Skip to main content
Top
Published in: Calcified Tissue International 1/2021

01-01-2021 | Osteomalacia | Review

Tumor-Induced Osteomalacia

Authors: Pablo Florenzano, Iris R. Hartley, Macarena Jimenez, Kelly Roszko, Rachel I. Gafni, Michael T. Collins

Published in: Calcified Tissue International | Issue 1/2021

Login to get access

Abstract

Tumor-induced osteomalacia (TIO) is a rare paraneoplastic syndrome caused by tumoral production of fibroblast growth factor 23 (FGF23). The hallmark biochemical features include hypophosphatemia due to renal phosphate wasting, inappropriately normal or frankly low 1,25-dihydroxy-vitamin D, and inappropriately normal or elevated FGF23. TIO is caused by typically small, slow growing, benign phosphaturic mesenchymal tumors (PMTs) that are located almost anywhere in the body from the skull to the feet, in soft tissue or bone. The recent identification of fusion genes in a significant subset of PMTs has provided important insights into PMT tumorigenesis. Although management of this disease may seem straightforward, considering that complete resection of the tumor leads to its cure, locating these often-tiny tumors is frequently a challenge. For this purpose, a stepwise, systematic approach is required. It starts with thorough medical history and physical examination, followed by functional imaging, and confirmation of identified lesions by anatomical imaging. If the tumor resection is not possible, medical therapy with phosphate and active vitamin D is indicated. Novel therapeutic approaches include image-guided tumor ablation and medical treatment with the anti-FGF23 antibody burosumab or the pan-FGFR tyrosine kinase inhibitor, BGJ398/infigratinib. Great progress has been made in the diagnosis and treatment of TIO, and more is likely to come, turning this challenging, debilitating disease into a gratifying cure for patients and their providers.
Literature
1.
go back to reference Drezner MK, Feinglos MN (1977) Osteomalacia due to 1alpha, 25-dihydroxycholecalciferol deficiency. Association with a giant cell tumor of bone. J Clin Investig 60(5):1046–1053PubMedCrossRefPubMedCentral Drezner MK, Feinglos MN (1977) Osteomalacia due to 1alpha, 25-dihydroxycholecalciferol deficiency. Association with a giant cell tumor of bone. J Clin Investig 60(5):1046–1053PubMedCrossRefPubMedCentral
4.
go back to reference Prader A et al (1959) Rickets following bone tumor. Helv Paediatr Acta 14:554–565PubMed Prader A et al (1959) Rickets following bone tumor. Helv Paediatr Acta 14:554–565PubMed
5.
go back to reference White KE et al (2001) The autosomal dominant hypophosphatemic rickets (ADHR) gene is a secreted polypeptide overexpressed by tumors that cause phosphate wasting. J Clin Endocrinol Metab 86(2):497–500PubMedCrossRef White KE et al (2001) The autosomal dominant hypophosphatemic rickets (ADHR) gene is a secreted polypeptide overexpressed by tumors that cause phosphate wasting. J Clin Endocrinol Metab 86(2):497–500PubMedCrossRef
6.
go back to reference ADHR Consortium (2000) Autosomal dominant hypophosphataemic rickets is associated with mutations in FGF23. Nat Genet 26(3):345–348CrossRef ADHR Consortium (2000) Autosomal dominant hypophosphataemic rickets is associated with mutations in FGF23. Nat Genet 26(3):345–348CrossRef
7.
go back to reference Shimada T et al (2001) Cloning and characterization of FGF23 as a causative factor of tumor-induced osteomalacia. Proc Natl Acad Sci USA 98(11):6500–6505PubMedCrossRefPubMedCentral Shimada T et al (2001) Cloning and characterization of FGF23 as a causative factor of tumor-induced osteomalacia. Proc Natl Acad Sci USA 98(11):6500–6505PubMedCrossRefPubMedCentral
8.
go back to reference Jonsson KB et al (2003) Fibroblast growth factor 23 in oncogenic osteomalacia and X-linked hypophosphatemia. N Engl J Med 348(17):1656–1663PubMedCrossRef Jonsson KB et al (2003) Fibroblast growth factor 23 in oncogenic osteomalacia and X-linked hypophosphatemia. N Engl J Med 348(17):1656–1663PubMedCrossRef
9.
go back to reference Folpe AL et al (2004) Most osteomalacia-associated mesenchymal tumors are a single histopathologic entity: an analysis of 32 cases and a comprehensive review of the literature. Am J Surg Pathol 28(1):1–30PubMedCrossRef Folpe AL et al (2004) Most osteomalacia-associated mesenchymal tumors are a single histopathologic entity: an analysis of 32 cases and a comprehensive review of the literature. Am J Surg Pathol 28(1):1–30PubMedCrossRef
10.
go back to reference Shimada T et al (2004) FGF-23 is a potent regulator of vitamin D metabolism and phosphate homeostasis. J Bone Miner Res 19(3):429–435PubMedCrossRef Shimada T et al (2004) FGF-23 is a potent regulator of vitamin D metabolism and phosphate homeostasis. J Bone Miner Res 19(3):429–435PubMedCrossRef
11.
