Skip to main content
Top
Published in: EJNMMI Research 1/2017

Open Access 01-12-2017 | Original research

Effective dose estimation for oncological and neurological PET/CT procedures

Authors: Josep M. Martí-Climent, Elena Prieto, Verónica Morán, Lidia Sancho, Macarena Rodríguez-Fraile, Javier Arbizu, María J. García-Velloso, José A. Richter

Published in: EJNMMI Research | Issue 1/2017

Login to get access

Abstract

Background

The aim of this study was to retrospectively evaluate the patient effective dose (ED) for different PET/CT procedures performed with a variety of PET radiopharmaceutical compounds.
PET/CT studies of 210 patients were reviewed including Torso (n = 123), Whole body (WB) (n = 36), Head and Neck Tumor (HNT) (n = 10), and Brain (n = 41) protocols with 18FDG (n = 170), 11C-CHOL (n = 10), 18FDOPA (n = 10), 11C-MET (n = 10), and 18F-florbetapir (n = 10). ED was calculated using conversion factors applied to the radiotracer activity and to the CT dose-length product.

Results

Total ED (mean ± SD) for Torso-11C-CHOL, Torso-18FDG, WB-18FDG, and HNT-18FDG protocols were 13.5 ± 2.2, 16.5 ± 4.5, 20.0 ± 5.6, and 15.4 ± 2.8 mSv, respectively, where CT represented 77, 62, 69, and 63% of the protocol ED, respectively. For 18FDG, 18FDOPA, 11C-MET, and 18F-florbetapir brain PET/CT studies, ED values (mean ± SD) were 6.4 ± 0.6, 4.6 ± 0.4, 5.2 ± 0.5, and 9.1 ± 0.4 mSv, respectively, and the corresponding CT contributions were 11, 14, 23, and 26%, respectively. In 18FDG PET/CT, variations in scan length and arm position produced significant differences in CT ED (p < 0.01). For dual-time-point imaging, the CT ED (mean ± SD) for the delayed scan was 3.8 ± 1.5 mSv.

