Skip to main content
Top
Published in: Pediatric Radiology 12/2022

10-05-2022 | Hypophosphatemic Rickets | Review

Disorders of phosphate homeostasis in children, part 2: hypophosphatemic and hyperphosphatemic disorders

Author: Richard M. Shore

Published in: Pediatric Radiology | Issue 12/2022

Login to get access

Abstract

Phosphorus, predominantly in the form of inorganic phosphate PO4−3, has many essential physiological functions. In the skeleton, phosphate and calcium form the mineral component and phosphate is also essential in regulating function of skeletal cells. Considerable advances have been made in our understanding of phosphate homeostasis since the recognition of fibroblast growth factor-23 (FGF23) as a bone-derived phosphaturic hormone. This second part of a two-part review of disorders of phosphate homeostasis in children covers hypophosphatemic and hyperphosphatemic disorders that are of interest to the pediatric radiologist, emphasizing, but not limited to, those related to abnormalities of FGF23 signaling.
Literature
1.
go back to reference ADHR Consortium (2000) Autosomal dominant hypophosphataemic rickets is associated with mutations in FGF23. Nat Genet 26:345–348CrossRef ADHR Consortium (2000) Autosomal dominant hypophosphataemic rickets is associated with mutations in FGF23. Nat Genet 26:345–348CrossRef
2.
go back to reference Levine BS, Kleeman CR, Felsenfeld AJ (2009) The journey from vitamin D-resistant rickets to the regulation of renal phosphate transport. Clin J Am Soc Nephrol 4:1866–1877PubMedCrossRef Levine BS, Kleeman CR, Felsenfeld AJ (2009) The journey from vitamin D-resistant rickets to the regulation of renal phosphate transport. Clin J Am Soc Nephrol 4:1866–1877PubMedCrossRef
3.
go back to reference Christov M, Jüppner H (2018) Phosphate homeostasis disorders. Best Pract Res Clin Endocrinol Metab 32:685–706PubMedCrossRef Christov M, Jüppner H (2018) Phosphate homeostasis disorders. Best Pract Res Clin Endocrinol Metab 32:685–706PubMedCrossRef
4.
go back to reference Koumakis E, Cormier C, Roux C et al (2020) The causes of hypo- and hyperphosphatemia in humans. Calcif Tissue Int 108:41–73PubMedCrossRef Koumakis E, Cormier C, Roux C et al (2020) The causes of hypo- and hyperphosphatemia in humans. Calcif Tissue Int 108:41–73PubMedCrossRef
5.
go back to reference Michigami T, Ozono K (2019) Roles of phosphate in skeleton. Front Endocrinol 10:180CrossRef Michigami T, Ozono K (2019) Roles of phosphate in skeleton. Front Endocrinol 10:180CrossRef
6.
go back to reference Razali NN, Hwu TT, Thilakavathy K (2015) Phosphate homeostasis and genetic mutations of familial hypophosphatemic rickets. J Pediatr Endocrinol Metab 28:1009–1017PubMedCrossRef Razali NN, Hwu TT, Thilakavathy K (2015) Phosphate homeostasis and genetic mutations of familial hypophosphatemic rickets. J Pediatr Endocrinol Metab 28:1009–1017PubMedCrossRef
7.
go back to reference Bitzan M, Goodyer PR (2019) Hypophosphatemic rickets. Pediatr Clin N Am 66:179–207CrossRef Bitzan M, Goodyer PR (2019) Hypophosphatemic rickets. Pediatr Clin N Am 66:179–207CrossRef
8.
go back to reference Lambert AS, Linglart A (2018) Hypocalcaemic and hypophosphatemic rickets. Best Pract Res Clin Endocrinol Metab 32:455–476PubMedCrossRef Lambert AS, Linglart A (2018) Hypocalcaemic and hypophosphatemic rickets. Best Pract Res Clin Endocrinol Metab 32:455–476PubMedCrossRef
9.
go back to reference Whyte MP, Schranck FW, Armamento-Villareal R (1996) X-linked hypophosphatemia: a search for gender, race, anticipation, or parent of origin effects on disease expression in children. J Clin Endocrinol Metab 81:4075–4080PubMed Whyte MP, Schranck FW, Armamento-Villareal R (1996) X-linked hypophosphatemia: a search for gender, race, anticipation, or parent of origin effects on disease expression in children. J Clin Endocrinol Metab 81:4075–4080PubMed
10.
go back to reference Liu S, Guo R, Simpson LG et al (2003) Regulation of fibroblastic growth factor 23 expression but not degradation by PHEX. J Biol Chem 278:37419–37426PubMedCrossRef Liu S, Guo R, Simpson LG et al (2003) Regulation of fibroblastic growth factor 23 expression but not degradation by PHEX. J Biol Chem 278:37419–37426PubMedCrossRef
12.
go back to reference Carpenter TO, Imel EA, Holm IA et al (2011) A clinician's guide to X-linked hypophosphatemia. J Bone Miner Res 26:1381–1388PubMedCrossRef Carpenter TO, Imel EA, Holm IA et al (2011) A clinician's guide to X-linked hypophosphatemia. J Bone Miner Res 26:1381–1388PubMedCrossRef
13.