go back to reference Endo I et al (2015) Nationwide survey of fibroblast growth factor 23 (FGF23)-related hypophosphatemic diseases in Japan: prevalence, biochemical data and treatment. Endocr J 62(9):811–816PubMedCrossRef Endo I et al (2015) Nationwide survey of fibroblast growth factor 23 (FGF23)-related hypophosphatemic diseases in Japan: prevalence, biochemical data and treatment. Endocr J 62(9):811–816PubMedCrossRef
12.
go back to reference Jiang Y et al (2012) Tumor-induced osteomalacia: an important cause of adult-onset hypophosphatemic osteomalacia in China: report of 39 cases and review of the literature. J Bone Miner Res 27(9):1967–1975PubMedCrossRef Jiang Y et al (2012) Tumor-induced osteomalacia: an important cause of adult-onset hypophosphatemic osteomalacia in China: report of 39 cases and review of the literature. J Bone Miner Res 27(9):1967–1975PubMedCrossRef
13.
go back to reference Jung GH et al (2010) A 9-month-old phosphaturic mesenchymal tumor mimicking the intractable rickets. J Pediatr Orthop B 19(1):127–132PubMedCrossRef Jung GH et al (2010) A 9-month-old phosphaturic mesenchymal tumor mimicking the intractable rickets. J Pediatr Orthop B 19(1):127–132PubMedCrossRef
14.
go back to reference Crossen SS et al (2017) Tumor-induced osteomalacia in a 3-year-old with unresectable central giant cell lesions. J Pediatr Hematol Oncol 39(1):e21–e24PubMedCrossRef Crossen SS et al (2017) Tumor-induced osteomalacia in a 3-year-old with unresectable central giant cell lesions. J Pediatr Hematol Oncol 39(1):e21–e24PubMedCrossRef
15.
go back to reference Fernández-Cooke E et al (2015) Tumor-induced rickets in a child with a central giant cell granuloma: a case report. Pediatrics 135(6):e1518–e1523PubMedCrossRef Fernández-Cooke E et al (2015) Tumor-induced rickets in a child with a central giant cell granuloma: a case report. Pediatrics 135(6):e1518–e1523PubMedCrossRef
16.
go back to reference Chong WH et al (2013) Tumor localization and biochemical response to cure in tumor-induced osteomalacia. J Bone Miner Res 28(6):1386–1398PubMedCrossRef Chong WH et al (2013) Tumor localization and biochemical response to cure in tumor-induced osteomalacia. J Bone Miner Res 28(6):1386–1398PubMedCrossRef
17.
go back to reference Tella SH et al (2017) Multimodality image-guided cryoablation for inoperable tumor-induced osteomalacia. J Bone Miner Res 32(11):2248–2256PubMedCrossRef Tella SH et al (2017) Multimodality image-guided cryoablation for inoperable tumor-induced osteomalacia. J Bone Miner Res 32(11):2248–2256PubMedCrossRef
18.
go back to reference Li X et al (2019) Nonremission and recurrent tumor-induced osteomalacia: a retrospective study. J Bone Miner Res 35:469–477PubMedCrossRef Li X et al (2019) Nonremission and recurrent tumor-induced osteomalacia: a retrospective study. J Bone Miner Res 35:469–477PubMedCrossRef
19.
go back to reference Peterson NR, Summerlin DJ, Cordes SR (2010) Multiple phosphaturic mesenchymal tumors associated with oncogenic osteomalacia: case report and review of the literature. Ear Nose Throat J 89(6):E11–E15PubMed Peterson NR, Summerlin DJ, Cordes SR (2010) Multiple phosphaturic mesenchymal tumors associated with oncogenic osteomalacia: case report and review of the literature. Ear Nose Throat J 89(6):E11–E15PubMed
20.
go back to reference Arai R et al (2017) A rare case of multiple phosphaturic mesenchymal tumors along a tendon sheath inducing osteomalacia. BMC Musculoskelet Disord 18(1):79PubMedPubMedCentralCrossRef Arai R et al (2017) A rare case of multiple phosphaturic mesenchymal tumors along a tendon sheath inducing osteomalacia. BMC Musculoskelet Disord 18(1):79PubMedPubMedCentralCrossRef
21.
22.
go back to reference Toro L et al (2018) Erythropoietin induces bone marrow and plasma fibroblast growth factor 23 during acute kidney injury. Kidney Int 93(5):1131–1141PubMedCrossRef Toro L et al (2018) Erythropoietin induces bone marrow and plasma fibroblast growth factor 23 during acute kidney injury. Kidney Int 93(5):1131–1141PubMedCrossRef
23.
go back to reference Rabadi S et al (2018) Acute blood loss stimulates fibroblast growth factor 23 production. Am J Physiol Ren Physiol 314(1):F132–F139CrossRef Rabadi S et al (2018) Acute blood loss stimulates fibroblast growth factor 23 production. Am J Physiol Ren Physiol 314(1):F132–F139CrossRef
24.