Conclusions

The mean ED for body and brain PET/CT protocols with different radiopharmaceuticals ranged between 4.6 and 20.0 mSv. The major contributor to total ED for body protocols is CT, whereas for brain studies, it is the PET radiopharmaceutical.
Literature
1.
go back to reference Townsend DW, Beyer T, Blodgett TM. PET/CT scanners: a hardware approach to image fusion. Semin Nucl Med. 2003;33:193–204.CrossRefPubMed Townsend DW, Beyer T, Blodgett TM. PET/CT scanners: a hardware approach to image fusion. Semin Nucl Med. 2003;33:193–204.CrossRefPubMed
2.
go back to reference Alavi A, Reivich M. Guest editorial: the conception of FDG-PET imaging. Semin Nucl Med. 2002;32:2–5.CrossRefPubMed Alavi A, Reivich M. Guest editorial: the conception of FDG-PET imaging. Semin Nucl Med. 2002;32:2–5.CrossRefPubMed
3.
go back to reference Fletcher JW, Djulbegovic B, Soares HP, Siegel BA, Lowe VJ, Lyman GH, et al. Recommendations on the use of 18F-FDG PET in oncology. J Nucl Med. 2008;49:480–508.CrossRefPubMed Fletcher JW, Djulbegovic B, Soares HP, Siegel BA, Lowe VJ, Lyman GH, et al. Recommendations on the use of 18F-FDG PET in oncology. J Nucl Med. 2008;49:480–508.CrossRefPubMed
4.
go back to reference Belhocine T, Spaepen K, Dusart M, Castaigne C, Muylle K, Bourgeois P, et al. 18FDG PET in oncology: the best and the worst (review). Int J Oncol. 2006;28:1249–61.PubMed Belhocine T, Spaepen K, Dusart M, Castaigne C, Muylle K, Bourgeois P, et al. 18FDG PET in oncology: the best and the worst (review). Int J Oncol. 2006;28:1249–61.PubMed
5.
go back to reference European Union. Medical radiation exposure of the European population. Part 1/2. Radiat Prot N° 180 2014:1–181. European Union. Medical radiation exposure of the European population. Part 1/2. Radiat Prot N° 180 2014:1–181.
7.
go back to reference Huang B, Martin Wai-Ming Law M, Khong P-L, Law MW-M, Khong P-L. Whole-body PET/CT scanning: estimation of radiation dose and cancer risk. Radiology. 2009;251:166–74.CrossRefPubMed Huang B, Martin Wai-Ming Law M, Khong P-L, Law MW-M, Khong P-L. Whole-body PET/CT scanning: estimation of radiation dose and cancer risk. Radiology. 2009;251:166–74.CrossRefPubMed
8.
go back to reference Willowson KP, Bailey EA, Bailey DL. A retrospective evaluation of radiation dose associated with low dose FDG protocols in whole-body PET/CT. Australas Phys Eng Sci Med. 2012;35:49–53.CrossRefPubMed Willowson KP, Bailey EA, Bailey DL. A retrospective evaluation of radiation dose associated with low dose FDG protocols in whole-body PET/CT. Australas Phys Eng Sci Med. 2012;35:49–53.CrossRefPubMed
9.
go back to reference Avramova-Cholakova S, Ivanova S, Petrova E, Garcheva M, Vassileva J. Patient doses from PET-CT procedures. Radiat Prot Dosimetry. 2015;165:1–4.CrossRef Avramova-Cholakova S, Ivanova S, Petrova E, Garcheva M, Vassileva J. Patient doses from PET-CT procedures. Radiat Prot Dosimetry. 2015;165:1–4.CrossRef
10.
go back to reference Houshmand S, Salavati A, Basu S, Khiewvan B, Alavi A. The role of dual and multiple time point imaging of FDG uptake in both normal and disease states. Clin Transl Imaging. 2014;2:281–93.CrossRef Houshmand S, Salavati A, Basu S, Khiewvan B, Alavi A. The role of dual and multiple time point imaging of FDG uptake in both normal and disease states. Clin Transl Imaging. 2014;2:281–93.CrossRef
11.
go back to reference Matthiessen LW, Johannesen HH, Skougaard K, Gehl J, Hendel HW. Dual time point imaging fluorine-18 flourodeoxyglucose positron emission tomography for evaluation of large loco-regional recurrences of breast cancer treated with electrochemotherapy. Radiol Oncol. 2013;47:358–65.PubMedPubMedCentral Matthiessen LW, Johannesen HH, Skougaard K, Gehl J, Hendel HW. Dual time point imaging fluorine-18 flourodeoxyglucose positron emission tomography for evaluation of large loco-regional recurrences of breast cancer treated with electrochemotherapy. Radiol Oncol. 2013;47:358–65.PubMedPubMedCentral
