Skip to main content
Top
Published in: Skeletal Radiology 1/2011

01-01-2011 | Technical Report

Magnetic resonance imaging evaluation of weight-bearing subchondral trabecular bone in the knee

Authors: Erika Schneider, Grace H. Lo, Gretchen Sloane, Lynn Fanella, David J. Hunter, Charles B. Eaton, Timothy E. McAlindon

Published in: Skeletal Radiology | Issue 1/2011

Login to get access

Abstract

Objective

Changes in weight-bearing subchondral bone are central to osteoarthritis (OA) pathophysiology. Using MR, knee trabecular bone is typically assessed in the axial plane, however partial volume artifacts limit the utility of MR methods for femorotibial compartment subchondral bone analysis. Oblique-coronal acquisitions may enable direct visualization and quantification of the expected increases in femorotibial subchondral trabecular bone.

Methods

MR acquisition parameters were first optimized at 3 Tesla. Thereafter, five volunteers underwent axial and coronal exams of their right knee. Each image series was evaluated visually and quantitatively. An anatomically standardized region-of-interest was placed on both the medial and lateral tibial plateaus of all coronal slices containing subchondral bone. Mean and maximum marrow signal was measured, and “bone signal” was calculated.

Results

The MR acquisition had spatial resolution 0.2 × 0.2 × 1.0 mm and acquisition time 10.5 min. The two asymptomatic knees exhibited prominent horizontal trabeculae in the tibial subchondral bone, while the one confirmed OA knee had disorganized subchondral bone and absent horizontal trabeculae. The subchondral bone signal was 8–14% higher in both compartments of the OA knee than the asymptomatic knees.