25.
go back to reference Miyamoto K et al (2011) Sodium-dependent phosphate cotransporters: lessons from gene knockout and mutation studies. J Pharm Sci 100(9):3719–3730PubMedCrossRef Miyamoto K et al (2011) Sodium-dependent phosphate cotransporters: lessons from gene knockout and mutation studies. J Pharm Sci 100(9):3719–3730PubMedCrossRef
27.
go back to reference Burnett SM et al (2006) Regulation of C-terminal and intact FGF-23 by dietary phosphate in men and women. J Bone Miner Res 21(8):1187–1196PubMedCrossRef Burnett SM et al (2006) Regulation of C-terminal and intact FGF-23 by dietary phosphate in men and women. J Bone Miner Res 21(8):1187–1196PubMedCrossRef
28.
go back to reference Clinkenbeard EL et al (2017) Erythropoietin stimulates murine and human fibroblast growth factor-23, revealing novel roles for bone and bone marrow. Haematologica 102(11):e427–e430PubMedPubMedCentralCrossRef Clinkenbeard EL et al (2017) Erythropoietin stimulates murine and human fibroblast growth factor-23, revealing novel roles for bone and bone marrow. Haematologica 102(11):e427–e430PubMedPubMedCentralCrossRef
29.
go back to reference Daryadel A et al (2018) Erythropoietin stimulates fibroblast growth factor 23 (FGF23) in mice and men. Pflugers Arch 470(10):1569–1582PubMedCrossRef Daryadel A et al (2018) Erythropoietin stimulates fibroblast growth factor 23 (FGF23) in mice and men. Pflugers Arch 470(10):1569–1582PubMedCrossRef
30.
go back to reference Hanudel MR et al (2018) Effects of erythropoietin on fibroblast growth factor 23 in mice and humans. Nephrol Dial Transplant 34:2057–2065PubMedCentralCrossRef Hanudel MR et al (2018) Effects of erythropoietin on fibroblast growth factor 23 in mice and humans. Nephrol Dial Transplant 34:2057–2065PubMedCentralCrossRef
31.
go back to reference Weidner N (1991) Review and update: oncogenic osteomalacia-rickets. Ultrastruct Pathol 15(4–5):317–333PubMedCrossRef Weidner N (1991) Review and update: oncogenic osteomalacia-rickets. Ultrastruct Pathol 15(4–5):317–333PubMedCrossRef
33.
go back to reference Folpe AL (2019) Phosphaturic mesenchymal tumors: a review and update. Semin Diagn Pathol 36(4):260–268PubMedCrossRef Folpe AL (2019) Phosphaturic mesenchymal tumors: a review and update. Semin Diagn Pathol 36(4):260–268PubMedCrossRef
34.
go back to reference Weidner N, Santa Cruz D (1987) Phosphaturic mesenchymal tumors. A polymorphous group causing osteomalacia or rickets. Cancer 59(8):1442–1454PubMedCrossRef Weidner N, Santa Cruz D (1987) Phosphaturic mesenchymal tumors. A polymorphous group causing osteomalacia or rickets. Cancer 59(8):1442–1454PubMedCrossRef
35.
go back to reference Wu H et al (2018) Phosphaturic mesenchymal tumor with an admixture of epithelial and mesenchymal elements in the jaws: clinicopathological and immunohistochemical analysis of 22 cases with literature review. Mod Pathol 32:189–204PubMedCrossRef Wu H et al (2018) Phosphaturic mesenchymal tumor with an admixture of epithelial and mesenchymal elements in the jaws: clinicopathological and immunohistochemical analysis of 22 cases with literature review. Mod Pathol 32:189–204PubMedCrossRef
36.
go back to reference Harvey JN, Gray C, Belchetz PE (1992) Oncogenous osteomalacia and malignancy. Clin Endocrinol (Oxf) 37(4):379–382CrossRef Harvey JN, Gray C, Belchetz PE (1992) Oncogenous osteomalacia and malignancy. Clin Endocrinol (Oxf) 37(4):379–382CrossRef
37.
go back to reference Ogose A et al (2001) Recurrent malignant variant of phosphaturic mesenchymal tumor with oncogenic osteomalacia. Skelet Radiol 30(2):99–103CrossRef Ogose A et al (2001) Recurrent malignant variant of phosphaturic mesenchymal tumor with oncogenic osteomalacia. Skelet Radiol 30(2):99–103CrossRef
38.
go back to reference Rico H et al (1986) Oncogenous osteomalacia: a new case secondary to a malignant tumor. Bone 7(5):325–329PubMedCrossRef Rico H et al (1986) Oncogenous osteomalacia: a new case secondary to a malignant tumor. Bone 7(5):325–329PubMedCrossRef
39.
go back to reference Uramoto N, Furukawa M, Yoshizaki T (2009) Malignant phosphaturic mesenchymal tumor, mixed connective tissue variant of the tongue. Auris Nasus Larynx 36(1):104–105PubMedCrossRef Uramoto N, Furukawa M, Yoshizaki T (2009) Malignant phosphaturic mesenchymal tumor, mixed connective tissue variant of the tongue. Auris Nasus Larynx 36(1):104–105PubMedCrossRef
40.
go back to reference Wyman AL, Paradinas FJ, Daly JR (1977) Hypophosphataemic osteomalacia associated with a malignant tumour of the tibia: report of a case. J Clin Pathol 30(4):328–335PubMedPubMedCentralCrossRef Wyman AL, Paradinas FJ, Daly JR (1977) Hypophosphataemic osteomalacia associated with a malignant tumour of the tibia: report of a case. J Clin Pathol 30(4):328–335PubMedPubMedCentralCrossRef
41.