14.
go back to reference Bacchetta J, Bardet C, Prié D (2020) Physiology of FGF23 and overview of genetic diseases associated with renal phosphate wasting. Metabolism 103s:153865PubMedCrossRef Bacchetta J, Bardet C, Prié D (2020) Physiology of FGF23 and overview of genetic diseases associated with renal phosphate wasting. Metabolism 103s:153865PubMedCrossRef
15.
go back to reference Beck-Nielsen SS, Brixen K, Gram J et al (2013) High bone mineral apparent density in children with X-linked hypophosphatemia. Osteoporos Int 24:2215–2221PubMedCrossRef Beck-Nielsen SS, Brixen K, Gram J et al (2013) High bone mineral apparent density in children with X-linked hypophosphatemia. Osteoporos Int 24:2215–2221PubMedCrossRef
16.
go back to reference Oliveri MB, Cassinelli H, Bergadá C et al (1991) Bone mineral density of the spine and radius shaft in children with X-linked hypophosphatemic rickets (XLH). Bone Miner 12:91–100PubMedCrossRef Oliveri MB, Cassinelli H, Bergadá C et al (1991) Bone mineral density of the spine and radius shaft in children with X-linked hypophosphatemic rickets (XLH). Bone Miner 12:91–100PubMedCrossRef
17.
go back to reference Reid IR, Murphy WA, Hardy DC et al (1991) X-linked hypophosphatemia: skeletal mass in adults assessed by histomorphometry, computed tomography, and absorptiometry. Am J Med 90:63–69PubMedCrossRef Reid IR, Murphy WA, Hardy DC et al (1991) X-linked hypophosphatemia: skeletal mass in adults assessed by histomorphometry, computed tomography, and absorptiometry. Am J Med 90:63–69PubMedCrossRef
18.
go back to reference Shore RM, Langman CB, Poznanski AK (2000) Lumbar and radial bone mineral density in children and adolescents with X-linked hypophosphatemia: evaluation with dual X-ray absorptiometry. Skelet Radiol 29:90–93CrossRef Shore RM, Langman CB, Poznanski AK (2000) Lumbar and radial bone mineral density in children and adolescents with X-linked hypophosphatemia: evaluation with dual X-ray absorptiometry. Skelet Radiol 29:90–93CrossRef
19.
go back to reference Rauch F (2006) Material matters: a mechanostat-based perspective on bone development in osteogenesis imperfecta and hypophosphatemic rickets. J Musculoskelet Neuronal Interact 6:142–146PubMed Rauch F (2006) Material matters: a mechanostat-based perspective on bone development in osteogenesis imperfecta and hypophosphatemic rickets. J Musculoskelet Neuronal Interact 6:142–146PubMed
20.
go back to reference Frost HM (1987) The mechanostat: a proposed pathogentic mechanism of osteoporoses and the bone mass effects of mechanical and nonmechanical agents. Bone Miner 2:73–85PubMed Frost HM (1987) The mechanostat: a proposed pathogentic mechanism of osteoporoses and the bone mass effects of mechanical and nonmechanical agents. Bone Miner 2:73–85PubMed
21.
go back to reference Arango Sancho P (2020) Complications of phosphate and vitamin D treatment in X-linked hypophosphataemia. Adv Ther 37:105–112PubMedCrossRef Arango Sancho P (2020) Complications of phosphate and vitamin D treatment in X-linked hypophosphataemia. Adv Ther 37:105–112PubMedCrossRef
22.
go back to reference Colares Neto GP, Ide Yamauchi F, Hueb Baroni R et al (2019) Nephrocalcinosis and nephrolithiasis in X-linked hypophosphatemic rickets: diagnostic imaging and risk factors. J Endocr Soc 3:1053–1061PubMedPubMedCentralCrossRef Colares Neto GP, Ide Yamauchi F, Hueb Baroni R et al (2019) Nephrocalcinosis and nephrolithiasis in X-linked hypophosphatemic rickets: diagnostic imaging and risk factors. J Endocr Soc 3:1053–1061PubMedPubMedCentralCrossRef
23.