Conclusion

The weight-bearing femorotibial subchondral trabecular bone can be directly visualized and changes quantified in the coronal-oblique plane. Qualitative and quantitative assessments can be performed using the resultant images and may provide a method to discriminate between the healthy and OA knees. These methods should enable a quantitative evaluation of the role of weight-bearing subchondral bone in the natural history of knee OA to be undertaken.
Literature
1.
go back to reference Moskowitz RW. Bone remodeling in osteoarthritis: subchondral and osteophytic responses. Osteoarthritis Cartilage. 1999;7:323–4.CrossRefPubMed Moskowitz RW. Bone remodeling in osteoarthritis: subchondral and osteophytic responses. Osteoarthritis Cartilage. 1999;7:323–4.CrossRefPubMed
2.
go back to reference Lajeunesse D. The role of bone in the treatment of osteoarthritis. Osteoarthritis Cartilage. 2004;12(Suppl A):S34–8.CrossRefPubMed Lajeunesse D. The role of bone in the treatment of osteoarthritis. Osteoarthritis Cartilage. 2004;12(Suppl A):S34–8.CrossRefPubMed
3.
go back to reference Karsdal MA, Leeming DJ, Dam EB, Henriksen K, Alexandersen P, Pastoureau P, et al. Should subchondral bone turnover be targeted when treating osteoarthritis? Osteoarthritis Cartilage. 2008;16:638–46.CrossRefPubMed Karsdal MA, Leeming DJ, Dam EB, Henriksen K, Alexandersen P, Pastoureau P, et al. Should subchondral bone turnover be targeted when treating osteoarthritis? Osteoarthritis Cartilage. 2008;16:638–46.CrossRefPubMed
4.
go back to reference Lajeunesse D, Hilal G, Pelletier JP, Martel-Pelletier J. Subchondral bone morphological and biochemical alterations in osteoarthritis. Osteoarthritis Cartilage. 1999;7:321–2.CrossRefPubMed Lajeunesse D, Hilal G, Pelletier JP, Martel-Pelletier J. Subchondral bone morphological and biochemical alterations in osteoarthritis. Osteoarthritis Cartilage. 1999;7:321–2.CrossRefPubMed
5.
go back to reference Abramson SB, Attur M. Developments in the scientific understanding of osteoarthritis. Arthritis Res Ther. 2009;11:227.CrossRefPubMed Abramson SB, Attur M. Developments in the scientific understanding of osteoarthritis. Arthritis Res Ther. 2009;11:227.CrossRefPubMed
6.
go back to reference Watt I. Osteoarthritis revisited–-again! Skelet Radiol. 2009;38:419–23.CrossRef Watt I. Osteoarthritis revisited–-again! Skelet Radiol. 2009;38:419–23.CrossRef
7.
go back to reference Imhof H, Breitenseher M, Kainberger F, Rand T, Trattnig S. Importance of subchondral bone to articular cartilage in health and disease. Top Magn Reson Imaging. 1999;10:180–92.CrossRefPubMed Imhof H, Breitenseher M, Kainberger F, Rand T, Trattnig S. Importance of subchondral bone to articular cartilage in health and disease. Top Magn Reson Imaging. 1999;10:180–92.CrossRefPubMed
8.
go back to reference Eckstein F, Muller-Gerbl M, Putz R. Distribution of subchondral bone density and cartilage thickness in the human patella. J Anat. 1992;180(Pt 3):425–33.PubMed Eckstein F, Muller-Gerbl M, Putz R. Distribution of subchondral bone density and cartilage thickness in the human patella. J Anat. 1992;180(Pt 3):425–33.PubMed
9.
go back to reference Lo GH, Zhang Y, McLennan CE, Niu J, Kiel DP, McLean RR, et al. The ratio of medial to lateral tibial plateau bone mineral density and compartment specific tibiofemoral osteoarthritis. Osteoarthritis Cartilage. 2006;14:984–90. Lo GH, Zhang Y, McLennan CE, Niu J, Kiel DP, McLean RR, et al. The ratio of medial to lateral tibial plateau bone mineral density and compartment specific tibiofemoral osteoarthritis. Osteoarthritis Cartilage. 2006;14:984–90.
10.