go back to reference Yavropoulou MP et al (2018) Distant lung metastases caused by a histologically benign phosphaturic mesenchymal tumor. Endocrinol Diabetes Metab Case Rep 2018:18–0023PubMedCentral Yavropoulou MP et al (2018) Distant lung metastases caused by a histologically benign phosphaturic mesenchymal tumor. Endocrinol Diabetes Metab Case Rep 2018:18–0023PubMedCentral
42.
go back to reference Sidell D et al (2011) Malignant phosphaturic mesenchymal tumor of the larynx. Laryngoscope 121(9):1860–1863PubMed Sidell D et al (2011) Malignant phosphaturic mesenchymal tumor of the larynx. Laryngoscope 121(9):1860–1863PubMed
43.
go back to reference Bergwitz C et al (2011) Case records of the Massachusetts General Hospital. Case 33-2011. A 56-year-old man with hypophosphatemia. N Engl J Med 365(17):1625–1635PubMedPubMedCentralCrossRef Bergwitz C et al (2011) Case records of the Massachusetts General Hospital. Case 33-2011. A 56-year-old man with hypophosphatemia. N Engl J Med 365(17):1625–1635PubMedPubMedCentralCrossRef
44.
go back to reference Carter JM et al (2015) A novel chromogenic in situ hybridization assay for FGF23 mRNA in phosphaturic mesenchymal tumors. Am J Surg Pathol 39(1):75–83PubMedCrossRef Carter JM et al (2015) A novel chromogenic in situ hybridization assay for FGF23 mRNA in phosphaturic mesenchymal tumors. Am J Surg Pathol 39(1):75–83PubMedCrossRef
45.
go back to reference Houang M et al (2013) Phosphaturic mesenchymal tumors show positive staining for somatostatin receptor 2A (SSTR2A). Hum Pathol 44(12):2711–2718PubMedCrossRef Houang M et al (2013) Phosphaturic mesenchymal tumors show positive staining for somatostatin receptor 2A (SSTR2A). Hum Pathol 44(12):2711–2718PubMedCrossRef
46.
go back to reference Bahrami A et al (2009) RT-PCR analysis for FGF23 using paraffin sections in the diagnosis of phosphaturic mesenchymal tumors with and without known tumor induced osteomalacia. Am J Surg Pathol 33(9):1348–1354PubMedCrossRef Bahrami A et al (2009) RT-PCR analysis for FGF23 using paraffin sections in the diagnosis of phosphaturic mesenchymal tumors with and without known tumor induced osteomalacia. Am J Surg Pathol 33(9):1348–1354PubMedCrossRef
47.
go back to reference Yamada Y et al (2018) Histopathological and genetic review of phosphaturic mesenchymal tumours, mixed connective tissue variant. Histopathology 72(3):460–471PubMedCrossRef Yamada Y et al (2018) Histopathological and genetic review of phosphaturic mesenchymal tumours, mixed connective tissue variant. Histopathology 72(3):460–471PubMedCrossRef
48.
go back to reference Weidner N et al (1985) Neoplastic pathology of oncogenic osteomalacia/rickets. Cancer 55(8):1691–1705PubMedCrossRef Weidner N et al (1985) Neoplastic pathology of oncogenic osteomalacia/rickets. Cancer 55(8):1691–1705PubMedCrossRef
49.
go back to reference Jan de Beur SM et al (2002) Localisation of mesenchymal tumours by somatostatin receptor imaging. Lancet 359(9308):761–763PubMedCrossRef Jan de Beur SM et al (2002) Localisation of mesenchymal tumours by somatostatin receptor imaging. Lancet 359(9308):761–763PubMedCrossRef
50.
go back to reference Lee JC et al (2015) Identification of a novel FN1-FGFR1 genetic fusion as a frequent event in phosphaturic mesenchymal tumour. J Pathol 235(4):539–545PubMedCrossRef Lee JC et al (2015) Identification of a novel FN1-FGFR1 genetic fusion as a frequent event in phosphaturic mesenchymal tumour. J Pathol 235(4):539–545PubMedCrossRef
51.
go back to reference Lee JC et al (2016) Characterization of FN1-FGFR1 and novel FN1-FGF1 fusion genes in a large series of phosphaturic mesenchymal tumors. Mod Pathol 29(11):1335–1346PubMedCrossRef Lee JC et al (2016) Characterization of FN1-FGFR1 and novel FN1-FGF1 fusion genes in a large series of phosphaturic mesenchymal tumors. Mod Pathol 29(11):1335–1346PubMedCrossRef
52.
go back to reference Agaimy A et al (2017) Phosphaturic mesenchymal tumors: clinicopathologic, immunohistochemical and molecular analysis of 22 cases expanding their morphologic and immunophenotypic spectrum. Am J Surg Pathol 41(10):1371–1380PubMedCrossRef Agaimy A et al (2017) Phosphaturic mesenchymal tumors: clinicopathologic, immunohistochemical and molecular analysis of 22 cases expanding their morphologic and immunophenotypic spectrum. Am J Surg Pathol 41(10):1371–1380PubMedCrossRef
53.
