Skip to main content
Top
Published in: Current Osteoporosis Reports 2/2015

01-04-2015 | Rare Bone Disease (CB Langman and E Shore, Section Editors)

Hyperphosphatemic Familial Tumoral Calcinosis: Genetic Models of Deficient FGF23 Action

Authors: Lisal J. Folsom, Erik A. Imel

Published in: Current Osteoporosis Reports | Issue 2/2015

Login to get access

Abstract

Hyperphosphatemic familial tumoral calcinosis (hFTC) is a rare disorder of phosphate metabolism defined by hyperphosphatemia and ectopic calcifications in various locations. To date, recessive mutations have been described in three genes involving phosphate metabolism: FGF23, GALNT3, and α-Klotho, all of which result in the phenotypic presentation of hFTC. These mutations result in either inadequate intact fibroblast growth factor-23 (FGF23) secretion (FGF23 or GALNT3) or resistance to FGF23 activity at the fibroblast growth factor receptor/α-Klotho complex (α-Klotho). The biochemical consequence of limitations in FGF23 activity includes increased renal tubular reabsorption of phosphate, hyperphosphatemia, and increased production of 1,25-dihydroxyvitamin D. The resultant ectopic calcifications can be painful and debilitating. Medical treatments are targeted toward decreasing intestinal phosphate absorption or increasing phosphate excretion; however, results have been variable and generally limited. Treatments that would increase FGF23 levels or signaling would more appropriately target the genetic etiologies of this disease and perhaps be more effective.
Literature
1.
go back to reference Farrow E, Imel EI, White K. Hyperphosphatemic familial tumoral calcinosis (FGF23, GALNT3, and alpha-Klotho). Best Pract Res Clin Rheumatol. 2011;25:735–47.CrossRefPubMedCentralPubMed Farrow E, Imel EI, White K. Hyperphosphatemic familial tumoral calcinosis (FGF23, GALNT3, and alpha-Klotho). Best Pract Res Clin Rheumatol. 2011;25:735–47.CrossRefPubMedCentralPubMed
2.
go back to reference DiMeglio LA, Imel EA. Calcium and phosphate: hormonal regulation and metabolism. In: Burr DB, Allen MR, eds. Basic and applied bone Biology. New York: Elsevier, Academic Press; 2014:261-282. DiMeglio LA, Imel EA. Calcium and phosphate: hormonal regulation and metabolism. In: Burr DB, Allen MR, eds. Basic and applied bone Biology. New York: Elsevier, Academic Press; 2014:261-282.
3.
go back to reference Sabbagh Y, Giral H, Caldas Y, Levi M, Schiavi SC. Intestinal phosphate transport. Adv in Chronic Kidney Dis. 2011;18(2):85–90.CrossRef Sabbagh Y, Giral H, Caldas Y, Levi M, Schiavi SC. Intestinal phosphate transport. Adv in Chronic Kidney Dis. 2011;18(2):85–90.CrossRef
4.
go back to reference Portale A, Halloran B, Morris JRR. Physiologic regulation of the serum concentration of 1,25-dihydroxyvitamin D by phosphate in normal men. J Clin Invest. 1989;83:1494–9.CrossRefPubMedCentralPubMed Portale A, Halloran B, Morris JRR. Physiologic regulation of the serum concentration of 1,25-dihydroxyvitamin D by phosphate in normal men. J Clin Invest. 1989;83:1494–9.CrossRefPubMedCentralPubMed
5.
go back to reference Silva BC, Costa AG, Cusano NE, Kousteni S, Bilezikian JP. Catabolic and anabolic actions of parathyroid hormone on the skeleton. J Endocrinol Invest. 2011;34(10):801–10.PubMedCentralPubMed Silva BC, Costa AG, Cusano NE, Kousteni S, Bilezikian JP. Catabolic and anabolic actions of parathyroid hormone on the skeleton. J Endocrinol Invest. 2011;34(10):801–10.PubMedCentralPubMed
6.