go back to reference Carpenter TO, Imel EA, Ruppe MD et al (2014) Randomized trial of the anti-FGF23 antibody KRN23 in X-linked hypophosphatemia. J Clin Invest 124:1587–1597PubMedPubMedCentralCrossRef Carpenter TO, Imel EA, Ruppe MD et al (2014) Randomized trial of the anti-FGF23 antibody KRN23 in X-linked hypophosphatemia. J Clin Invest 124:1587–1597PubMedPubMedCentralCrossRef
24.
go back to reference Carpenter TO, Whyte MP, Imel EA et al (2018) Burosumab therapy in children with X-linked hypophosphatemia. N Engl J Med 378:1987–1998PubMedCrossRef Carpenter TO, Whyte MP, Imel EA et al (2018) Burosumab therapy in children with X-linked hypophosphatemia. N Engl J Med 378:1987–1998PubMedCrossRef
25.
go back to reference Imel EA, Glorieux FH, Whyte MP et al (2019) Burosumab versus conventional therapy in children with X-linked hypophosphataemia: a randomised, active-controlled, open-label, phase 3 trial. Lancet 393:2416–2427PubMedPubMedCentralCrossRef Imel EA, Glorieux FH, Whyte MP et al (2019) Burosumab versus conventional therapy in children with X-linked hypophosphataemia: a randomised, active-controlled, open-label, phase 3 trial. Lancet 393:2416–2427PubMedPubMedCentralCrossRef
26.
go back to reference Insogna KL, Briot K, Imel EA et al (2018) A randomized, double-blind, placebo-controlled, phase 3 trial evaluating the efficacy of burosumab, an anti-FGF23 antibody, in adults with X-linked hypophosphatemia: week 24 primary analysis. J Bone Miner Res 33:1383–1393PubMedCrossRef Insogna KL, Briot K, Imel EA et al (2018) A randomized, double-blind, placebo-controlled, phase 3 trial evaluating the efficacy of burosumab, an anti-FGF23 antibody, in adults with X-linked hypophosphatemia: week 24 primary analysis. J Bone Miner Res 33:1383–1393PubMedCrossRef
27.
28.
go back to reference Whyte MP, Carpenter TO, Gottesman GS et al (2019) Efficacy and safety of burosumab in children aged 1-4 years with X-linked hypophosphataemia: a multicentre, open-label, phase 2 trial. Lancet Diabetes Endocrinol 7:189–199PubMedCrossRef Whyte MP, Carpenter TO, Gottesman GS et al (2019) Efficacy and safety of burosumab in children aged 1-4 years with X-linked hypophosphataemia: a multicentre, open-label, phase 2 trial. Lancet Diabetes Endocrinol 7:189–199PubMedCrossRef
29.
go back to reference Athonvarangkul D, Insogna KL (2021) New therapies for hypophosphatemia-related to FGF23 excess. Calcif Tissue Int 108:143–157PubMedCrossRef Athonvarangkul D, Insogna KL (2021) New therapies for hypophosphatemia-related to FGF23 excess. Calcif Tissue Int 108:143–157PubMedCrossRef
30.
go back to reference Fukumoto S (2021) FGF23-related hypophosphatemic rickets/osteomalacia: diagnosis and new treatment. J Mol Endocrinol 66:R57–R65PubMedCrossRef Fukumoto S (2021) FGF23-related hypophosphatemic rickets/osteomalacia: diagnosis and new treatment. J Mol Endocrinol 66:R57–R65PubMedCrossRef
31.
go back to reference Harada D, Ueyama K, Oriyama K et al (2021) Switching from conventional therapy to burosumab injection has the potential to prevent nephrocalcinosis in patients with X-linked hypophosphatemic rickets. J Pediatr Endocrinol Metab 34:791–798PubMedCrossRef Harada D, Ueyama K, Oriyama K et al (2021) Switching from conventional therapy to burosumab injection has the potential to prevent nephrocalcinosis in patients with X-linked hypophosphatemic rickets. J Pediatr Endocrinol Metab 34:791–798PubMedCrossRef
33.
go back to reference Bacchetta J, Rothenbuhler A, Gueorguieva I et al (2021) X-linked hypophosphatemia and burosumab: practical clinical points from the French experience. Joint Bone Spine 88:105208PubMedCrossRef Bacchetta J, Rothenbuhler A, Gueorguieva I et al (2021) X-linked hypophosphatemia and burosumab: practical clinical points from the French experience. Joint Bone Spine 88:105208PubMedCrossRef
34.
go back to reference Ferreira CR, Kintzinger K, Hackbarth ME et al (2021) Ectopic calcification and hypophosphatemic rickets: natural history of ENPP1 and ABCC6 deficiencies. J Bone Miner Res 36:2193–2202PubMedCrossRef Ferreira CR, Kintzinger K, Hackbarth ME et al (2021) Ectopic calcification and hypophosphatemic rickets: natural history of ENPP1 and ABCC6 deficiencies. J Bone Miner Res 36:2193–2202PubMedCrossRef
35.