go back to reference Sent-Doux KN et al (2018) Phosphaturic mesenchymal tumor without osteomalacia: additional confirmation of the “nonphosphaturic” variant, with emphasis on the roles of FGF23 chromogenic in situ hybridization and FN1-FGFR1 fluorescence in situ hybridization. Hum Pathol 80:94–98PubMedCrossRef Sent-Doux KN et al (2018) Phosphaturic mesenchymal tumor without osteomalacia: additional confirmation of the “nonphosphaturic” variant, with emphasis on the roles of FGF23 chromogenic in situ hybridization and FN1-FGFR1 fluorescence in situ hybridization. Hum Pathol 80:94–98PubMedCrossRef
54.
go back to reference Shiba E et al (2016) Immunohistochemical and molecular detection of the expression of FGF23 in phosphaturic mesenchymal tumors including the non-phosphaturic variant. Diagn Pathol 11:26PubMedPubMedCentralCrossRef Shiba E et al (2016) Immunohistochemical and molecular detection of the expression of FGF23 in phosphaturic mesenchymal tumors including the non-phosphaturic variant. Diagn Pathol 11:26PubMedPubMedCentralCrossRef
55.
go back to reference Wasserman JK et al (2016) Phosphaturic mesenchymal tumor involving the head and neck: a report of five cases with FGFR1 fluorescence in situ hybridization analysis. Head Neck Pathol 10(3):279–285PubMedPubMedCentralCrossRef Wasserman JK et al (2016) Phosphaturic mesenchymal tumor involving the head and neck: a report of five cases with FGFR1 fluorescence in situ hybridization analysis. Head Neck Pathol 10(3):279–285PubMedPubMedCentralCrossRef
56.
go back to reference Lyles KW et al (1980) Hypophosphatemic osteomalacia: association with prostatic carcinoma. Ann Intern Med 93(2):275–278PubMedCrossRef Lyles KW et al (1980) Hypophosphatemic osteomalacia: association with prostatic carcinoma. Ann Intern Med 93(2):275–278PubMedCrossRef
57.
go back to reference Mak MP et al (2012) Advanced prostate cancer as a cause of oncogenic osteomalacia: an underdiagnosed condition. Support Care Cancer 20(9):2195–2197PubMedCrossRef Mak MP et al (2012) Advanced prostate cancer as a cause of oncogenic osteomalacia: an underdiagnosed condition. Support Care Cancer 20(9):2195–2197PubMedCrossRef
58.
go back to reference Nakahama H et al (1995) Prostate cancer-induced oncogenic hypophosphatemic osteomalacia. Urol Int 55(1):38–40PubMedCrossRef Nakahama H et al (1995) Prostate cancer-induced oncogenic hypophosphatemic osteomalacia. Urol Int 55(1):38–40PubMedCrossRef
59.
go back to reference Reese DM, Rosen PJ (1997) Oncogenic osteomalacia associated with prostate cancer. J Urol 158(3 Pt 1):887PubMedCrossRef Reese DM, Rosen PJ (1997) Oncogenic osteomalacia associated with prostate cancer. J Urol 158(3 Pt 1):887PubMedCrossRef
60.
go back to reference Savva C et al (2019) Oncogenic osteomalacia and metastatic breast cancer: a case report and review of the literature. J Diabetes Metab Disord 18(1):267–272PubMedPubMedCentralCrossRef Savva C et al (2019) Oncogenic osteomalacia and metastatic breast cancer: a case report and review of the literature. J Diabetes Metab Disord 18(1):267–272PubMedPubMedCentralCrossRef
61.
go back to reference Sauder A et al (2016) FGF23-associated tumor-induced osteomalacia in a patient with small cell carcinoma: a case report and regulatory mechanism study. Int J Surg Pathol 24(2):116–120PubMedCrossRef Sauder A et al (2016) FGF23-associated tumor-induced osteomalacia in a patient with small cell carcinoma: a case report and regulatory mechanism study. Int J Surg Pathol 24(2):116–120PubMedCrossRef
63.
go back to reference Abate EG et al (2016) Tumor induced osteomalacia secondary to anaplastic thyroid carcinoma: a case report and review of the literature. Bone Rep 5:81–85PubMedPubMedCentralCrossRef Abate EG et al (2016) Tumor induced osteomalacia secondary to anaplastic thyroid carcinoma: a case report and review of the literature. Bone Rep 5:81–85PubMedPubMedCentralCrossRef
64.
go back to reference Jin X et al (2013) Osteomalacia-inducing renal clear cell carcinoma uncovered by 99mTc-hydrazinonicotinyl-Tyr3-octreotide (99mTc-HYNIC-TOC) scintigraphy. Clin Nucl Med 38(11):922–924PubMedCrossRef Jin X et al (2013) Osteomalacia-inducing renal clear cell carcinoma uncovered by 99mTc-hydrazinonicotinyl-Tyr3-octreotide (99mTc-HYNIC-TOC) scintigraphy. Clin Nucl Med 38(11):922–924PubMedCrossRef
65.
