Skip to main content
Top
Published in: Pediatric Radiology 1/2019

01-01-2019 | Original Article

Validation of cardiac magnetic-resonance-derived left ventricular strain measurements from free-breathing motion-corrected cine imaging

Authors: Anthony Merlocco, Russell R. Cross, Peter Kellman, Hui Xue, Laura Olivieri

Published in: Pediatric Radiology | Issue 1/2019

Login to get access

Abstract

Background

Myocardial strain is an important measure of cardiac function and can be assessed on cardiac magnetic resonance (MR) through the current gold standard of breath-held segmented steady-state free precession (SSFP) cine imaging. Novel free-breathing techniques have been validated for volumetry and systolic function, allowing for evaluation of sicker and younger children who cannot reliably hold their breath. It is unclear whether strain measurements can be reliably performed on free-breathing, motion-corrected, re-binning cine images.

Objective

To compare strain analysis from motion-corrected retrospective re-binning images to the breath-held SSFP cine images to explore their validity.

Materials and methods

Twenty-five children and young adults, ages (2.1–18.6 years) underwent breath-held and motion-corrected retrospective re-binning cine techniques during the same MR examination on a 1.5-tesla magnet. We measured endocardial end-systolic global circumferential strain and endocardial averaged segmental strain using commercial software (MEDIS QStrain 2.1). We used Pearson correlation coefficients to test agreement across techniques.

Results

Analysis was possible in all 25 breath-held and motion-corrected retrospective re-binning studies. Global circumferential strain and endocardial averaged segmental strain obtained by motion-corrected retrospective re-binning compared favorably to breath-held studies. Global circumferential strain linear regression models demonstrated acceptable agreement, with coefficients of determination of 0.75 for breath-held compared to motion-corrected retrospective re-binning (P<0.001) and for endocardial averaged segmental strain comparisons yielded 0.77 for breath-held vs. motion-corrected retrospective re-binning (P<0.001). Bland–Altman assessment demonstrated minimal bias for breath-held compared to motion-corrected retrospective re-binning (mean 2.4 and 1.9, respectively, for global circumferential strain and endocardial averaged segmental strain).