go back to reference Ferreira CR, Hackbarth ME, Ziegler SG et al (2021) Prospective phenotyping of long-term survivors of generalized arterial calcification of infancy (GACI). Genet Med 23:396–407PubMedCrossRef Ferreira CR, Hackbarth ME, Ziegler SG et al (2021) Prospective phenotyping of long-term survivors of generalized arterial calcification of infancy (GACI). Genet Med 23:396–407PubMedCrossRef
36.
go back to reference Höppner J, Kornak U, Sinningen K et al (2021) Autosomal recessive hypophosphatemic rickets type 2 (ARHR2) due to ENPP1-deficiency. Bone 153:116111PubMedCrossRef Höppner J, Kornak U, Sinningen K et al (2021) Autosomal recessive hypophosphatemic rickets type 2 (ARHR2) due to ENPP1-deficiency. Bone 153:116111PubMedCrossRef
37.
go back to reference Stern R, Levi DS, Gales B et al (2021) Correspondence on "prospective phenotyping of long-term survivors of generalized arterial calcification of infancy (GACI)" by Ferreira et al. Genet Med 23:2006–2007PubMedCrossRef Stern R, Levi DS, Gales B et al (2021) Correspondence on "prospective phenotyping of long-term survivors of generalized arterial calcification of infancy (GACI)" by Ferreira et al. Genet Med 23:2006–2007PubMedCrossRef
41.
go back to reference Florenzano P, Hartley IR, Jimenez M et al (2020) Tumor-induced osteomalacia. Calcif Tissue Int 108:128–142PubMedCrossRef Florenzano P, Hartley IR, Jimenez M et al (2020) Tumor-induced osteomalacia. Calcif Tissue Int 108:128–142PubMedCrossRef
43.
go back to reference Harrison HE (1973) Oncogenous rickets: possible elaboration by a tumor of a humoral substance inhibiting tubular reabsorption of phosphate. Pediatrics 52:432–434PubMedCrossRef Harrison HE (1973) Oncogenous rickets: possible elaboration by a tumor of a humoral substance inhibiting tubular reabsorption of phosphate. Pediatrics 52:432–434PubMedCrossRef
44.
go back to reference Jan De Beur SM, Finnegan RB, Vassiliadis J et al (2002) Tumors associated with oncogenic osteomalacia express genes important in bone and mineral metabolism. J Bone Miner Res 17:1102–1110CrossRef Jan De Beur SM, Finnegan RB, Vassiliadis J et al (2002) Tumors associated with oncogenic osteomalacia express genes important in bone and mineral metabolism. J Bone Miner Res 17:1102–1110CrossRef
45.
go back to reference Shimada T, Mizutani S, Muto T et al (2001) Cloning and characterization of FGF23 as a causative factor of tumor-induced osteomalacia. Proc Natl Acad Sci U S A 98:6500–6505PubMedPubMedCentralCrossRef Shimada T, Mizutani S, Muto T et al (2001) Cloning and characterization of FGF23 as a causative factor of tumor-induced osteomalacia. Proc Natl Acad Sci U S A 98:6500–6505PubMedPubMedCentralCrossRef
46.
go back to reference Folpe AL, Fanburg-Smith JC, Billings SD et al (2004) Most osteomalacia-associated mesenchymal tumors are a single histopathologic entity: an analysis of 32 cases and a comprehensive review of the literature. Am J Surg Pathol 28:1–30PubMedCrossRef Folpe AL, Fanburg-Smith JC, Billings SD et al (2004) Most osteomalacia-associated mesenchymal tumors are a single histopathologic entity: an analysis of 32 cases and a comprehensive review of the literature. Am J Surg Pathol 28:1–30PubMedCrossRef
47.
go back to reference Jiang Y, Xia WB, Xing XP et al (2012) Tumor-induced osteomalacia: an important cause of adult-onset hypophosphatemic osteomalacia in China: report of 39 cases and review of the literature. J Bone Miner Res 27:1967–1975PubMedCrossRef Jiang Y, Xia WB, Xing XP et al (2012) Tumor-induced osteomalacia: an important cause of adult-onset hypophosphatemic osteomalacia in China: report of 39 cases and review of the literature. J Bone Miner Res 27:1967–1975PubMedCrossRef
49.