go back to reference van Heyningen C et al (1994) Oncogenic hypophosphataemia and ectopic corticotrophin secretion due to oat cell carcinoma of the trachea. J Clin Pathol 47(1):80–82PubMedPubMedCentralCrossRef van Heyningen C et al (1994) Oncogenic hypophosphataemia and ectopic corticotrophin secretion due to oat cell carcinoma of the trachea. J Clin Pathol 47(1):80–82PubMedPubMedCentralCrossRef
66.
go back to reference Taylor HC, Fallon MD, Velasco ME (1984) Oncogenic osteomalacia and inappropriate antidiuretic hormone secretion due to oat-cell carcinoma. Ann Intern Med 101(6):786–788PubMedCrossRef Taylor HC, Fallon MD, Velasco ME (1984) Oncogenic osteomalacia and inappropriate antidiuretic hormone secretion due to oat-cell carcinoma. Ann Intern Med 101(6):786–788PubMedCrossRef
70.
go back to reference Feng J et al (2017) The diagnostic dilemma of tumor induced osteomalacia: a retrospective analysis of 144 cases. Endocr J 64(7):675–683PubMedCrossRef Feng J et al (2017) The diagnostic dilemma of tumor induced osteomalacia: a retrospective analysis of 144 cases. Endocr J 64(7):675–683PubMedCrossRef
71.
go back to reference Collins MT et al (2020) Chapter 64. Tumor-induced osteomalacia. Academic, New York, pp 1539–1552 Collins MT et al (2020) Chapter 64. Tumor-induced osteomalacia. Academic, New York, pp 1539–1552
73.
go back to reference Kane SV et al (2018) Phosphaturic mesenchymal tumor of the nasal cavity and paranasal sinuses: a clinical curiosity presenting a diagnostic challenge. Auris Nasus Larynx 45(2):377–383PubMedCrossRef Kane SV et al (2018) Phosphaturic mesenchymal tumor of the nasal cavity and paranasal sinuses: a clinical curiosity presenting a diagnostic challenge. Auris Nasus Larynx 45(2):377–383PubMedCrossRef
75.
go back to reference Allgrove J, Shaw NJ (2015) A practical approach to vitamin D deficiency and rickets. Endocr Dev 28:119–133PubMedCrossRef Allgrove J, Shaw NJ (2015) A practical approach to vitamin D deficiency and rickets. Endocr Dev 28:119–133PubMedCrossRef
76.
go back to reference Endo I et al (2008) Clinical usefulness of measurement of fibroblast growth factor 23 (FGF23) in hypophosphatemic patients: proposal of diagnostic criteria using FGF23 measurement. Bone 42(6):1235–1239PubMedCrossRef Endo I et al (2008) Clinical usefulness of measurement of fibroblast growth factor 23 (FGF23) in hypophosphatemic patients: proposal of diagnostic criteria using FGF23 measurement. Bone 42(6):1235–1239PubMedCrossRef
77.
go back to reference Francis F et al (1995) A gene (PEX) with homologies to endopeptidases is mutated in patients with X-linked hypophosphatemic rickets. Nat Genet 11(2):130–136CrossRef Francis F et al (1995) A gene (PEX) with homologies to endopeptidases is mutated in patients with X-linked hypophosphatemic rickets. Nat Genet 11(2):130–136CrossRef
78.
go back to reference Feng JQ et al (2006) Loss of DMP1 causes rickets and osteomalacia and identifies a role for osteocytes in mineral metabolism. Nat Genet 38(11):1310–1315PubMedPubMedCentralCrossRef Feng JQ et al (2006) Loss of DMP1 causes rickets and osteomalacia and identifies a role for osteocytes in mineral metabolism. Nat Genet 38(11):1310–1315PubMedPubMedCentralCrossRef
79.
go back to reference Levy-Litan V et al (2010) Autosomal-recessive hypophosphatemic rickets is associated with an inactivation mutation in the ENPP1 gene. Am J Hum Genet 86(2):273–278PubMedPubMedCentralCrossRef Levy-Litan V et al (2010) Autosomal-recessive hypophosphatemic rickets is associated with an inactivation mutation in the ENPP1 gene. Am J Hum Genet 86(2):273–278PubMedPubMedCentralCrossRef
80.
go back to reference Haffner D et al (2019) Clinical practice recommendations for the diagnosis and management of X-linked hypophosphataemia. Nat Rev Nephrol 15(7):435–455PubMedPubMedCentralCrossRef Haffner D et al (2019) Clinical practice recommendations for the diagnosis and management of X-linked hypophosphataemia. Nat Rev Nephrol 15(7):435–455PubMedPubMedCentralCrossRef
81.
go back to reference Lim YH et al (2014) Multilineage somatic activating mutations in HRAS and NRAS cause mosaic cutaneous and skeletal lesions, elevated FGF23 and hypophosphatemia. Hum Mol Genet 23(2):397–407PubMedCrossRef Lim YH et al (2014) Multilineage somatic activating mutations in HRAS and NRAS cause mosaic cutaneous and skeletal lesions, elevated FGF23 and hypophosphatemia. Hum Mol Genet 23(2):397–407PubMedCrossRef
82.