go back to reference Blaine J, Weinman EJ, Cunningham R. The regulation of renal phosphate transport. Adv Chronic Kidney Dis. 2011;18(2):77–84.CrossRefPubMed Blaine J, Weinman EJ, Cunningham R. The regulation of renal phosphate transport. Adv Chronic Kidney Dis. 2011;18(2):77–84.CrossRefPubMed
7.
go back to reference Boron WF. The parathyroid glands and vitamin D. Medical Physiology: a cellular and molecular approach. Elsevier/Saunders 2003. 1094. Boron WF. The parathyroid glands and vitamin D. Medical Physiology: a cellular and molecular approach. Elsevier/Saunders 2003. 1094.
8.
9.
go back to reference Fukumoto S. Physiological regulation and disorders of phosphate metabolism—pivotal role of fibroblast growth factor 23. Intern Med. 2008;47(5):337–43.CrossRefPubMed Fukumoto S. Physiological regulation and disorders of phosphate metabolism—pivotal role of fibroblast growth factor 23. Intern Med. 2008;47(5):337–43.CrossRefPubMed
10.
go back to reference Liu S, Guo R, Tu Q, Quarles LD. Overexpression of Phex in osteoblasts fails to rescue the Hyp mouse phenotype. J Biol Chem. 2002;277(5):3686–97.CrossRefPubMed Liu S, Guo R, Tu Q, Quarles LD. Overexpression of Phex in osteoblasts fails to rescue the Hyp mouse phenotype. J Biol Chem. 2002;277(5):3686–97.CrossRefPubMed
11.
go back to reference Burnett SM, Gunawardene SC, Bringhurst FR, et al. Regulation of C-terminal and intact FGF23 by dietary phosphate in men and women. J Bone Miner Res. 2006;21(8):1187–96.CrossRefPubMed Burnett SM, Gunawardene SC, Bringhurst FR, et al. Regulation of C-terminal and intact FGF23 by dietary phosphate in men and women. J Bone Miner Res. 2006;21(8):1187–96.CrossRefPubMed
12.
go back to reference Saito H, Maeda A, Ohtomo S, et al. Circulating FGF23 is regulated by 1alpha,25-dihydroxyvitamin D3 and phosphorus in vivo. J Biol Chem. 2005;280(4):2543–9.CrossRefPubMed Saito H, Maeda A, Ohtomo S, et al. Circulating FGF23 is regulated by 1alpha,25-dihydroxyvitamin D3 and phosphorus in vivo. J Biol Chem. 2005;280(4):2543–9.CrossRefPubMed
13.
go back to reference Kurosu H, Ogawa Y, Miyoshi M, Yamamoto M, Nandi A, Rosenblatt KP, Baum MG, Schiavi S, Hu MC, Moe OW, Kuro OM. Regulation of fibroblast growth factor-23 signaling by Klotho. J Biol Chem. Jan 25 2006. Kurosu H, Ogawa Y, Miyoshi M, Yamamoto M, Nandi A, Rosenblatt KP, Baum MG, Schiavi S, Hu MC, Moe OW, Kuro OM. Regulation of fibroblast growth factor-23 signaling by Klotho. J Biol Chem. Jan 25 2006.
14.
go back to reference Urakawa I, Yamazaki Y, Shimada T, Iijima K, Hasegawa H, Okawa K, et al. Klotho converts canonical FGF receptor into a specific receptor for FGF23. Nature. 2006;444(7120):770–4.CrossRefPubMed Urakawa I, Yamazaki Y, Shimada T, Iijima K, Hasegawa H, Okawa K, et al. Klotho converts canonical FGF receptor into a specific receptor for FGF23. Nature. 2006;444(7120):770–4.CrossRefPubMed
15.
go back to reference Shimada T, Hasegawa H, Yamazaki Y, Muto T, Hino R, Takeuchi Y, et al. FGF-23 is a potent regulator of vitamin D metabolism and phosphate homeostasis. J Bone Miner Res. 2004;19:429–35. Shimada T, Hasegawa H, Yamazaki Y, Muto T, Hino R, Takeuchi Y, et al. FGF-23 is a potent regulator of vitamin D metabolism and phosphate homeostasis. J Bone Miner Res. 2004;19:429–35. 
16.
go back to reference Li H, Martin A, David V, Quarles LD. Compound deletion of Fgfr3 and Fgfr4 partially rescues the Hyp mouse phenotype. Am J Physiol Endocrinol Metab. 2011;300(3):E508–517. Li H, Martin A, David V, Quarles LD. Compound deletion of Fgfr3 and Fgfr4 partially rescues the Hyp mouse phenotype. Am J Physiol Endocrinol Metab. 2011;300(3):E508–517. 
17.