Conclusion

Free-breathing imaging by motion-corrected retrospective re-binning cine imaging provides adequate spatial and temporal resolution to measure myocardial deformation when compared to the gold-standard breath-held SSFP cine imaging in children with normal or borderline systolic function.
Literature
1.
go back to reference Abraham TP, Dimaano VL, Liang HY (2007) Role of tissue Doppler and strain echocardiography in current clinical practice. Circulation 116:2597–2609CrossRefPubMed Abraham TP, Dimaano VL, Liang HY (2007) Role of tissue Doppler and strain echocardiography in current clinical practice. Circulation 116:2597–2609CrossRefPubMed
2.
go back to reference Jurcut R, Wildiers H, Ganame J et al (2008) Strain rate imaging detects early cardiac effects of pegylated liposomal doxorubicin as adjuvant therapy in elderly patients with breast cancer. J Am Soc Echocardiogr 21:1283–1289CrossRefPubMed Jurcut R, Wildiers H, Ganame J et al (2008) Strain rate imaging detects early cardiac effects of pegylated liposomal doxorubicin as adjuvant therapy in elderly patients with breast cancer. J Am Soc Echocardiogr 21:1283–1289CrossRefPubMed
3.
go back to reference Young AA, Kramer CM, Ferrari VA et al (1994) Three-dimensional left ventricular deformation in hypertrophic cardiomyopathy. Circulation 90:854–867CrossRefPubMed Young AA, Kramer CM, Ferrari VA et al (1994) Three-dimensional left ventricular deformation in hypertrophic cardiomyopathy. Circulation 90:854–867CrossRefPubMed
4.
go back to reference Biederman RWW, Doyle M, Young AA et al (2008) Marked regional left ventricular heterogeneity in hypertensive left ventricular hypertrophy patients: a losartan intervention for endpoint reduction in hypertension (LIFE) cardiovascular magnetic resonance and echocardiographic substudy. Hypertension 52:279–286CrossRefPubMedPubMedCentral Biederman RWW, Doyle M, Young AA et al (2008) Marked regional left ventricular heterogeneity in hypertensive left ventricular hypertrophy patients: a losartan intervention for endpoint reduction in hypertension (LIFE) cardiovascular magnetic resonance and echocardiographic substudy. Hypertension 52:279–286CrossRefPubMedPubMedCentral
5.
go back to reference Hor KN, Wansapura J, Markham LW et al (2009) Circumferential strain analysis identifies strata of cardiomyopathy in Duchenne muscular dystrophy. A cardiac magnetic resonance tagging study. J Am Coll Cardiol 53:1204–1210CrossRefPubMedPubMedCentral Hor KN, Wansapura J, Markham LW et al (2009) Circumferential strain analysis identifies strata of cardiomyopathy in Duchenne muscular dystrophy. A cardiac magnetic resonance tagging study. J Am Coll Cardiol 53:1204–1210CrossRefPubMedPubMedCentral
6.
go back to reference Ashford MW, Liu W, Lin SJ et al (2005) Occult cardiac contractile dysfunction in dystrophin-deficient children revealed by cardiac magnetic resonance strain imaging. Circulation 112:2462–2467CrossRefPubMed Ashford MW, Liu W, Lin SJ et al (2005) Occult cardiac contractile dysfunction in dystrophin-deficient children revealed by cardiac magnetic resonance strain imaging. Circulation 112:2462–2467CrossRefPubMed
7.
go back to reference Schuster A, Morton G, Hussain ST et al (2013) The intra-observer reproducibility of cardiovascular magnetic resonance myocardial feature tracking strain assessment is independent of field strength. Eur J Radiol 82:296–301CrossRefPubMed Schuster A, Morton G, Hussain ST et al (2013) The intra-observer reproducibility of cardiovascular magnetic resonance myocardial feature tracking strain assessment is independent of field strength. Eur J Radiol 82:296–301CrossRefPubMed
8.
go back to reference Amundsen BH, Helle-Valle T, Edvardsen T et al (2006) Noninvasive myocardial strain measurement by speckle tracking echocardiography. J Am Coll Cardiol 47:789–793CrossRefPubMed Amundsen BH, Helle-Valle T, Edvardsen T et al (2006) Noninvasive myocardial strain measurement by speckle tracking echocardiography. J Am Coll Cardiol 47:789–793CrossRefPubMed
9.
go back to reference Bansal M, Cho G-Y, Chan J et al (2008) Feasibility and accuracy of different techniques of two-dimensional speckle based strain and validation with harmonic phase magnetic resonance imaging. J Am Soc Echocardiogr 21:1318–1325CrossRefPubMed Bansal M, Cho G-Y, Chan J et al (2008) Feasibility and accuracy of different techniques of two-dimensional speckle based strain and validation with harmonic phase magnetic resonance imaging. J Am Soc Echocardiogr 21:1318–1325CrossRefPubMed
10.
go back to reference Morton G, Schuster A, Jogiya R et al (2012) Inter-study reproducibility of cardiovascular magnetic resonance myocardial feature tracking. J Cardiovasc Magn Reson 14:43CrossRefPubMedPubMedCentral Morton G, Schuster A, Jogiya R et al (2012) Inter-study reproducibility of cardiovascular magnetic resonance myocardial feature tracking. J Cardiovasc Magn Reson 14:43CrossRefPubMedPubMedCentral