go back to reference Lee JC, Su SY, Changou CA et al (2016) Characterization of FN1-FGFR1 and novel FN1-FGF1 fusion genes in a large series of phosphaturic mesenchymal tumors. Mod Pathol 29:1335–1346PubMedCrossRef Lee JC, Su SY, Changou CA et al (2016) Characterization of FN1-FGFR1 and novel FN1-FGF1 fusion genes in a large series of phosphaturic mesenchymal tumors. Mod Pathol 29:1335–1346PubMedCrossRef
50.
go back to reference Minisola S, Peacock M, Fukumoto S et al (2017) Tumour-induced osteomalacia. Nat Rev Dis Primers 3:17044PubMedCrossRef Minisola S, Peacock M, Fukumoto S et al (2017) Tumour-induced osteomalacia. Nat Rev Dis Primers 3:17044PubMedCrossRef
51.
go back to reference Jung GH, Kim JD, Cho Y et al (2010) A 9-month-old phosphaturic mesenchymal tumor mimicking the intractable rickets. J Pediatr Orthop B 19:127–132PubMedCrossRef Jung GH, Kim JD, Cho Y et al (2010) A 9-month-old phosphaturic mesenchymal tumor mimicking the intractable rickets. J Pediatr Orthop B 19:127–132PubMedCrossRef
52.
go back to reference Fernández-Cooke E, Cruz-Rojo J, Gallego C et al (2015) Tumor-induced rickets in a child with a central giant cell granuloma: a case report. Pediatrics 135:e1518–e1523PubMedCrossRef Fernández-Cooke E, Cruz-Rojo J, Gallego C et al (2015) Tumor-induced rickets in a child with a central giant cell granuloma: a case report. Pediatrics 135:e1518–e1523PubMedCrossRef
53.
go back to reference Crossen SS, Zambrano E, Newman B et al (2017) Tumor-induced osteomalacia in a 3-year-old with unresectable central giant cell lesions. J Pediatr Hematol Oncol 39:e21–e24PubMedCrossRef Crossen SS, Zambrano E, Newman B et al (2017) Tumor-induced osteomalacia in a 3-year-old with unresectable central giant cell lesions. J Pediatr Hematol Oncol 39:e21–e24PubMedCrossRef
54.
go back to reference Ma GM, Chow JS, Taylor GA (2019) Review of paraneoplastic syndromes in children. Pediatr Radiol 49:534–550PubMedCrossRef Ma GM, Chow JS, Taylor GA (2019) Review of paraneoplastic syndromes in children. Pediatr Radiol 49:534–550PubMedCrossRef
55.
go back to reference Duet M, Kerkeni S, Sfar R et al (2008) Clinical impact of somatostatin receptor scintigraphy in the management of tumor-induced osteomalacia. Clin Nucl Med 33:752–756PubMedCrossRef Duet M, Kerkeni S, Sfar R et al (2008) Clinical impact of somatostatin receptor scintigraphy in the management of tumor-induced osteomalacia. Clin Nucl Med 33:752–756PubMedCrossRef
56.
go back to reference Jan de Beur SM, Streeten EA, Civelek AC et al (2002) Localisation of mesenchymal tumours by somatostatin receptor imaging. Lancet 359:761–763PubMedCrossRef Jan de Beur SM, Streeten EA, Civelek AC et al (2002) Localisation of mesenchymal tumours by somatostatin receptor imaging. Lancet 359:761–763PubMedCrossRef
57.
go back to reference Nguyen BD, Wang EA (1999) Indium-111 pentetreotide scintigraphy of mesenchymal tumor with oncogenic osteomalacia. Clin Nucl Med 24:130–131PubMedCrossRef Nguyen BD, Wang EA (1999) Indium-111 pentetreotide scintigraphy of mesenchymal tumor with oncogenic osteomalacia. Clin Nucl Med 24:130–131PubMedCrossRef
58.
go back to reference El-Maouche D, Sadowski SM, Papadakis GZ et al (2016) 68Ga-DOTATATE for tumor localization in tumor-induced osteomalacia. J Clin Endocrinol Metab 101:3575–3581PubMedPubMedCentralCrossRef El-Maouche D, Sadowski SM, Papadakis GZ et al (2016) 68Ga-DOTATATE for tumor localization in tumor-induced osteomalacia. J Clin Endocrinol Metab 101:3575–3581PubMedPubMedCentralCrossRef
60.
go back to reference Rayamajhi SJ, Yeh R, Wong T et al (2019) Tumor-induced osteomalacia — current imaging modalities and a systematic approach for tumor localization. Clin Imaging 56:114–123PubMedCrossRef Rayamajhi SJ, Yeh R, Wong T et al (2019) Tumor-induced osteomalacia — current imaging modalities and a systematic approach for tumor localization. Clin Imaging 56:114–123PubMedCrossRef
61.