12.
go back to reference Prieto E, Marti-Climent JM, Dominguez-Prado I, Garrastachu P, Diez-Valle R, Tejada S, et al. Voxel-based analysis of dual-time-point 18F-FDG PET images for brain tumor identification and delineation. J Nucl Med. 2011;52:865–72.CrossRefPubMed Prieto E, Marti-Climent JM, Dominguez-Prado I, Garrastachu P, Diez-Valle R, Tejada S, et al. Voxel-based analysis of dual-time-point 18F-FDG PET images for brain tumor identification and delineation. J Nucl Med. 2011;52:865–72.CrossRefPubMed
13.
go back to reference European Union. Diagnostic reference levels in thirty-six European countries. Part 2/2. Radiat Prot N° 180 2014:1–73. European Union. Diagnostic reference levels in thirty-six European countries. Part 2/2. Radiat Prot N° 180 2014:1–73.
14.
go back to reference Martí-Climent JM, Prieto E, Domínguez-Prado I, García-Velloso MJ, Rodríguez-Fraile M, Arbizu J, et al. Contribution of time of flight and point spread function modeling to the performance characteristics of the PET/CT Biograph mCT scanner. Rev Esp Med Nucl Imagen Mol. 2013;32:13–21.PubMed Martí-Climent JM, Prieto E, Domínguez-Prado I, García-Velloso MJ, Rodríguez-Fraile M, Arbizu J, et al. Contribution of time of flight and point spread function modeling to the performance characteristics of the PET/CT Biograph mCT scanner. Rev Esp Med Nucl Imagen Mol. 2013;32:13–21.PubMed
15.
go back to reference Boellaard R, Delgado-Bolton R, Oyen WJG, Giammarile F, Tatsch K, Eschner W, et al. FDG PET/CT: EANM procedure guidelines for tumour imaging: version 2.0. Eur J Nucl Med Mol Imaging. 2015;42:328–54.CrossRefPubMed Boellaard R, Delgado-Bolton R, Oyen WJG, Giammarile F, Tatsch K, Eschner W, et al. FDG PET/CT: EANM procedure guidelines for tumour imaging: version 2.0. Eur J Nucl Med Mol Imaging. 2015;42:328–54.CrossRefPubMed
16.
go back to reference Inoue Y, Nagahara K, Tanaka Y, Miyatake H, Hata H, Hara T. Methods of CT dose estimation in whole-body 18F-FDG PET/CT. J Nucl Med. 2015;56:695–700.CrossRefPubMed Inoue Y, Nagahara K, Tanaka Y, Miyatake H, Hata H, Hara T. Methods of CT dose estimation in whole-body 18F-FDG PET/CT. J Nucl Med. 2015;56:695–700.CrossRefPubMed
17.
go back to reference International Commission on Radiological Protection. ICRP 106 Publication. Radiation dose to patients from radiopharmaceuticals. Ann ICRP 2007;38:21–4. International Commission on Radiological Protection. ICRP 106 Publication. Radiation dose to patients from radiopharmaceuticals. Ann ICRP 2007;38:21–4.
18.
go back to reference Tolvanen T, Yli-Kerttula T, Ujula T, Autio A, Lehikoinen P, Minn H, et al. Biodistribution and radiation dosimetry of [11C]choline: a comparison between rat and human data. Eur J Nucl Med Mol Imaging. 2010;37:874–83.CrossRefPubMed Tolvanen T, Yli-Kerttula T, Ujula T, Autio A, Lehikoinen P, Minn H, et al. Biodistribution and radiation dosimetry of [11C]choline: a comparison between rat and human data. Eur J Nucl Med Mol Imaging. 2010;37:874–83.CrossRefPubMed
19.
20.
go back to reference Kaushik A, Jaimini A, Tripathi M, D’Souza M, Sharma R, Mishra AK, et al. Estimation of patient dose in (18)F-FDG and (18)F-FDOPA PET/CT examinations. J Cancer Res Ther. 2013;9:477–83.CrossRefPubMed Kaushik A, Jaimini A, Tripathi M, D’Souza M, Sharma R, Mishra AK, et al. Estimation of patient dose in (18)F-FDG and (18)F-FDOPA PET/CT examinations. J Cancer Res Ther. 2013;9:477–83.CrossRefPubMed
21.