11.
go back to reference Schuster A, Stahnke V-C, Unterberg-Buchwald C et al (2015) Cardiovascular magnetic resonance feature-tracking assessment of myocardial mechanics: intervendor agreement and considerations regarding reproducibility. Clin Radiol 70:989–998CrossRefPubMedPubMedCentral Schuster A, Stahnke V-C, Unterberg-Buchwald C et al (2015) Cardiovascular magnetic resonance feature-tracking assessment of myocardial mechanics: intervendor agreement and considerations regarding reproducibility. Clin Radiol 70:989–998CrossRefPubMedPubMedCentral
12.
go back to reference Thiele H, Paetsch I, Schnackenburg B et al (2002) Improved accuracy of quantitative assessment of left ventricular volume and ejection fraction by geometric models with steady-state free precession. J Cardiovasc Magn Reson 4:327–339CrossRefPubMed Thiele H, Paetsch I, Schnackenburg B et al (2002) Improved accuracy of quantitative assessment of left ventricular volume and ejection fraction by geometric models with steady-state free precession. J Cardiovasc Magn Reson 4:327–339CrossRefPubMed
13.
go back to reference Schuster A, Hor KN, Kowallick JT et al (2016) Cardiovascular magnetic resonance myocardial feature tracking. Circ Cardiovasc Imaging 9:1–10CrossRef Schuster A, Hor KN, Kowallick JT et al (2016) Cardiovascular magnetic resonance myocardial feature tracking. Circ Cardiovasc Imaging 9:1–10CrossRef
14.
go back to reference Claus P, Omar AMS, Pedrizzetti G et al (2015) Tissue tracking technology for assessing cardiac mechanics: principles, normal values, and clinical applications. JACC Cardiovasc Imaging 8:1444–1460CrossRefPubMed Claus P, Omar AMS, Pedrizzetti G et al (2015) Tissue tracking technology for assessing cardiac mechanics: principles, normal values, and clinical applications. JACC Cardiovasc Imaging 8:1444–1460CrossRefPubMed
15.
go back to reference Bergvall E, Hedstrom E, Bloch KM et al (2008) Spline-based cardiac motion tracking using velocity-encoded magnetic resonance imaging. IEEE Trans Med Imaging 27:1045–1053CrossRefPubMed Bergvall E, Hedstrom E, Bloch KM et al (2008) Spline-based cardiac motion tracking using velocity-encoded magnetic resonance imaging. IEEE Trans Med Imaging 27:1045–1053CrossRefPubMed
16.
go back to reference Hedström E, Bloch KM, Bergvall E et al (2010) Effects of gadolinium contrast agent on aortic blood flow and myocardial strain measurements by phase-contrast cardiovascular magnetic resonance. J Cardiovasc Magn Reson 12:70CrossRefPubMedPubMedCentral Hedström E, Bloch KM, Bergvall E et al (2010) Effects of gadolinium contrast agent on aortic blood flow and myocardial strain measurements by phase-contrast cardiovascular magnetic resonance. J Cardiovasc Magn Reson 12:70CrossRefPubMedPubMedCentral
17.
go back to reference Jung B, Zaitsev M, Hennig J, Markl M (2006) Navigator gated high temporal resolution tissue phase mapping of myocardial motion. Magn Reson Med 55:937–942CrossRefPubMed Jung B, Zaitsev M, Hennig J, Markl M (2006) Navigator gated high temporal resolution tissue phase mapping of myocardial motion. Magn Reson Med 55:937–942CrossRefPubMed
18.
go back to reference Sampath S, Derbyshire JA, Atalar E et al (2003) Real-time imaging of two-dimensional cardiac strain using a harmonic phase magnetic resonance imaging (HARP-MRI) pulse sequence. Magn Reson Med 50:154–163CrossRefPubMed Sampath S, Derbyshire JA, Atalar E et al (2003) Real-time imaging of two-dimensional cardiac strain using a harmonic phase magnetic resonance imaging (HARP-MRI) pulse sequence. Magn Reson Med 50:154–163CrossRefPubMed
19.
go back to reference Zhong X, Spottiswoode BS, Meyer CH et al (2010) Imaging three-dimensional myocardial mechanics using navigator-gated volumetric spiral cine DENSE MRI. Magn Reson Med 64:1089–1097CrossRefPubMedPubMedCentral Zhong X, Spottiswoode BS, Meyer CH et al (2010) Imaging three-dimensional myocardial mechanics using navigator-gated volumetric spiral cine DENSE MRI. Magn Reson Med 64:1089–1097CrossRefPubMedPubMedCentral
20.
go back to reference Cross R, Olivieri L, O’Brien K et al (2016) Improved workflow for quantification of left ventricular volumes and mass using free-breathing motion corrected cine imaging. J Cardiovasc Magn Reson 18:10CrossRefPubMedPubMedCentral Cross R, Olivieri L, O’Brien K et al (2016) Improved workflow for quantification of left ventricular volumes and mass using free-breathing motion corrected cine imaging. J Cardiovasc Magn Reson 18:10CrossRefPubMedPubMedCentral
22.
go back to reference Kellman P, Chefd’hotel C, Lorenz CH et al (2009) High spatial and temporal resolution cardiac cine MRI from retrospective reconstruction of data acquired in real time using motion correction and resorting. Magn Reson Med 62:1557–1564CrossRefPubMedPubMedCentral Kellman P, Chefd’hotel C, Lorenz CH et al (2009) High spatial and temporal resolution cardiac cine MRI from retrospective reconstruction of data acquired in real time using motion correction and resorting. Magn Reson Med 62:1557–1564CrossRefPubMedPubMedCentral