go back to reference Andreopoulou P, Dumitrescu CE, Kelly MH et al (2011) Selective venous catheterization for the localization of phosphaturic mesenchymal tumors. J Bone Miner Res 26:1295–1302PubMedCrossRef Andreopoulou P, Dumitrescu CE, Kelly MH et al (2011) Selective venous catheterization for the localization of phosphaturic mesenchymal tumors. J Bone Miner Res 26:1295–1302PubMedCrossRef
62.
go back to reference Hesse E, Rosenthal H, Bastian L (2007) Radiofrequency ablation of a tumor causing oncogenic osteomalacia. N Engl J Med 357:422–424PubMedCrossRef Hesse E, Rosenthal H, Bastian L (2007) Radiofrequency ablation of a tumor causing oncogenic osteomalacia. N Engl J Med 357:422–424PubMedCrossRef
63.
go back to reference de Castro LF, Ovejero D, Boyce AM (2020) Diagnosis of endocrine disease: mosaic disorders of FGF23 excess: fibrous dysplasia/McCune-Albright syndrome and cutaneous skeletal hypophosphatemia syndrome. Eur J Endocrinol 182:R83–R99PubMedPubMedCentralCrossRef de Castro LF, Ovejero D, Boyce AM (2020) Diagnosis of endocrine disease: mosaic disorders of FGF23 excess: fibrous dysplasia/McCune-Albright syndrome and cutaneous skeletal hypophosphatemia syndrome. Eur J Endocrinol 182:R83–R99PubMedPubMedCentralCrossRef
64.
go back to reference Riminucci M, Collins MT, Fedarko NS et al (2003) FGF-23 in fibrous dysplasia of bone and its relationship to renal phosphate wasting. J Clin Invest 112:683–692PubMedPubMedCentralCrossRef Riminucci M, Collins MT, Fedarko NS et al (2003) FGF-23 in fibrous dysplasia of bone and its relationship to renal phosphate wasting. J Clin Invest 112:683–692PubMedPubMedCentralCrossRef
65.
66.
go back to reference Kuznetsov SA, Cherman N, Riminucci M et al (2008) Age-dependent demise of GNAS-mutated skeletal stem cells and "normalization" of fibrous dysplasia of bone. J Bone Miner Res 23:1731–1740PubMedPubMedCentralCrossRef Kuznetsov SA, Cherman N, Riminucci M et al (2008) Age-dependent demise of GNAS-mutated skeletal stem cells and "normalization" of fibrous dysplasia of bone. J Bone Miner Res 23:1731–1740PubMedPubMedCentralCrossRef
67.
go back to reference Bhattacharyya N, Wiench M, Dumitrescu C et al (2012) Mechanism of FGF23 processing in fibrous dysplasia. J Bone Miner Res 27:1132–1141PubMedCrossRef Bhattacharyya N, Wiench M, Dumitrescu C et al (2012) Mechanism of FGF23 processing in fibrous dysplasia. J Bone Miner Res 27:1132–1141PubMedCrossRef
68.
go back to reference Aschinberg LC, Solomon LM, Zeis PM et al (1977) Vitamin D-resistant rickets associated with epidermal nevus syndrome: demonstration of a phosphaturic substance in the dermal lesions. J Pediatr 91:56–60PubMedCrossRef Aschinberg LC, Solomon LM, Zeis PM et al (1977) Vitamin D-resistant rickets associated with epidermal nevus syndrome: demonstration of a phosphaturic substance in the dermal lesions. J Pediatr 91:56–60PubMedCrossRef
69.
go back to reference Lim YH, Ovejero D, Sugarman JS et al (2014) Multilineage somatic activating mutations in HRAS and NRAS cause mosaic cutaneous and skeletal lesions, elevated FGF23 and hypophosphatemia. Hum Mol Genet 23:397–407PubMedCrossRef Lim YH, Ovejero D, Sugarman JS et al (2014) Multilineage somatic activating mutations in HRAS and NRAS cause mosaic cutaneous and skeletal lesions, elevated FGF23 and hypophosphatemia. Hum Mol Genet 23:397–407PubMedCrossRef
70.
go back to reference Ovejero D, Lim YH, Boyce AM et al (2016) Cutaneous skeletal hypophosphatemia syndrome: clinical spectrum, natural history, and treatment. Osteoporos Int 27:3615–3626PubMedPubMedCentralCrossRef Ovejero D, Lim YH, Boyce AM et al (2016) Cutaneous skeletal hypophosphatemia syndrome: clinical spectrum, natural history, and treatment. Osteoporos Int 27:3615–3626PubMedPubMedCentralCrossRef
71.