go back to reference Gattineni J, Twombley K, Goetz R, Mohammadi M, Baum M. Regulation of serum 1,25(OH)2 vitamin D3 levels by fibroblast growth factor 23 is mediated by FGF receptors 3 and 4. Am J Physiol Renal Physiol. 2011;301(2):F371–377. Gattineni J, Twombley K, Goetz R, Mohammadi M, Baum M. Regulation of serum 1,25(OH)2 vitamin D3 levels by fibroblast growth factor 23 is mediated by FGF receptors 3 and 4. Am J Physiol Renal Physiol. 2011;301(2):F371–377.
18.
go back to reference Gattineni J, Alphonse P, Zhang Q, Mathews N, Bates CM, Baum M. Regulation of renal phosphate transport by FGF23 is mediated by FGFR1 and FGFR4. Am J Physiol Renal Physiol. 2014;306:F351–358. Gattineni J, Alphonse P, Zhang Q, Mathews N, Bates CM, Baum M. Regulation of renal phosphate transport by FGF23 is mediated by FGFR1 and FGFR4. Am J Physiol Renal Physiol. 2014;306:F351–358. 
19.
go back to reference Haussler M, Hughes M, Baylink D, Littledike ET, Cork D, Pitt M. Influence of phosphate depletion on the biosynthesis and circulating level of 1α, 25-dihydroxyvitamin D. Adv Exp Med Biol. 1977;81:233–50. Haussler M, Hughes M, Baylink D, Littledike ET, Cork D, Pitt M. Influence of phosphate depletion on the biosynthesis and circulating level of 1α, 25-dihydroxyvitamin D. Adv Exp Med Biol. 1977;81:233–50. 
20.
go back to reference Ichikawa S, Baujat G, Seyahi A, Garoufali AG, Imel EA, Padgett LR, et al. Clinical variability of familial tumoral calcinosis caused by novel GALNT3 mutations. Am J Med Genet A. 2010;152A(4):896–903. Ichikawa S, Baujat G, Seyahi A, Garoufali AG, Imel EA, Padgett LR, et al. Clinical variability of familial tumoral calcinosis caused by novel GALNT3 mutations. Am J Med Genet A. 2010;152A(4):896–903.
21.
go back to reference McGrath E, Harney F, Kinsella F. An ocular presentation of familial tumoral calcinosis. BMJ Case Rep. 2010. McGrath E, Harney F, Kinsella F. An ocular presentation of familial tumoral calcinosis. BMJ Case Rep. 2010.
22.
go back to reference Carmichael KD, Bynum JA, Evans EB. Familial tumoral calcinosis: a forty-year follow-up on one family. J Bone Joint Surg Am. 2009;91(3):664–71. Carmichael KD, Bynum JA, Evans EB. Familial tumoral calcinosis: a forty-year follow-up on one family. J Bone Joint Surg Am. 2009;91(3):664–71.
23.
go back to reference Weisinger JR et al. Massive cerebral calcifications associated with increased renal phosphate reabsorption. Arch Intern Med. 1986;146(3):473–7. Weisinger JR et al. Massive cerebral calcifications associated with increased renal phosphate reabsorption. Arch Intern Med. 1986;146(3):473–7.
24.
go back to reference Ichikawa S, Imel EA, Kreiter ML, Yu X, Mackenzie DS, Sorenson AH, et al. A homozygous missense mutation in human KLOTHO causes severe tumoral calcinosis. J Clin Invest. 2007;117:2684–91. Ichikawa S, Imel EA, Kreiter ML, Yu X, Mackenzie DS, Sorenson AH, et al. A homozygous missense mutation in human KLOTHO causes severe tumoral calcinosis. J Clin Invest. 2007;117:2684–91.
25.
go back to reference Benet-Pages A, Orlik P, Strom TM, Lorenz-Depiereux B. An FGF23 missense mutation causes familial tumoral calcinosis with hyperphosphatemia. Hum Mol Genet. 2005;14:385–90. Benet-Pages A, Orlik P, Strom TM, Lorenz-Depiereux B. An FGF23 missense mutation causes familial tumoral calcinosis with hyperphosphatemia. Hum Mol Genet. 2005;14:385–90.
26.
go back to reference Larsson T, Yu X, Davis SI, Draman MS, Mooney SD, Cullen MJ, et al. A novel recessive mutation in fibroblast growth factor-23 causes familial tumoral calcinosis. J Clin Endocrinol Metab. 2005;90(4):2424–7.CrossRefPubMed Larsson T, Yu X, Davis SI, Draman MS, Mooney SD, Cullen MJ, et al. A novel recessive mutation in fibroblast growth factor-23 causes familial tumoral calcinosis. J Clin Endocrinol Metab. 2005;90(4):2424–7.CrossRefPubMed