go back to reference Wu T-H, Chu T-C, Huang Y-H, Chen L-K, Mok S-P, Lee J-K, et al. A positron emission tomography/computed tomography (PET/CT) acquisition protocol for CT radiation dose optimization. Nucl Med Commun. 2005;26:323–30.CrossRefPubMed Wu T-H, Chu T-C, Huang Y-H, Chen L-K, Mok S-P, Lee J-K, et al. A positron emission tomography/computed tomography (PET/CT) acquisition protocol for CT radiation dose optimization. Nucl Med Commun. 2005;26:323–30.CrossRefPubMed
22.
go back to reference Quinn B, Dauer Z, Pandit-Taskar N, Schoder H, Dauer LT. Radiation dosimetry of 18F-FDG PET/CT: incorporating exam-specific parameters in dose estimates. BMC Med Imaging. 2016;16:41.CrossRefPubMedPubMedCentral Quinn B, Dauer Z, Pandit-Taskar N, Schoder H, Dauer LT. Radiation dosimetry of 18F-FDG PET/CT: incorporating exam-specific parameters in dose estimates. BMC Med Imaging. 2016;16:41.CrossRefPubMedPubMedCentral
23.
go back to reference Brix G, Lechel U, Glatting G, Ziegler SI, Münzing W, Müller SP, et al. Radiation exposure of patients undergoing whole-body dual-modality 18F-FDG PET/CT examinations. J Nucl Med. 2005;46:608–13.PubMed Brix G, Lechel U, Glatting G, Ziegler SI, Münzing W, Müller SP, et al. Radiation exposure of patients undergoing whole-body dual-modality 18F-FDG PET/CT examinations. J Nucl Med. 2005;46:608–13.PubMed
24.
go back to reference Jallow N, Christian PE, Sunderland J, Graham MM, Hoffman JM, Nye JA. Diagnostic reference levels of CT radiation dose in oncology whole-body PET/CT. J Nucl Med. 2015;57:238–41.CrossRefPubMed Jallow N, Christian PE, Sunderland J, Graham MM, Hoffman JM, Nye JA. Diagnostic reference levels of CT radiation dose in oncology whole-body PET/CT. J Nucl Med. 2015;57:238–41.CrossRefPubMed
25.
go back to reference Etard C, Celier D, Roch P, Aubert B. National survey of patient doses from whole-body FDG PET-CT examinations in France in 2011. Radiat Prot Dosimetry. 2012;152:334–8.CrossRefPubMed Etard C, Celier D, Roch P, Aubert B. National survey of patient doses from whole-body FDG PET-CT examinations in France in 2011. Radiat Prot Dosimetry. 2012;152:334–8.CrossRefPubMed
26.
go back to reference Murano T, Minamimoto R, Senda M, Uno K, Jinnouchi S, Fukuda H, et al. Radiation exposure and risk-benefit analysis in cancer screening using FDG-PET: results of a Japanese nationwide survey. Ann Nucl Med. 2011;25:657–66.CrossRefPubMed Murano T, Minamimoto R, Senda M, Uno K, Jinnouchi S, Fukuda H, et al. Radiation exposure and risk-benefit analysis in cancer screening using FDG-PET: results of a Japanese nationwide survey. Ann Nucl Med. 2011;25:657–66.CrossRefPubMed
27.
go back to reference Prieto E, Domínguez-Prado I, García-Velloso MJ, Peñuelas I, Richter JA, Martí-Climent JM. Impact of time-of-flight and point-spread-function in SUV quantification for oncological PET. Clin Nucl Med. 2013;38:103–9.CrossRefPubMed Prieto E, Domínguez-Prado I, García-Velloso MJ, Peñuelas I, Richter JA, Martí-Climent JM. Impact of time-of-flight and point-spread-function in SUV quantification for oncological PET. Clin Nucl Med. 2013;38:103–9.CrossRefPubMed
28.
go back to reference Teoh EJ, McGowan DR, Macpherson RE, Bradley KM, Gleeson FV. Phantom and clinical evaluation of the Bayesian penalized likelihood reconstruction algorithm Q.Clear on an LYSO PET/CT system. J Nucl Med. 2015;56:1447–52.CrossRefPubMedPubMedCentral Teoh EJ, McGowan DR, Macpherson RE, Bradley KM, Gleeson FV. Phantom and clinical evaluation of the Bayesian penalized likelihood reconstruction algorithm Q.Clear on an LYSO PET/CT system. J Nucl Med. 2015;56:1447–52.CrossRefPubMedPubMedCentral
29.