go back to reference Kamibayashi L, Wyss UP, Cooke TD, Zee B. Changes in mean trabecular orientation in the medial condyle of the proximal tibia in osteoarthritis. Calcif Tissue Int. 1995;57:69–73.CrossRefPubMed Kamibayashi L, Wyss UP, Cooke TD, Zee B. Changes in mean trabecular orientation in the medial condyle of the proximal tibia in osteoarthritis. Calcif Tissue Int. 1995;57:69–73.CrossRefPubMed
11.
go back to reference Thambyah A, Broom N. On new bone formation in the pre-osteoarthritic joint. Osteoarthritis Cartilage. 2009;17:456–63.CrossRefPubMed Thambyah A, Broom N. On new bone formation in the pre-osteoarthritic joint. Osteoarthritis Cartilage. 2009;17:456–63.CrossRefPubMed
12.
go back to reference Lancianese SL, Kwok E, Beck CA, Lerner AL. Predicting regional variations in trabecular bone mechanical properties within the human proximal tibia using MR imaging. Bone. 2008;43:1039–46.CrossRefPubMed Lancianese SL, Kwok E, Beck CA, Lerner AL. Predicting regional variations in trabecular bone mechanical properties within the human proximal tibia using MR imaging. Bone. 2008;43:1039–46.CrossRefPubMed
13.
go back to reference Day JS, Ding M, van der Linden JC, Hvid I, Sumner DR, Weinans H. A decreased subchondral trabecular bone tissue elastic modulus is associated with pre-arthritic cartilage damage. J Orthop Res. 2001;19:914–8.CrossRefPubMed Day JS, Ding M, van der Linden JC, Hvid I, Sumner DR, Weinans H. A decreased subchondral trabecular bone tissue elastic modulus is associated with pre-arthritic cartilage damage. J Orthop Res. 2001;19:914–8.CrossRefPubMed
14.
go back to reference Young BD, Samii VF, Mattoon JS, Weisbrode SE, Bertone AL. Subchondral bone density and cartilage degeneration patterns in osteoarthritic metacarpal condyles of horses. Am J Vet Res. 2007;68:841–9.CrossRefPubMed Young BD, Samii VF, Mattoon JS, Weisbrode SE, Bertone AL. Subchondral bone density and cartilage degeneration patterns in osteoarthritic metacarpal condyles of horses. Am J Vet Res. 2007;68:841–9.CrossRefPubMed
15.
go back to reference Buckland-Wright JC, Lynch JA, Macfarlane DG. Fractal signature analysis measures cancellous bone organisation in macroradiographs of patients with knee osteoarthritis. Ann Rheum Dis. 1996;55:749–55.CrossRefPubMed Buckland-Wright JC, Lynch JA, Macfarlane DG. Fractal signature analysis measures cancellous bone organisation in macroradiographs of patients with knee osteoarthritis. Ann Rheum Dis. 1996;55:749–55.CrossRefPubMed
16.
go back to reference Messent EA, Ward RJ, Tonkin CJ, Buckland-Wright C. Cancellous bone changes in patients with knee osteoarthritis. A short-term longitudinal study using fractal signature analysis. Osteoarthritis Cartilage. 2005;13:463–70.CrossRefPubMed Messent EA, Ward RJ, Tonkin CJ, Buckland-Wright C. Cancellous bone changes in patients with knee osteoarthritis. A short-term longitudinal study using fractal signature analysis. Osteoarthritis Cartilage. 2005;13:463–70.CrossRefPubMed
17.
go back to reference Messent EA, Ward RJ, Tonkin CJ, Buckland-Wright C. Cancellous bone differences between knees with early, definite and advanced joint space loss; a comparative quantitative macroradiographic study. Osteoarthritis Cartilage. 2005;13:39–47.CrossRefPubMed Messent EA, Ward RJ, Tonkin CJ, Buckland-Wright C. Cancellous bone differences between knees with early, definite and advanced joint space loss; a comparative quantitative macroradiographic study. Osteoarthritis Cartilage. 2005;13:39–47.CrossRefPubMed
18.