27.
go back to reference Garringer HJ, Fisher C, Larsson TE, Davis SI, Koller DL, Cullen MJ, et al. The role of mutant UDP-N-acetyl-alpha-D-galactosamine-polypeptide N-acetylgalactosaminyltransferase 3 in regulating serum intact fibroblast growth factor 23 and matrix extracellular phosphoglycoprotein in heritable tumoral calcinosis. J Clin Endocrinol Metab. 2006;91(10):4037–42.CrossRefPubMed Garringer HJ, Fisher C, Larsson TE, Davis SI, Koller DL, Cullen MJ, et al. The role of mutant UDP-N-acetyl-alpha-D-galactosamine-polypeptide N-acetylgalactosaminyltransferase 3 in regulating serum intact fibroblast growth factor 23 and matrix extracellular phosphoglycoprotein in heritable tumoral calcinosis. J Clin Endocrinol Metab. 2006;91(10):4037–42.CrossRefPubMed
28.
go back to reference Yancovitch A, Hershkovitz D, Indelman M, Galloway P, Whiteford M, Sprecher E, et al. Novel mutations in GALNT3 causing hyperphosphatemic familial tumoral calcinosis. J Bone Miner Metab. 2011;29(5):621–5. Yancovitch A, Hershkovitz D, Indelman M, Galloway P, Whiteford M, Sprecher E, et al. Novel mutations in GALNT3 causing hyperphosphatemic familial tumoral calcinosis. J Bone Miner Metab. 2011;29(5):621–5.
29.
go back to reference Sitara D, Razzaque MS, Hesse M, Yoganathan S, Taquchi T, Erben RG, et al. Homozygous ablation of fibroblast growth factor-23 results in hyperphosphatemia and impaired skeletogenesis, and reverse hypophosphatemia in Phex-deficient mice. Matrix Biol. 2004;23(7):421–32. Sitara D, Razzaque MS, Hesse M, Yoganathan S, Taquchi T, Erben RG, et al. Homozygous ablation of fibroblast growth factor-23 results in hyperphosphatemia and impaired skeletogenesis, and reverse hypophosphatemia in Phex-deficient mice. Matrix Biol. 2004;23(7):421–32.
30.
go back to reference Topaz O, Shurman DL, Bergman R, Indelman M, Ratajczak P, Mizrachi M, Khamaysi Z, Behar D, Petronius D, Friedman V, Zelikovic I, Raimer S, Metzker A, Richard G, Sprecher E. Mutations in GALNT3, encoding a protein involved in O-linked glycosylation, cause familial tumoral calcinosis. Nature Genetics 2004;36:579–81. Topaz O, Shurman DL, Bergman R, Indelman M, Ratajczak P, Mizrachi M, Khamaysi Z, Behar D, Petronius D, Friedman V, Zelikovic I, Raimer S, Metzker A, Richard G, Sprecher E. Mutations in GALNT3, encoding a protein involved in O-linked glycosylation, cause familial tumoral calcinosis. Nature Genetics 2004;36:579–81.
31.
go back to reference Kato K, Jeanneau C, Tarp MA, Benet-Pages A, Lorenz-Depiereux B, Bennett EP, Mandel U, Strom TM, Clausen H. Polypeptide GaINAc-transferase T3 and familial tumoral calcinosis: Secretion of FGF23 requires O-glycosylation. J Biol Chem 2006;281:18370–18377. Kato K, Jeanneau C, Tarp MA, Benet-Pages A, Lorenz-Depiereux B, Bennett EP, Mandel U, Strom TM, Clausen H. Polypeptide GaINAc-transferase T3 and familial tumoral calcinosis: Secretion of FGF23 requires O-glycosylation. J Biol Chem 2006;281:18370–18377.
32.
go back to reference Frishberg Y, Ito N, Rinat C, Yamazaki Y, Feinstein S, Urakawa I, et al. Hyperostosis-hyperphosphatemia syndrome: a congenital disorder of O-glycosylation associated with augmented processing of fibroblast growth factor 23. J Bone Miner Res. 2007;22:235–42.CrossRefPubMed Frishberg Y, Ito N, Rinat C, Yamazaki Y, Feinstein S, Urakawa I, et al. Hyperostosis-hyperphosphatemia syndrome: a congenital disorder of O-glycosylation associated with augmented processing of fibroblast growth factor 23. J Bone Miner Res. 2007;22:235–42.CrossRefPubMed