go back to reference Konishi K et al (1991) Hypophosphatemic osteomalacia in von Recklinghausen neurofibromatosis. Am J Med Sci 301(5):322–328PubMedCrossRef Konishi K et al (1991) Hypophosphatemic osteomalacia in von Recklinghausen neurofibromatosis. Am J Med Sci 301(5):322–328PubMedCrossRef
84.
go back to reference White KE et al (2005) Mutations that cause osteoglophonic dysplasia define novel roles for FGFR1 in bone elongation. Am J Hum Genet 76(2):361–367PubMedCrossRef White KE et al (2005) Mutations that cause osteoglophonic dysplasia define novel roles for FGFR1 in bone elongation. Am J Hum Genet 76(2):361–367PubMedCrossRef
85.
go back to reference Brownstein CA et al (2008) A translocation causing increased α-Klotho level results in hypophosphatemic rickets and hyperparathyroidism. Proc Natl Acad Sci USA 105(9):3455–3460PubMedCrossRefPubMedCentral Brownstein CA et al (2008) A translocation causing increased α-Klotho level results in hypophosphatemic rickets and hyperparathyroidism. Proc Natl Acad Sci USA 105(9):3455–3460PubMedCrossRefPubMedCentral
86.
go back to reference Yang M et al (2019) Molecular imaging in diagnosis of tumor-induced osteomalacia. Curr Probl Diagn Radiol 48(4):379–386PubMedCrossRef Yang M et al (2019) Molecular imaging in diagnosis of tumor-induced osteomalacia. Curr Probl Diagn Radiol 48(4):379–386PubMedCrossRef
87.
go back to reference Seufert J et al (2001) Octreotide therapy for tumor-induced osteomalacia. N Engl J Med 345(26):1883–1888PubMedCrossRef Seufert J et al (2001) Octreotide therapy for tumor-induced osteomalacia. N Engl J Med 345(26):1883–1888PubMedCrossRef
88.
go back to reference Breer S et al (2014) 68Ga DOTA-TATE PET/CT allows tumor localization in patients with tumor-induced osteomalacia but negative 111In-octreotide SPECT/CT. Bone 64:222–227PubMedCrossRef Breer S et al (2014) 68Ga DOTA-TATE PET/CT allows tumor localization in patients with tumor-induced osteomalacia but negative 111In-octreotide SPECT/CT. Bone 64:222–227PubMedCrossRef
90.
go back to reference Takeuchi Y et al (2004) Venous sampling for fibroblast growth factor-23 confirms preoperative diagnosis of tumor-induced osteomalacia. J Clin Endocrinol Metab 89(8):3979–3982PubMedCrossRef Takeuchi Y et al (2004) Venous sampling for fibroblast growth factor-23 confirms preoperative diagnosis of tumor-induced osteomalacia. J Clin Endocrinol Metab 89(8):3979–3982PubMedCrossRef
91.
go back to reference Andreopoulou P et al (2011) Selective venous catheterization for the localization of phosphaturic mesenchymal tumors. J Bone Miner Res 26(6):1295–1302PubMedCrossRef Andreopoulou P et al (2011) Selective venous catheterization for the localization of phosphaturic mesenchymal tumors. J Bone Miner Res 26(6):1295–1302PubMedCrossRef
93.
go back to reference Piemonte S et al (2014) Six-year follow-up of a characteristic osteolytic lesion in a patient with tumor-induced osteomalacia. Eur J Endocrinol 170(1):K1–K4PubMedCrossRef Piemonte S et al (2014) Six-year follow-up of a characteristic osteolytic lesion in a patient with tumor-induced osteomalacia. Eur J Endocrinol 170(1):K1–K4PubMedCrossRef
94.
go back to reference Colangelo L et al (2018) A challenging case of tumor-induced osteomalacia: pathophysiological and clinical implications. Calcif Tissue Int 103(4):465–468PubMedCrossRef Colangelo L et al (2018) A challenging case of tumor-induced osteomalacia: pathophysiological and clinical implications. Calcif Tissue Int 103(4):465–468PubMedCrossRef
95.
go back to reference Clunie GP, Fox PE, Stamp TC (2000) Four cases of acquired hypophosphataemic (‘oncogenic’) osteomalacia. Problems of diagnosis, treatment and long-term management. Rheumatology (Oxf) 39(12):1415–1421CrossRef Clunie GP, Fox PE, Stamp TC (2000) Four cases of acquired hypophosphataemic (‘oncogenic’) osteomalacia. Problems of diagnosis, treatment and long-term management. Rheumatology (Oxf) 39(12):1415–1421CrossRef
96.
go back to reference Sun ZJ et al (2015) Surgical treatment of tumor-induced osteomalacia: a retrospective review of 40 cases with extremity tumors. BMC Musculoskelet Disord 16:43PubMedPubMedCentralCrossRef Sun ZJ et al (2015) Surgical treatment of tumor-induced osteomalacia: a retrospective review of 40 cases with extremity tumors. BMC Musculoskelet Disord 16:43PubMedPubMedCentralCrossRef
97.
go back to reference Hautmann AH et al (2015) Tumor-induced osteomalacia: an up-to-date review. Curr Rheumatol Rep 17(6):512PubMedCrossRef Hautmann AH et al (2015) Tumor-induced osteomalacia: an up-to-date review. Curr Rheumatol Rep 17(6):512PubMedCrossRef
98.
go back to reference Tarasova VD et al (2013) Successful treatment of tumor-induced osteomalacia due to an intracranial tumor by fractionated stereotactic radiotherapy. J Clin Endocrinol Metab 98(11):4267–4272PubMedPubMedCentralCrossRef Tarasova VD et al (2013) Successful treatment of tumor-induced osteomalacia due to an intracranial tumor by fractionated stereotactic radiotherapy. J Clin Endocrinol Metab 98(11):4267–4272PubMedPubMedCentralCrossRef
99.