go back to reference Buckland-Wright C. Subchondral bone changes in hand and knee osteoarthritis detected by radiography. Osteoarthritis Cartilage. 2004;12(Suppl A):S10–9.CrossRefPubMed Buckland-Wright C. Subchondral bone changes in hand and knee osteoarthritis detected by radiography. Osteoarthritis Cartilage. 2004;12(Suppl A):S10–9.CrossRefPubMed
19.
go back to reference Altman RD, Hochberg M, Murphy WA Jr, Wolfe F, Lequesne M. Atlas of individual radiographic features in osteoarthritis. Osteoarthritis Cartilage. 1995;3(Suppl A):3–70.PubMed Altman RD, Hochberg M, Murphy WA Jr, Wolfe F, Lequesne M. Atlas of individual radiographic features in osteoarthritis. Osteoarthritis Cartilage. 1995;3(Suppl A):3–70.PubMed
20.
go back to reference Jacobson JA, Girish G, Jiang Y, Sabb BJ. Radiographic evaluation of arthritis: degenerative joint disease and variations. Radiology. 2008;248:737–47.CrossRefPubMed Jacobson JA, Girish G, Jiang Y, Sabb BJ. Radiographic evaluation of arthritis: degenerative joint disease and variations. Radiology. 2008;248:737–47.CrossRefPubMed
21.
go back to reference Akamatsu Y, Koshino T, Saito T, Wada J. Changes in osteosclerosis of the osteoarthritic knee after high tibial osteotomy. Clin Orthop. 1997;334:207–14. Akamatsu Y, Koshino T, Saito T, Wada J. Changes in osteosclerosis of the osteoarthritic knee after high tibial osteotomy. Clin Orthop. 1997;334:207–14.
22.
go back to reference Hulet C, Sabatier JP, Souquet D, Locker B, Marcelli C, Vielpeau C. Distribution of bone mineral density at the proximal tibia in knee osteoarthritis. Calcif Tissue Int. 2002;71:315–22.CrossRefPubMed Hulet C, Sabatier JP, Souquet D, Locker B, Marcelli C, Vielpeau C. Distribution of bone mineral density at the proximal tibia in knee osteoarthritis. Calcif Tissue Int. 2002;71:315–22.CrossRefPubMed
23.
go back to reference Hurwitz DE, Sumner DR, Andriacchi TP, Sugar DA. Dynamic knee loads during gait predict proximal tibial bone distribution. J Biomech. 1998;31:423–30.CrossRefPubMed Hurwitz DE, Sumner DR, Andriacchi TP, Sugar DA. Dynamic knee loads during gait predict proximal tibial bone distribution. J Biomech. 1998;31:423–30.CrossRefPubMed
24.
go back to reference Lo GH, Hunter DJ, Zhang Y, McLennan CE, Lavalley MP, Kiel DP, et al. Bone marrow lesions in the knee are associated with increased local bone density. Arthritis Rheum. 2005;52:2814–21.CrossRefPubMed Lo GH, Hunter DJ, Zhang Y, McLennan CE, Lavalley MP, Kiel DP, et al. Bone marrow lesions in the knee are associated with increased local bone density. Arthritis Rheum. 2005;52:2814–21.CrossRefPubMed
25.
go back to reference Wada M, Maezawa Y, Baba H, Shimada S, Sasaki S, Nose Y. Relationships among bone mineral densities, static alignment and dynamic load in patients with medial compartment knee osteoarthritis. Rheumatology (Oxford). 2001;40:499–505.CrossRef Wada M, Maezawa Y, Baba H, Shimada S, Sasaki S, Nose Y. Relationships among bone mineral densities, static alignment and dynamic load in patients with medial compartment knee osteoarthritis. Rheumatology (Oxford). 2001;40:499–505.CrossRef
26.
go back to reference Clarke S, Wakeley C, Duddy J, Sharif M, Watt I, Ellingham K, et al. Dual-energy X-ray absorptiometry applied to the assessment of tibial subchondral bone mineral density in osteoarthritis of the knee. Skeletal Radiol. 2004;33:588–95.CrossRefPubMed Clarke S, Wakeley C, Duddy J, Sharif M, Watt I, Ellingham K, et al. Dual-energy X-ray absorptiometry applied to the assessment of tibial subchondral bone mineral density in osteoarthritis of the knee. Skeletal Radiol. 2004;33:588–95.CrossRefPubMed
27.