33.
go back to reference Ichikawa S, Sorenson A, Austin A, Mackenzie D, Fritz T, Moh A, et al. Ablation of the Galnt3 gene leads to low-circulating intact fibroblast growth factor 23 (FGF23) concentrations and hyperphosphatemia despite increased FGF23 expression. Endocrinology. 2009;150(6):2543–50. Ichikawa S, Sorenson A, Austin A, Mackenzie D, Fritz T, Moh A, et al. Ablation of the Galnt3 gene leads to low-circulating intact fibroblast growth factor 23 (FGF23) concentrations and hyperphosphatemia despite increased FGF23 expression. Endocrinology. 2009;150(6):2543–50. 
34.
go back to reference Mikati MA, Melhem RE, Najjar SS. The syndrome of hyperostosis and hyperphosphatemia. J Pediatr. 1981;99(6):900–4. Mikati MA, Melhem RE, Najjar SS. The syndrome of hyperostosis and hyperphosphatemia. J Pediatr. 1981;99(6):900–4.
35.
go back to reference Ichikawa S, Guigonis V, Imel EA, Courouble M, Heissat S, Henley JD, Sorenson AH, Petit B, Lienhardt A, Econs MJ. Novel GALNT3 mutations causing hyperostosis-hyperphosphatemia syndrome result in low intact fibroblast growth factor 23 concentrations. J Clin Endocrinol Metab. 2007;92:1943–7. Ichikawa S, Guigonis V, Imel EA, Courouble M, Heissat S, Henley JD, Sorenson AH, Petit B, Lienhardt A, Econs MJ. Novel GALNT3 mutations causing hyperostosis-hyperphosphatemia syndrome result in low intact fibroblast growth factor 23 concentrations. J Clin Endocrinol Metab. 2007;92:1943–7.
36.
go back to reference Kurosu H, Choi M, Ogawa Y, Dickson AS, Goetz R, Eliseenkova AV, et al. Tissue-specific expression of beta-Klotho and fibroblast growth factor (FGF) receptor isoforms determines metabolic activity of FGF19 and FGF21. J Biol Chem. 2007;282:26687–95. Kurosu H, Choi M, Ogawa Y, Dickson AS, Goetz R, Eliseenkova AV, et al. Tissue-specific expression of beta-Klotho and fibroblast growth factor (FGF) receptor isoforms determines metabolic activity of FGF19 and FGF21. J Biol Chem. 2007;282:26687–95. 
37.
go back to reference Tsujikawa H, Kurotaki Y, Fujimori T, Fukuda K, Nabeshima Y. Klotho, a gene related to a syndrome resembling human premature aging, functions in a negative regulatory circuit of vitamin D endocrine system. Mol Endocrinol. 2003;17:2393–403. Tsujikawa H, Kurotaki Y, Fujimori T, Fukuda K, Nabeshima Y. Klotho, a gene related to a syndrome resembling human premature aging, functions in a negative regulatory circuit of vitamin D endocrine system. Mol Endocrinol. 2003;17:2393–403.
38.
go back to reference Segawa H, Yamanaka S, Ohno Y, Onitsuka A, Shiozawa K, Aranami F, Furutani J, Tomoe Y, Ito M, Kuwahata M, Imura A, Nabeshima Y, Miyamoto K. Correlation between hyperphosphatemia and type II Na-Pi cotransporter activity in klotho mice. Am J Physiol Renal Physiol. 2007;292:F769–79. Segawa H, Yamanaka S, Ohno Y, Onitsuka A, Shiozawa K, Aranami F, Furutani J, Tomoe Y, Ito M, Kuwahata M, Imura A, Nabeshima Y, Miyamoto K. Correlation between hyperphosphatemia and type II Na-Pi cotransporter activity in klotho mice. Am J Physiol Renal Physiol. 2007;292:F769–79.
39.
go back to reference Masai H, Joki N, Sugi K, Moroi M. A preliminary study of the potential role of FGF23 in coronary calcification in patients with suspected coronary artery disease. Atherosclerosis. 2013;226(1):228–33. Masai H, Joki N, Sugi K, Moroi M. A preliminary study of the potential role of FGF23 in coronary calcification in patients with suspected coronary artery disease. Atherosclerosis. 2013;226(1):228–33. 
40.
