindade A, Zwaans B, Mülhens O, Dorscheid R, et al. Performance evaluation of a prototype positron emission tomography scanner using digital photon counters (DPC). 2012 IEEE Nuclear Science Symposium and Medical Imaging Conference Record (NSS/MIC): IEEE; 2012. p. 2820-4.
59.
go back to reference Nguyen NC, Vercher-Conejero JL, Sattar A, Miller MA, Maniawski PJ, Jordan DW, et al. Image quality and diagnostic performance of a digital PET prototype in patients with oncologic diseases: initial experience and comparison with analog PET. Journal of Nuclear Medicine. 2015;56:1378–85.CrossRefPubMed Nguyen NC, Vercher-Conejero JL, Sattar A, Miller MA, Maniawski PJ, Jordan DW, et al. Image quality and diagnostic performance of a digital PET prototype in patients with oncologic diseases: initial experience and comparison with analog PET. Journal of Nuclear Medicine. 2015;56:1378–85.CrossRefPubMed
60.
go back to reference Hudson HM, Larkin RS. Accelerated image reconstruction using ordered subsets of projection data. IEEE transactions on medical imaging. 1994;13:601–9.CrossRefPubMed Hudson HM, Larkin RS. Accelerated image reconstruction using ordered subsets of projection data. IEEE transactions on medical imaging. 1994;13:601–9.CrossRefPubMed
61.
go back to reference Cohen JP, Luck M, Honari S. Distribution matching losses can hallucinate features in medical image translation. International conference on medical image computing and computer-assisted intervention: Springer; 2018. p. 529–36. Cohen JP, Luck M, Honari S. Distribution matching losses can hallucinate features in medical image translation. International conference on medical image computing and computer-assisted intervention: Springer; 2018. p. 529–36.
62.
go back to reference Martí-Climent JM, Prieto E, Morán V, Sancho L, Rodríguez-Fraile M, Arbizu J, et al. Effective dose estimation for oncological and neurological PET/CT procedures. EJNMMI research. 2017;7:1–8.CrossRef Martí-Climent JM, Prieto E, Morán V, Sancho L, Rodríguez-Fraile M, Arbizu J, et al. Effective dose estimation for oncological and neurological PET/CT procedures. EJNMMI research. 2017;7:1–8.CrossRef
Metadata
Title
A cross-scanner and cross-tracer deep learning method for the recovery of standard-dose imaging quality from low-dose PET
Authors
Song Xue
Rui Guo
Karl Peter Bohn
Jared Matzke
Marco Viscione
Ian Alberts
Hongping Meng
Chenwei Sun
Miao Zhang
Min Zhang
Raphael Sznitman
Georges El Fakhri
Axel Rominger
Biao Li
Kuangyu Shi
Publication date
01-05-2022
Publisher
Springer Berlin Heidelberg
Published in
European Journal of Nuclear Medicine and Molecular Imaging / Issue 6/2022
Print ISSN: 1619-7070
Electronic ISSN: 1619-7089
DOI
https://doi.org/10.1007/s00259-021-05644-1

Other articles of this Issue 6/2022

European Journal of Nuclear Medicine and Molecular Imaging 6/2022 Go to the issue