go back to reference McCarthy C, Cushnaghan J, Dieppe P. The predictive role of scintigraphy in radiographic osteoarthritis of the hand. Osteoarthritis Cartilage. 1994;2:25–8.CrossRefPubMed McCarthy C, Cushnaghan J, Dieppe P. The predictive role of scintigraphy in radiographic osteoarthritis of the hand. Osteoarthritis Cartilage. 1994;2:25–8.CrossRefPubMed
28.
go back to reference McAlindon TE, Watt I, McCrae F, Goddard P, Dieppe PA. Magnetic resonance imaging in osteoarthritis of the knee: correlation with radiographic and scintigraphic findings. Ann Rheum Dis. 1991;50:14–9.CrossRefPubMed McAlindon TE, Watt I, McCrae F, Goddard P, Dieppe PA. Magnetic resonance imaging in osteoarthritis of the knee: correlation with radiographic and scintigraphic findings. Ann Rheum Dis. 1991;50:14–9.CrossRefPubMed
29.
go back to reference Blumenkrantz G, Lindsey CT, Dunn TC, Jin H, Ries MD, Link TM, et al. A pilot, two-year longitudinal study of the interrelationship between trabecular bone and articular cartilage in the osteoarthritic knee. Osteoarthritis Cartilage. 2004;12:997–1005.CrossRefPubMed Blumenkrantz G, Lindsey CT, Dunn TC, Jin H, Ries MD, Link TM, et al. A pilot, two-year longitudinal study of the interrelationship between trabecular bone and articular cartilage in the osteoarthritic knee. Osteoarthritis Cartilage. 2004;12:997–1005.CrossRefPubMed
30.
go back to reference Techawiboonwong A, Song HK, Magland JF, Saha PK, Wehrli FW. Implications of pulse sequence in structural imaging of trabecular bone. J Magn Reson Imaging. 2005;22:647–55.CrossRefPubMed Techawiboonwong A, Song HK, Magland JF, Saha PK, Wehrli FW. Implications of pulse sequence in structural imaging of trabecular bone. J Magn Reson Imaging. 2005;22:647–55.CrossRefPubMed
31.
go back to reference Banerjee S, Choudhury S, Han ET, Brau AC, Morze CV, Vigneron DB, et al. Autocalibrating parallel imaging of in vivo trabecular bone microarchitecture at 3 Tesla. Magn Reson Med. 2006;56:1075–84.CrossRefPubMed Banerjee S, Choudhury S, Han ET, Brau AC, Morze CV, Vigneron DB, et al. Autocalibrating parallel imaging of in vivo trabecular bone microarchitecture at 3 Tesla. Magn Reson Med. 2006;56:1075–84.CrossRefPubMed
32.
go back to reference Banerjee S, Han ET, Krug R, Newitt DC, Majumdar S. Application of refocused steady-state free-precession methods at 1.5 and 3 T to in vivo high-resolution MRI of trabecular bone: simulations and experiments. J Magn Reson Imaging. 2005;21:818–25.CrossRefPubMed Banerjee S, Han ET, Krug R, Newitt DC, Majumdar S. Application of refocused steady-state free-precession methods at 1.5 and 3 T to in vivo high-resolution MRI of trabecular bone: simulations and experiments. J Magn Reson Imaging. 2005;21:818–25.CrossRefPubMed
33.
go back to reference Krug R, Banerjee S, Han ET, Newitt DC, Link TM, Majumdar S. Feasibility of in vivo structural analysis of high-resolution magnetic resonance images of the proximal femur. Osteoporos Int. 2005;16:1307–14.CrossRefPubMed Krug R, Banerjee S, Han ET, Newitt DC, Link TM, Majumdar S. Feasibility of in vivo structural analysis of high-resolution magnetic resonance images of the proximal femur. Osteoporos Int. 2005;16:1307–14.CrossRefPubMed
34.
go back to reference Krug R, Han ET, Banerjee S, Majumdar S. Fully balanced steady-state 3D-spin-echo (bSSSE) imaging at 3 Tesla. Magn Reson Med. 2006;56:1033–40.CrossRefPubMed Krug R, Han ET, Banerjee S, Majumdar S. Fully balanced steady-state 3D-spin-echo (bSSSE) imaging at 3 Tesla. Magn Reson Med. 2006;56:1033–40.CrossRefPubMed
35.