go back to reference Scialla JJ, Ling Lau W, Reilly MP, Isakova T, Yang H-Y, Crouthamel MH, et al. Fibroblast growth factor 23 is not associated with and does not induce arterial calcification. Kidney Int. 2013;83(6):1159–68. Scialla JJ, Ling Lau W, Reilly MP, Isakova T, Yang H-Y, Crouthamel MH, et al. Fibroblast growth factor 23 is not associated with and does not induce arterial calcification. Kidney Int. 2013;83(6):1159–68. 
41.
go back to reference Topaz O, Indelman M, Chefetz I, Geiger D, Metzker A, Altschuler Y, et al. A deleterious mutation in SAMD9 causes normophosphatemic familial tumoral calcinosis. Am J Hum Genet. 2006;79(4):759–64. Topaz O, Indelman M, Chefetz I, Geiger D, Metzker A, Altschuler Y, et al. A deleterious mutation in SAMD9 causes normophosphatemic familial tumoral calcinosis. Am J Hum Genet. 2006;79(4):759–64. 
42.
go back to reference Lufkin EG, Kumar R, Heath 3rd H. Hyperphosphatemic tumoral calcinosis: effects of phosphate depletion on vitamin D metabolism, and of acute hypocalcemia on parathyroid hormone secretion and action. J Clin Endocrinol Metab. 1983;56(6):1319–22. Lufkin EG, Kumar R, Heath 3rd H. Hyperphosphatemic tumoral calcinosis: effects of phosphate depletion on vitamin D metabolism, and of acute hypocalcemia on parathyroid hormone secretion and action. J Clin Endocrinol Metab. 1983;56(6):1319–22. 
43.
go back to reference Lammoglia JJ, Mericq V. Familial tumoral calcinosis caused by a novel FGF23 mutation: response to induction of tubular renal acidosis with acetazolamide and the non-calcium phosphate binder sevelamer. Horm Res. 2009;71(3):178–84. Lammoglia JJ, Mericq V. Familial tumoral calcinosis caused by a novel FGF23 mutation: response to induction of tubular renal acidosis with acetazolamide and the non-calcium phosphate binder sevelamer. Horm Res. 2009;71(3):178–84.
44.
go back to reference Finer G, Price HE, Shore RM, White KE, Langman CB. Hyperphosphatemic familial tumoral calcinosis: response to acetazolamide and postulated mechanisms. Am J Med Gent A. 2014;164(6):1545–9.CrossRef Finer G, Price HE, Shore RM, White KE, Langman CB. Hyperphosphatemic familial tumoral calcinosis: response to acetazolamide and postulated mechanisms. Am J Med Gent A. 2014;164(6):1545–9.CrossRef
45.
go back to reference Keskar VS IE, Kulkarni M, Mane S, Jamale TE, Econs MJ, and Hase NK. The case: Ectopic calcification. Kidney International 2015; In Press. Keskar VS IE, Kulkarni M, Mane S, Jamale TE, Econs MJ, and Hase NK. The case: Ectopic calcification. Kidney International 2015; In Press.
46.
go back to reference Steinherz R, Chesney RW, Eisenstein B, Metzker A, DeLuca HF, Phelps M. Elevated serum calcitriol concentrations do not fall in response to hyperphosphatemia in familial tumoral calcinosis. Am J Dis Child. 1985;139(8):816–9. Steinherz R, Chesney RW, Eisenstein B, Metzker A, DeLuca HF, Phelps M. Elevated serum calcitriol concentrations do not fall in response to hyperphosphatemia in familial tumoral calcinosis. Am J Dis Child. 1985;139(8):816–9.
47.
go back to reference Gregosiewicz A, Warda E. Tumoral calcinosis: successful medical treatment. A case report. J Bone Joint Surg Am. 1989;71(8):1244–9.PubMed Gregosiewicz A, Warda E. Tumoral calcinosis: successful medical treatment. A case report. J Bone Joint Surg Am. 1989;71(8):1244–9.PubMed
49.
go back to reference Alves C, Lima R. Hyperphosphatemic tumoral calcinosis: a 10-year follow-up. J Pediatr Endocrinol Metab. 2011;24(1–2):25–7. Alves C, Lima R. Hyperphosphatemic tumoral calcinosis: a 10-year follow-up. J Pediatr Endocrinol Metab. 2011;24(1–2):25–7.
50.