go back to reference Murray I, Kalemis A, Glennon J, Hasan S, Quraishi S, Beyer T, et al. Time-of-flight PET/CT using low-activity protocols: potential implications for cancer therapy monitoring. Eur J Nucl Med Mol Imaging. 2010;37:1643–53.CrossRefPubMed Murray I, Kalemis A, Glennon J, Hasan S, Quraishi S, Beyer T, et al. Time-of-flight PET/CT using low-activity protocols: potential implications for cancer therapy monitoring. Eur J Nucl Med Mol Imaging. 2010;37:1643–53.CrossRefPubMed
30.
go back to reference Tonkopi E, Ross AA, MacDonald A. CT dose optimization for whole-body PET/CT examinations. Am J Roentgenol. 2013;201:257–63.CrossRef Tonkopi E, Ross AA, MacDonald A. CT dose optimization for whole-body PET/CT examinations. Am J Roentgenol. 2013;201:257–63.CrossRef
31.
go back to reference Rausch I, Cal-González J, Dapra D, Gallowitsch HJ, Lind P, Beyer T, et al. Performance evaluation of the Biograph mCT Flow PET/CT system according to the NEMA NU2-2012 standard. EJNMMI Phys. 2015;2:26.CrossRefPubMedPubMedCentral Rausch I, Cal-González J, Dapra D, Gallowitsch HJ, Lind P, Beyer T, et al. Performance evaluation of the Biograph mCT Flow PET/CT system according to the NEMA NU2-2012 standard. EJNMMI Phys. 2015;2:26.CrossRefPubMedPubMedCentral
32.
go back to reference de Margerie-Mellon C, de Bazelaire C, Montlahuc C, Lambert J, Martineau A, Coulon P, et al. Reducing radiation dose at chest CT: Comparison among model-based type iterative reconstruction, hybrid iterative reconstruction, and filtered back projection. Acad Radiol. 2016;23:1246–54. de Margerie-Mellon C, de Bazelaire C, Montlahuc C, Lambert J, Martineau A, Coulon P, et al. Reducing radiation dose at chest CT: Comparison among model-based type iterative reconstruction, hybrid iterative reconstruction, and filtered back projection. Acad Radiol. 2016;23:1246–54.
33.
go back to reference Shin HJ, Chung YE, Lee YH, Choi JY, Park MS, Kim MJ, et al. Radiation dose reduction via sinogram affirmed iterative reconstruction and automatic tube voltage modulation (CARE kV) in abdominal CT. Korean J Radiol. 2013;14:886–93.CrossRefPubMedPubMedCentral Shin HJ, Chung YE, Lee YH, Choi JY, Park MS, Kim MJ, et al. Radiation dose reduction via sinogram affirmed iterative reconstruction and automatic tube voltage modulation (CARE kV) in abdominal CT. Korean J Radiol. 2013;14:886–93.CrossRefPubMedPubMedCentral
34.
go back to reference Huda W, Magill D, He W. CT effective dose per dose length product using ICRP 103 weighting factors. Med Phys. 2011;38:1261–5.CrossRefPubMed Huda W, Magill D, He W. CT effective dose per dose length product using ICRP 103 weighting factors. Med Phys. 2011;38:1261–5.CrossRefPubMed
35.
go back to reference Saltybaeva N, Jafari ME, Hupfer M, Kalender WA. Estimates of effective dose for CT scans of the lower extremities. Radiology. 2014;273:153–9.CrossRefPubMed Saltybaeva N, Jafari ME, Hupfer M, Kalender WA. Estimates of effective dose for CT scans of the lower extremities. Radiology. 2014;273:153–9.CrossRefPubMed
36.
go back to reference Khamwan K, Krisanachinda A, Pasawang P. The determination of patient dose from 18F-FDG PET/CT examination. Radiat Prot Dosimetry. 2010;141:50–5.CrossRefPubMed Khamwan K, Krisanachinda A, Pasawang P. The determination of patient dose from 18F-FDG PET/CT examination. Radiat Prot Dosimetry. 2010;141:50–5.CrossRefPubMed
Metadata
Title
Effective dose estimation for oncological and neurological PET/CT procedures
Authors
Josep M. Martí-Climent
Elena Prieto
Verónica Morán
Lidia Sancho
Macarena Rodríguez-Fraile
Javier Arbizu
María J. García-Velloso
José A. Richter
Publication date
01-12-2017
Publisher
Springer Berlin Heidelberg
Published in
EJNMMI Research / Issue 1/2017
Electronic ISSN: 2191-219X
DOI
https://doi.org/10.1186/s13550-017-0272-5

Other articles of this Issue 1/2017

EJNMMI Research 1/2017 Go to the issue