go back to reference Heike CL, Cunningham ML, Steiner RD et al (2005) Skeletal changes in epidermal nevus syndrome: does focal bone disease harbor clues concerning pathogenesis? Am J Med Genet 139A:67–77PubMedCrossRef Heike CL, Cunningham ML, Steiner RD et al (2005) Skeletal changes in epidermal nevus syndrome: does focal bone disease harbor clues concerning pathogenesis? Am J Med Genet 139A:67–77PubMedCrossRef
72.
go back to reference Pitt MJ (2002) Rickets and osteomalacia. In: Resnick D (ed) Diagnosis of bone and joint disorders, 4th edn. Saunders, Philadelphia, pp 1901–1946 Pitt MJ (2002) Rickets and osteomalacia. In: Resnick D (ed) Diagnosis of bone and joint disorders, 4th edn. Saunders, Philadelphia, pp 1901–1946
73.
go back to reference White KE, Cabral JM, Davis SI et al (2005) Mutations that cause osteoglophonic dysplasia define novel roles for FGFR1 in bone elongation. Am J Hum Genet 76:361–367PubMedCrossRef White KE, Cabral JM, Davis SI et al (2005) Mutations that cause osteoglophonic dysplasia define novel roles for FGFR1 in bone elongation. Am J Hum Genet 76:361–367PubMedCrossRef
74.
go back to reference Wagner CA, Rubio-Aliaga I, Hernando N (2017) Renal phosphate handling and inherited disorders of phosphate reabsorption: an update. Pediatr Nephrol 34:549–559PubMedCrossRef Wagner CA, Rubio-Aliaga I, Hernando N (2017) Renal phosphate handling and inherited disorders of phosphate reabsorption: an update. Pediatr Nephrol 34:549–559PubMedCrossRef
75.
go back to reference Tiosano D, Hochberg Z (2009) Hypophosphatemia: the common denominator of all rickets. J Bone Miner Metab 27:392–401PubMedCrossRef Tiosano D, Hochberg Z (2009) Hypophosphatemia: the common denominator of all rickets. J Bone Miner Metab 27:392–401PubMedCrossRef
76.
go back to reference Ito N, Fukumoto S (2021) Congenital hyperphosphatemic conditions caused by the deficient activity of FGF23. Calcif Tissue Int 108:104–115PubMedCrossRef Ito N, Fukumoto S (2021) Congenital hyperphosphatemic conditions caused by the deficient activity of FGF23. Calcif Tissue Int 108:104–115PubMedCrossRef
77.
go back to reference Roberts MS, Burbelo PD, Egli-Spichtig D et al (2018) Autoimmune hyperphosphatemic tumoral calcinosis in a patient with FGF23 autoantibodies. J Clin Invest 128:5368–5373PubMedPubMedCentralCrossRef Roberts MS, Burbelo PD, Egli-Spichtig D et al (2018) Autoimmune hyperphosphatemic tumoral calcinosis in a patient with FGF23 autoantibodies. J Clin Invest 128:5368–5373PubMedPubMedCentralCrossRef
78.
go back to reference Resnick D (2002) Soft tissue disorders. In: Resnick D (ed) Diagnosis of bone and joint disorders, 4th edn. W. B. Saunders, Philadelphia, pp 4635–4695 Resnick D (2002) Soft tissue disorders. In: Resnick D (ed) Diagnosis of bone and joint disorders, 4th edn. W. B. Saunders, Philadelphia, pp 4635–4695
79.
go back to reference Martinez S, Vogler JB 3rd, Harrelson JM, Lyles KW (1990) Imaging of tumoral calcinosis: new observations. Radiology 174:215–222PubMedCrossRef Martinez S, Vogler JB 3rd, Harrelson JM, Lyles KW (1990) Imaging of tumoral calcinosis: new observations. Radiology 174:215–222PubMedCrossRef
80.
go back to reference Olsen KM, Chew FS (2006) Tumoral calcinosis: pearls, polemics, and alternative possibilities. Radiographics 26:871–885PubMedCrossRef Olsen KM, Chew FS (2006) Tumoral calcinosis: pearls, polemics, and alternative possibilities. Radiographics 26:871–885PubMedCrossRef
81.
go back to reference Boyce AM, Lee AE, Roszko KL, Gafni RI (2020) Hyperphosphatemic tumoral calcinosis: pathogenesis, clinical presentation, and challenges in management. Front Endocrinol 11:293CrossRef Boyce AM, Lee AE, Roszko KL, Gafni RI (2020) Hyperphosphatemic tumoral calcinosis: pathogenesis, clinical presentation, and challenges in management. Front Endocrinol 11:293CrossRef
82.