go back to reference Yamaguchi T, Sugimoto T, Imai Y, Fukase M, Fujita T, Chihara K. Successful treatment of hyperphosphatemic tumoral calcinosis with long-term acetazolamide. Bone. 1995;16:247S–50S. Yamaguchi T, Sugimoto T, Imai Y, Fukase M, Fujita T, Chihara K. Successful treatment of hyperphosphatemic tumoral calcinosis with long-term acetazolamide. Bone. 1995;16:247S–50S.
51.
go back to reference Dumitrescu CEI, Kelly MH, Khosravi A, Hart TC, Brahim J, White KE, et al. A case of familial tumoral calcinosis/hyperostosis-hyperphosphatemia syndrome due to a compound heterozygous mutation in GALNT3 demonstrating new phenotypic features. Osteoporos Int. 2009;20(7):1273–8. Dumitrescu CEI, Kelly MH, Khosravi A, Hart TC, Brahim J, White KE, et al. A case of familial tumoral calcinosis/hyperostosis-hyperphosphatemia syndrome due to a compound heterozygous mutation in GALNT3 demonstrating new phenotypic features. Osteoporos Int. 2009;20(7):1273–8.
52.
go back to reference Alkhooly AZ. Medical treatment for tumoral calcinosis with eight years of follow-up: a report of four cases. J Orthop Surg (Hong Kong). 2009;17(3):379–82. Alkhooly AZ. Medical treatment for tumoral calcinosis with eight years of follow-up: a report of four cases. J Orthop Surg (Hong Kong). 2009;17(3):379–82.
53.
go back to reference Mozaffarian G, Lafferty FW, Pearson OH. Treatment of tumoral calcinosis with phosphorus deprivation. Ann Intern Med. 1972;77:741–5. Mozaffarian G, Lafferty FW, Pearson OH. Treatment of tumoral calcinosis with phosphorus deprivation. Ann Intern Med. 1972;77:741–5.
54.
go back to reference Mozaffarian G, Nakhjavani MK, Hedayati MH, Shamekh S. Phosphorus deprivation treatment of tumoral calcinosis. Ann Intern Med. 1977;86:120. Mozaffarian G, Nakhjavani MK, Hedayati MH, Shamekh S. Phosphorus deprivation treatment of tumoral calcinosis. Ann Intern Med. 1977;86:120.
55.
go back to reference Lufkin EG, Wilson DM, Smith LH, Bill NJ, DeLuca HF, Dousa TP, et al. Phosphorus excretion in tumoral calcinosis: response to parathyroid hormone and acetazolamide. J Clin Endocrinol Metab. 1980;50:648–53. Lufkin EG, Wilson DM, Smith LH, Bill NJ, DeLuca HF, Dousa TP, et al. Phosphorus excretion in tumoral calcinosis: response to parathyroid hormone and acetazolamide. J Clin Endocrinol Metab. 1980;50:648–53.
56.
go back to reference Kallmeyer JC, Seimon LP, MacSearraigh ET. The effect of thyrocalcitonin therapy and phosphate deprivation on tumoral calcinosis. S Afr Med J. 1978;54:963–6. Kallmeyer JC, Seimon LP, MacSearraigh ET. The effect of thyrocalcitonin therapy and phosphate deprivation on tumoral calcinosis. S Afr Med J. 1978;54:963–6.
57.
go back to reference Salvi A, Cerudelli B, Cimino A, Zuccato F, Giustina G. Phosphaturic action of calcitonin in pseudotumoral calcinosis. Horm Metab Res. 1983;15:260. Salvi A, Cerudelli B, Cimino A, Zuccato F, Giustina G. Phosphaturic action of calcitonin in pseudotumoral calcinosis. Horm Metab Res. 1983;15:260.
58.
go back to reference Knox FG, Haas JA, Lechene CP. Effect of parathyroid hormone on phosphate reabsorption in the presence of acetazolamide. Kidney Int. 1976;10:216–20. Knox FG, Haas JA, Lechene CP. Effect of parathyroid hormone on phosphate reabsorption in the presence of acetazolamide. Kidney Int. 1976;10:216–20.
59.
go back to reference Sinha TK, Allen DO, Queener SF, Bell NH, Larson S, McClintock R. Effects of acetazolamide on the renal excretion of phosphate in hypoparathyroidism and pseudohypoparathyroidism. J Lab Clin Med. 1977;89:1188–97. Sinha TK, Allen DO, Queener SF, Bell NH, Larson S, McClintock R. Effects of acetazolamide on the renal excretion of phosphate in hypoparathyroidism and pseudohypoparathyroidism. J Lab Clin Med. 1977;89:1188–97.