go back to reference Ludescher B, Martirosian P, Lenk S, Machann J, Dammann F, Schick F, et al. High-resolution magnetic resonance imaging of trabecular bone in the wrist at 3 Tesla: initial results. Acta Radiol. 2005;46:306–9.CrossRefPubMed Ludescher B, Martirosian P, Lenk S, Machann J, Dammann F, Schick F, et al. High-resolution magnetic resonance imaging of trabecular bone in the wrist at 3 Tesla: initial results. Acta Radiol. 2005;46:306–9.CrossRefPubMed
36.
go back to reference Phan CM, Matsuura M, Bauer JS, Dunn TC, Newitt D, Lochmueller EM, et al. Trabecular bone structure of the calcaneus: comparison of MR imaging at 3.0 and 1.5 T with micro-CT as the standard of reference. Radiology. 2006;239:488–96.CrossRefPubMed Phan CM, Matsuura M, Bauer JS, Dunn TC, Newitt D, Lochmueller EM, et al. Trabecular bone structure of the calcaneus: comparison of MR imaging at 3.0 and 1.5 T with micro-CT as the standard of reference. Radiology. 2006;239:488–96.CrossRefPubMed
37.
go back to reference Bolbos RI, Zuo J, Banerjee S, Link TM, Ma CB, Li X, et al. Relationship between trabecular bone structure and articular cartilage morphology and relaxation times in early OA of the knee joint using parallel MRI at 3 T. Osteoarthritis Cartilage. 2008;16:1150–9.CrossRefPubMed Bolbos RI, Zuo J, Banerjee S, Link TM, Ma CB, Li X, et al. Relationship between trabecular bone structure and articular cartilage morphology and relaxation times in early OA of the knee joint using parallel MRI at 3 T. Osteoarthritis Cartilage. 2008;16:1150–9.CrossRefPubMed
38.
go back to reference Beuf O, Ghosh S, Newitt DC, Link TM, Steinbach L, Ries M, et al. Magnetic resonance imaging of normal and osteoarthritic trabecular bone structure in the human knee. Arthritis Rheum. 2002;46:385–93.CrossRefPubMed Beuf O, Ghosh S, Newitt DC, Link TM, Steinbach L, Ries M, et al. Magnetic resonance imaging of normal and osteoarthritic trabecular bone structure in the human knee. Arthritis Rheum. 2002;46:385–93.CrossRefPubMed
39.
go back to reference Lindsey CT, Narasimhan A, Adolfo JM, Jin H, Steinbach LS, Link T, et al. Magnetic resonance evaluation of the interrelationship between articular cartilage and trabecular bone of the osteoarthritic knee. Osteoarthritis Cartilage. 2004;12:86–96.CrossRefPubMed Lindsey CT, Narasimhan A, Adolfo JM, Jin H, Steinbach LS, Link T, et al. Magnetic resonance evaluation of the interrelationship between articular cartilage and trabecular bone of the osteoarthritic knee. Osteoarthritis Cartilage. 2004;12:86–96.CrossRefPubMed
40.
go back to reference Newitt DC, van Rietbergen B, Majumdar S. Processing and analysis of in vivo high-resolution MR images of trabecular bone for longitudinal studies: reproducibility of structural measures and micro-finite element analysis derived mechanical properties. Osteoporos Int. 2002;13:278–87.CrossRefPubMed Newitt DC, van Rietbergen B, Majumdar S. Processing and analysis of in vivo high-resolution MR images of trabecular bone for longitudinal studies: reproducibility of structural measures and micro-finite element analysis derived mechanical properties. Osteoporos Int. 2002;13:278–87.CrossRefPubMed
41.
go back to reference Majumdar S, Kothari M, Augat P, Newitt DC, Link TM, Lin JC, et al. High-resolution magnetic resonance imaging: three-dimensional trabecular bone architecture and biomechanical properties. Bone. 1998;22:445–54.CrossRefPubMed Majumdar S, Kothari M, Augat P, Newitt DC, Link TM, Lin JC, et al. High-resolution magnetic resonance imaging: three-dimensional trabecular bone architecture and biomechanical properties. Bone. 1998;22:445–54.CrossRefPubMed
42.
43.
go back to reference Majumdar S. Magnetic resonance imaging of trabecular bone structure. Top Magn Reson Imaging. 2002;13:323–34.CrossRefPubMed Majumdar S. Magnetic resonance imaging of trabecular bone structure. Top Magn Reson Imaging. 2002;13:323–34.CrossRefPubMed