100.
go back to reference Huang QL, Feig DS, Blackstein ME (2000) Development of tertiary hyperparathyroidism after phosphate supplementation in oncogenic osteomalacia. J Endocrinol Investig 23(4):263–267CrossRef Huang QL, Feig DS, Blackstein ME (2000) Development of tertiary hyperparathyroidism after phosphate supplementation in oncogenic osteomalacia. J Endocrinol Investig 23(4):263–267CrossRef
101.
go back to reference Gupta A et al (2004) FGF-23 is elevated by chronic hyperphosphatemia. J Clin Endocrinol Metab 89(9):4489–4492PubMedCrossRef Gupta A et al (2004) FGF-23 is elevated by chronic hyperphosphatemia. J Clin Endocrinol Metab 89(9):4489–4492PubMedCrossRef
102.
go back to reference Geller JL et al (2007) Cinacalcet in the management of tumor-induced osteomalacia. J Bone Miner Res 22(6):931–937PubMedCrossRef Geller JL et al (2007) Cinacalcet in the management of tumor-induced osteomalacia. J Bone Miner Res 22(6):931–937PubMedCrossRef
103.
go back to reference Ovejero D et al (2017) Octreotide is ineffective in treating tumor-induced osteomalacia: results of a short-term therapy. J Bone Miner Res 32(8):1667–1671PubMedCrossRef Ovejero D et al (2017) Octreotide is ineffective in treating tumor-induced osteomalacia: results of a short-term therapy. J Bone Miner Res 32(8):1667–1671PubMedCrossRef
104.
go back to reference Paglia F, Dionisi S, Minisola S (2002) Octreotide for tumor-induced osteomalacia. N Engl J Med 346(22):1748–1749; author reply 1748–1749 Paglia F, Dionisi S, Minisola S (2002) Octreotide for tumor-induced osteomalacia. N Engl J Med 346(22):1748–1749; author reply 1748–1749
106.
go back to reference Wohrle S et al (2011) FGF receptors control vitamin D and phosphate homeostasis by mediating renal FGF-23 signaling and regulating FGF-23 expression in bone. J Bone Miner Res 26(10):2486–2497PubMedCrossRef Wohrle S et al (2011) FGF receptors control vitamin D and phosphate homeostasis by mediating renal FGF-23 signaling and regulating FGF-23 expression in bone. J Bone Miner Res 26(10):2486–2497PubMedCrossRef
107.
go back to reference Wohrle S et al (2013) Pharmacological inhibition of fibroblast growth factor (FGF) receptor signaling ameliorates FGF23-mediated hypophosphatemic rickets. J Bone Miner Res 28(4):899–911PubMedCrossRef Wohrle S et al (2013) Pharmacological inhibition of fibroblast growth factor (FGF) receptor signaling ameliorates FGF23-mediated hypophosphatemic rickets. J Bone Miner Res 28(4):899–911PubMedCrossRef
108.
go back to reference Collins MT et al (2015) Striking response of tumor-induced osteomalacia to the FGFR inhibitor NVP-BGJ398. In: American Society of Bone and Mineral Research annual meeting 2015, Seattle, WA Collins MT et al (2015) Striking response of tumor-induced osteomalacia to the FGFR inhibitor NVP-BGJ398. In: American Society of Bone and Mineral Research annual meeting 2015, Seattle, WA
109.
go back to reference Fumarola C et al (2019) Expanding the arsenal of FGFR inhibitors: a novel chloroacetamide derivative as a new irreversible agent with anti-proliferative activity against FGFR1-amplified lung cancer cell lines. Front Oncol 9:179PubMedPubMedCentralCrossRef Fumarola C et al (2019) Expanding the arsenal of FGFR inhibitors: a novel chloroacetamide derivative as a new irreversible agent with anti-proliferative activity against FGFR1-amplified lung cancer cell lines. Front Oncol 9:179PubMedPubMedCentralCrossRef
Metadata
Title
Tumor-Induced Osteomalacia
Authors
Pablo Florenzano
Iris R. Hartley
Macarena Jimenez
Kelly Roszko
Rachel I. Gafni
Michael T. Collins
Publication date
01-01-2021
Publisher
Springer US
Published in
Calcified Tissue International / Issue 1/2021
Print ISSN: 0171-967X
Electronic ISSN: 1432-0827
DOI
https://doi.org/10.1007/s00223-020-00691-6

Other articles of this Issue 1/2021

Calcified Tissue International 1/2021 Go to the issue
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.