60.
go back to reference Candrina R, Cerudelli B, Braga V, Salvi A. Effects of the acute subcutaneous administration of synthetic salmon calcitonin in tumoral calcinosis. J Endocrinol Invest. 1989;12:55–7. Candrina R, Cerudelli B, Braga V, Salvi A. Effects of the acute subcutaneous administration of synthetic salmon calcitonin in tumoral calcinosis. J Endocrinol Invest. 1989;12:55–7.
61.
go back to reference Liu ES, Carpenter TO, Gundberg CM, Simpson CA, Insogna KL. Calcitonin administration in X-linked hypophosphatemia. N Engl J Med. 2011;364:1678–80. Liu ES, Carpenter TO, Gundberg CM, Simpson CA, Insogna KL. Calcitonin administration in X-linked hypophosphatemia. N Engl J Med. 2011;364:1678–80.
62.
go back to reference Marco Puche A, Calvo Penades I, Lopez MB. Effectiveness of the treatment with intravenous pamidronate in calcinosis in juvenile dermatomyositis. Clin Exp Rheumatol. 2010;28:135–40. Marco Puche A, Calvo Penades I, Lopez MB. Effectiveness of the treatment with intravenous pamidronate in calcinosis in juvenile dermatomyositis. Clin Exp Rheumatol. 2010;28:135–40.
63.
go back to reference Leicht E, Tkocz HJ, Seeliger H, Lauffenburger T, Haas HG. Tumoral calcinosis. Observations during six years. Horm Metab Res. 1980;12:269–73. Leicht E, Tkocz HJ, Seeliger H, Lauffenburger T, Haas HG. Tumoral calcinosis. Observations during six years. Horm Metab Res. 1980;12:269–73.
64.
go back to reference Ichikawa S, Austin AM, Gray AK, Econs MJ, Ichikawa S, Austin AM, et al. A Phex mutation in a murine model of X-linked hypophosphatemia alters phosphate responsiveness of bone cells. J Bone Miner Res. 2012;27(2):453–60. Ichikawa S, Austin AM, Gray AK, Econs MJ, Ichikawa S, Austin AM, et al. A Phex mutation in a murine model of X-linked hypophosphatemia alters phosphate responsiveness of bone cells. J Bone Miner Res. 2012;27(2):453–60.
65.
go back to reference Smith RC, O’Bryan LM, Farrow EG, Summers LJ, Clinkenbeard EL, Roberts JL, et al. Circulating αKlotho influences phosphate handling by controlling FGF23 production. J Clin Invest. 2012;122(12):4710–5. Smith RC, O’Bryan LM, Farrow EG, Summers LJ, Clinkenbeard EL, Roberts JL, et al. Circulating αKlotho influences phosphate handling by controlling FGF23 production. J Clin Invest. 2012;122(12):4710–5.
Metadata
Title
Hyperphosphatemic Familial Tumoral Calcinosis: Genetic Models of Deficient FGF23 Action
Authors
Lisal J. Folsom
Erik A. Imel
Publication date
01-04-2015
Publisher
Springer US
Published in
Current Osteoporosis Reports / Issue 2/2015
Print ISSN: 1544-1873
Electronic ISSN: 1544-2241
DOI
https://doi.org/10.1007/s11914-015-0254-3

Other articles of this Issue 2/2015

Current Osteoporosis Reports 2/2015 Go to the issue

Osteocytes (T Bellido and J Klein-Nulend, Section Editors)

Osteocyte Shape and Mechanical Loading

Osteocytes (T Bellido and J Klein-Nulend, Section Editors)

Cx43 and Mechanotransduction in Bone

Bone and Diabetes (AV Schwartz and P Vestergaard, Section Editors)

Diabetes, Diabetic Complications, and Fracture Risk

Osteoporosis and Cancer (P Clezardin and G van der Pluijm, Section Editors)

Antiresorptive Therapy in the Management of Cancer Treatment-Induced Bone Loss

Kidney and Bone (SM Moe and IB Salusky, Section Editors)

Defective Skeletal Mineralization in Pediatric CKD

Rare Bone Disease (CB Langman and E Shore, Section Editors)

Hypophosphatemic Rickets: Lessons from Disrupted FGF23 Control of Phosphorus Homeostasis