44.
go back to reference Glaser C, Burgkart R, Kutschera A, Englmeier KH, Reiser M, Eckstein F. Femoro-tibial cartilage metrics from coronal MR image data: technique, test-retest reproducibility, and findings in osteoarthritis. Magn Reson Med. 2003;50:1229–36.CrossRefPubMed Glaser C, Burgkart R, Kutschera A, Englmeier KH, Reiser M, Eckstein F. Femoro-tibial cartilage metrics from coronal MR image data: technique, test-retest reproducibility, and findings in osteoarthritis. Magn Reson Med. 2003;50:1229–36.CrossRefPubMed
45.
go back to reference Peterfy CG, Schneider E, Nevitt M. The osteoarthritis initiative: report on the design rationale for the magnetic resonance imaging protocol for the knee. Osteoarthritis Cartilage. 2008;16:1433–41.CrossRefPubMed Peterfy CG, Schneider E, Nevitt M. The osteoarthritis initiative: report on the design rationale for the magnetic resonance imaging protocol for the knee. Osteoarthritis Cartilage. 2008;16:1433–41.CrossRefPubMed
46.
go back to reference Hunter DJ, Niu J, Zhang Y, Totterman S, Tamez J, Dabrowski C, et al. Change in cartilage morphometry: a sample of the progression cohort of the osteoarthritis initiative. Ann Rheum Dis. 2009;68:349–56.CrossRefPubMed Hunter DJ, Niu J, Zhang Y, Totterman S, Tamez J, Dabrowski C, et al. Change in cartilage morphometry: a sample of the progression cohort of the osteoarthritis initiative. Ann Rheum Dis. 2009;68:349–56.CrossRefPubMed
47.
go back to reference Eckstein F, Maschek S, Wirth W, Hudelmaier M, Hitzl W, Wyman B, et al. One year change of knee cartilage morphology in the first release of participants from the Osteoarthritis Initiative progression subcohort: association with sex, body mass index, symptoms and radiographic osteoarthritis status. Ann Rheum Dis. 2009;68:674–9.CrossRefPubMed Eckstein F, Maschek S, Wirth W, Hudelmaier M, Hitzl W, Wyman B, et al. One year change of knee cartilage morphology in the first release of participants from the Osteoarthritis Initiative progression subcohort: association with sex, body mass index, symptoms and radiographic osteoarthritis status. Ann Rheum Dis. 2009;68:674–9.CrossRefPubMed
48.
go back to reference Issever AS, Link TM, Kentenich M, Rogalla P, Burghardt AJ, Kazakia GJ, et al. Assessment of trabecular bone structure using MDCT: comparison of 64- and 320-slice CT using HR-pQCT as the reference standard. Eur Radiol. 2010;20(2):458–68.CrossRefPubMed Issever AS, Link TM, Kentenich M, Rogalla P, Burghardt AJ, Kazakia GJ, et al. Assessment of trabecular bone structure using MDCT: comparison of 64- and 320-slice CT using HR-pQCT as the reference standard. Eur Radiol. 2010;20(2):458–68.CrossRefPubMed
49.
go back to reference Lo GH, Price LL, Schneider E, Majumdar S, McAlindon TE. Higher subchondral bone volume is associated with higher DXA bone mineral density and knee OA severity. Arthritis Rheum 2009; 60 Suppl 10. Lo GH, Price LL, Schneider E, Majumdar S, McAlindon TE. Higher subchondral bone volume is associated with higher DXA bone mineral density and knee OA severity. Arthritis Rheum 2009; 60 Suppl 10.
Metadata
Title
Magnetic resonance imaging evaluation of weight-bearing subchondral trabecular bone in the knee
Authors
Erika Schneider
Grace H. Lo
Gretchen Sloane
Lynn Fanella
David J. Hunter
Charles B. Eaton
Timothy E. McAlindon
Publication date
01-01-2011
Publisher
Springer-Verlag
Published in
Skeletal Radiology / Issue 1/2011
Print ISSN: 0364-2348
Electronic ISSN: 1432-2161
DOI
https://doi.org/10.1007/s00256-010-0943-z

Other articles of this Issue 1/2011

Skeletal Radiology 1/2011 Go to the issue