23.
go back to reference Xue H, Inati S, Sørensen TS et al (2015) Distributed MRI reconstruction using Gadgetron-based cloud computing. Magn Reson Med 73:1015–1025CrossRefPubMed Xue H, Inati S, Sørensen TS et al (2015) Distributed MRI reconstruction using Gadgetron-based cloud computing. Magn Reson Med 73:1015–1025CrossRefPubMed
24.
go back to reference Siegel B, Olivieri L, Gordish-Dressman H, Spurney CF (2018) Myocardial strain using cardiac MR feature tracking and speckle tracking echocardiography in Duchenne muscular dystrophy patients. Pediatr Cardiol 39:478–483CrossRefPubMed Siegel B, Olivieri L, Gordish-Dressman H, Spurney CF (2018) Myocardial strain using cardiac MR feature tracking and speckle tracking echocardiography in Duchenne muscular dystrophy patients. Pediatr Cardiol 39:478–483CrossRefPubMed
25.
go back to reference Pedrizzetti G, Claus P, Kilner PJ, Nagel E (2016) Principles of cardiovascular magnetic resonance feature tracking and echocardiographic speckle tracking for informed clinical use. J Cardiovasc Magn Reson 18:51CrossRefPubMedPubMedCentral Pedrizzetti G, Claus P, Kilner PJ, Nagel E (2016) Principles of cardiovascular magnetic resonance feature tracking and echocardiographic speckle tracking for informed clinical use. J Cardiovasc Magn Reson 18:51CrossRefPubMedPubMedCentral
26.
go back to reference Xue H, Kellman P, LaRocca G et al (2013) High spatial and temporal resolution retrospective cine cardiovascular magnetic resonance from shortened free breathing real-time acquisitions. J Cardiovasc Magn Reson 15:102CrossRefPubMedPubMedCentral Xue H, Kellman P, LaRocca G et al (2013) High spatial and temporal resolution retrospective cine cardiovascular magnetic resonance from shortened free breathing real-time acquisitions. J Cardiovasc Magn Reson 15:102CrossRefPubMedPubMedCentral
27.
go back to reference Hansen MS, Sørensen TS, Arai AE, Kellman P (2012) Retrospective reconstruction of high temporal resolution cine images from real-time MRI using iterative motion correction. Magn Reson Med 68:741–750CrossRefPubMed Hansen MS, Sørensen TS, Arai AE, Kellman P (2012) Retrospective reconstruction of high temporal resolution cine images from real-time MRI using iterative motion correction. Magn Reson Med 68:741–750CrossRefPubMed
28.
go back to reference Yeon SB, Reichek N, Tallant BA et al (2001) Validation of in vivo myocardial strain measurement by magnetic resonance tagging with sonomicrometry. J Am Coll Cardiol 38:555–561CrossRefPubMed Yeon SB, Reichek N, Tallant BA et al (2001) Validation of in vivo myocardial strain measurement by magnetic resonance tagging with sonomicrometry. J Am Coll Cardiol 38:555–561CrossRefPubMed
29.
go back to reference Moody WEE, Taylor RJJ, Edwards NCC et al (2015) Comparison of magnetic resonance feature tracking for systolic and diastolic strain and strain rate calculation with spatial modulation of magnetization imaging analysis. J Magn Reson Imaging 41:1000–1012CrossRefPubMed Moody WEE, Taylor RJJ, Edwards NCC et al (2015) Comparison of magnetic resonance feature tracking for systolic and diastolic strain and strain rate calculation with spatial modulation of magnetization imaging analysis. J Magn Reson Imaging 41:1000–1012CrossRefPubMed
31.
go back to reference Riffel J, Keller MG, Aurich M et al (2015) Standardized assessment of global longitudinal and circumferential strain — a modality independent software approach. J Cardiovasc Magn Reson 17:1–2CrossRef Riffel J, Keller MG, Aurich M et al (2015) Standardized assessment of global longitudinal and circumferential strain — a modality independent software approach. J Cardiovasc Magn Reson 17:1–2CrossRef
32.
go back to reference Taylor RJ, Moody WE, Umar F et al (2015) Myocardial strain measurement with feature-tracking cardiovascular magnetic resonance: normal values. Eur Heart J Cardiovasc Imaging 16:871–881CrossRefPubMed Taylor RJ, Moody WE, Umar F et al (2015) Myocardial strain measurement with feature-tracking cardiovascular magnetic resonance: normal values. Eur Heart J Cardiovasc Imaging 16:871–881CrossRefPubMed
Metadata
Title
Validation of cardiac magnetic-resonance-derived left ventricular strain measurements from free-breathing motion-corrected cine imaging
Authors
Anthony Merlocco
Russell R. Cross
Peter Kellman
Hui Xue
Laura Olivieri
Publication date
01-01-2019
Publisher
Springer Berlin Heidelberg
Published in
Pediatric Radiology / Issue 1/2019
Print ISSN: 0301-0449
Electronic ISSN: 1432-1998
DOI
https://doi.org/10.1007/s00247-018-4251-4

Other articles of this Issue 1/2019

Pediatric Radiology 1/2019 Go to the issue

Exposure

Exposure