go back to reference Ramnitz MS, Gourh P, Goldbach-Mansky R et al (2016) Phenotypic and genotypic characterization and treatment of a cohort with familial tumoral calcinosis/hyperostosis-hyperphosphatemia syndrome. J Bone Miner Res 31:1845–1854PubMedCrossRef Ramnitz MS, Gourh P, Goldbach-Mansky R et al (2016) Phenotypic and genotypic characterization and treatment of a cohort with familial tumoral calcinosis/hyperostosis-hyperphosphatemia syndrome. J Bone Miner Res 31:1845–1854PubMedCrossRef
83.
go back to reference Folsom LJ, Imel EA (2015) Hyperphosphatemic familial tumoral calcinosis: genetic models of deficient FGF23 action. Curr Osteoporos Rep 13:78–87PubMedCrossRef Folsom LJ, Imel EA (2015) Hyperphosphatemic familial tumoral calcinosis: genetic models of deficient FGF23 action. Curr Osteoporos Rep 13:78–87PubMedCrossRef
84.
go back to reference Clarke E, Swischuk LE, Hayden CK Jr (1984) Tumoral calcinosis, diaphysitis, and hyperphosphatemia. Radiology 151:643–646PubMedCrossRef Clarke E, Swischuk LE, Hayden CK Jr (1984) Tumoral calcinosis, diaphysitis, and hyperphosphatemia. Radiology 151:643–646PubMedCrossRef
85.
go back to reference Talab YA, Mallouh A (1988) Hyperostosis with hyperphosphatemia: a case report and review of the literature. J Pediatr Orthop 8:338–341PubMedCrossRef Talab YA, Mallouh A (1988) Hyperostosis with hyperphosphatemia: a case report and review of the literature. J Pediatr Orthop 8:338–341PubMedCrossRef
86.
go back to reference Narchi H (1997) Hyperostosis with hyperphosphatemia: evidence of familial occurrence and association with tumoral calcinosis. Pediatrics 99:745–748PubMedCrossRef Narchi H (1997) Hyperostosis with hyperphosphatemia: evidence of familial occurrence and association with tumoral calcinosis. Pediatrics 99:745–748PubMedCrossRef
87.
go back to reference Frishberg Y, Ito N, Rinat C et al (2007) Hyperostosis-hyperphosphatemia syndrome: a congenital disorder of O-glycosylation associated with augmented processing of fibroblast growth factor 23. J Bone Miner Res 22:235–242PubMedCrossRef Frishberg Y, Ito N, Rinat C et al (2007) Hyperostosis-hyperphosphatemia syndrome: a congenital disorder of O-glycosylation associated with augmented processing of fibroblast growth factor 23. J Bone Miner Res 22:235–242PubMedCrossRef
88.
go back to reference Slavin RE, Wen J, Barmada A (2012) Tumoral calcinosis — a pathogenetic overview: a histological and ultrastructural study with a report of two new cases, one in infancy. Int J Surg Pathol 20:462–473PubMedCrossRef Slavin RE, Wen J, Barmada A (2012) Tumoral calcinosis — a pathogenetic overview: a histological and ultrastructural study with a report of two new cases, one in infancy. Int J Surg Pathol 20:462–473PubMedCrossRef
89.
go back to reference Finer G, Price HE, Shore RM et al (2014) Hyperphosphatemic familial tumoral calcinosis: response to acetazolamide and postulated mechanisms. Am J Med Genet A 164A:1545–1549PubMedCrossRef Finer G, Price HE, Shore RM et al (2014) Hyperphosphatemic familial tumoral calcinosis: response to acetazolamide and postulated mechanisms. Am J Med Genet A 164A:1545–1549PubMedCrossRef
90.
go back to reference Ito E, Konno Y, Toki T, Terui K (2010) Molecular pathogenesis in diamond-Blackfan anemia. Int J Hematol 92:413–418PubMedCrossRef Ito E, Konno Y, Toki T, Terui K (2010) Molecular pathogenesis in diamond-Blackfan anemia. Int J Hematol 92:413–418PubMedCrossRef
91.
go back to reference Vervloet MG (2020) FGF23 measurement in chronic kidney disease: what is it really reflecting? Clin Chim Acta 505:160–166PubMedCrossRef Vervloet MG (2020) FGF23 measurement in chronic kidney disease: what is it really reflecting? Clin Chim Acta 505:160–166PubMedCrossRef
Metadata
Title
Disorders of phosphate homeostasis in children, part 2: hypophosphatemic and hyperphosphatemic disorders
Author
Richard M. Shore
Publication date
10-05-2022
Publisher
Springer Berlin Heidelberg
Published in
Pediatric Radiology / Issue 12/2022
Print ISSN: 0301-0449
Electronic ISSN: 1432-1998
DOI
https://doi.org/10.1007/s00247-022-05373-z

Other articles of this Issue 12/2022

Pediatric Radiology 12/2022 Go to the issue