Skip to main content
Top
Published in: Pediatric Cardiology 3/2010

Open Access 01-04-2010 | Riley Symposium

Development of the Endocardium

Authors: Ian S. Harris, Brian L. Black

Published in: Pediatric Cardiology | Issue 3/2010

Login to get access

Abstract

The endocardium, the endothelial lining of the heart, plays complex and critical roles in heart development, particularly in the formation of the cardiac valves and septa, the division of the truncus arteriosus into the aortic and pulmonary trunks, the development of Purkinje fibers that form the cardiac conduction system, and the formation of trabecular myocardium. Current data suggest that the endocardium is a regionally specialized endothelium that arises through a process of de novo vasculogenesis from a distinct population of mesodermal cardiogenic precursors in the cardiac crescent. In this article, we review recent developments in the understanding of the embryonic origins of the endocardium. Specifically, we summarize vasculogenesis and specification of endothelial cells from mesodermal precursors, and we review the transcriptional pathways involved in these processes. We discuss the lineage relationships between the endocardium and other endothelial populations and between the endocardium and the myocardium. Finally, we explore unresolved questions about the lineage relationships between the endocardium and the myocardium. One of the central questions involves the timing with which mesodermal cells, which arise in the primitive streak and migrate to the cardiac crescent, become committed to an endocardial fate. Two competing conceptual models of endocardial specification have been proposed. In the first, mesodermal precursor cells in the cardiac crescent are prespecified to become either endocardial or myocardial cells, while in the second, fate plasticity is retained by bipotential cardiogenic cells in the cardiac crescent. We propose a third model that reconciles these two views and suggest future experiments that might resolve this question.
Literature
1.
go back to reference Abu-Issa R, Kirby ML (2007) Heart field: from mesoderm to heart tube. Annu Rev Cell Dev Biol 23:45–68CrossRefPubMed Abu-Issa R, Kirby ML (2007) Heart field: from mesoderm to heart tube. Annu Rev Cell Dev Biol 23:45–68CrossRefPubMed
2.
go back to reference Akazawa H, Komuro I (2005) Cardiac transcription factor Csx/Nkx2–5: its role in cardiac development and diseases. Pharmacol Ther 107:252–268CrossRefPubMed Akazawa H, Komuro I (2005) Cardiac transcription factor Csx/Nkx2–5: its role in cardiac development and diseases. Pharmacol Ther 107:252–268CrossRefPubMed
3.
go back to reference al Moustafa AE, Chalifour LE (1993) Immortal cell lines isolated from heart differentiate to an endothelial cell lineage in the presence of retinoic acid. Cell Growth Differ 4:841–847PubMed al Moustafa AE, Chalifour LE (1993) Immortal cell lines isolated from heart differentiate to an endothelial cell lineage in the presence of retinoic acid. Cell Growth Differ 4:841–847PubMed
4.
5.
go back to reference Brand T (2003) Heart development: molecular insights into cardiac specification and early morphogenesis. Dev Biol 258:1–19CrossRefPubMed Brand T (2003) Heart development: molecular insights into cardiac specification and early morphogenesis. Dev Biol 258:1–19CrossRefPubMed
6.
go back to reference Brutsaert DL, De Keulenaer GW, Fransen P, Mohan P, Kaluza GL, Andries LJ, Rouleau JL, Sys SU (1996) The cardiac endothelium: functional morphology, development, and physiology. Prog Cardiovasc Dis 39:239–262CrossRefPubMed Brutsaert DL, De Keulenaer GW, Fransen P, Mohan P, Kaluza GL, Andries LJ, Rouleau JL, Sys SU (1996) The cardiac endothelium: functional morphology, development, and physiology. Prog Cardiovasc Dis 39:239–262CrossRefPubMed
7.
go back to reference Bu L, Jiang X, Martin-Puig S, Caron L, Zhu S, Shao Y, Roberts DJ, Huang PL, Domian IJ, Chien KR (2009) Human ISL1 heart progenitors generate diverse multipotent cardiovascular cell lineages. Nature 460:113–117CrossRefPubMed Bu L, Jiang X, Martin-Puig S, Caron L, Zhu S, Shao Y, Roberts DJ, Huang PL, Domian IJ, Chien KR (2009) Human ISL1 heart progenitors generate diverse multipotent cardiovascular cell lineages. Nature 460:113–117CrossRefPubMed
8.
go back to reference Bussmann J, Bakkers J, Schulte-Merker S (2007) Early endocardial morphogenesis requires. Scl/Tal1 PLoS Genet 3:e140CrossRef Bussmann J, Bakkers J, Schulte-Merker S (2007) Early endocardial morphogenesis requires. Scl/Tal1 PLoS Genet 3:e140CrossRef
9.
go back to reference Cai CL, Liang X, Shi Y, Chu PH, Pfaff SL, Chen J, Evans S (2003) Isl1 identifies a cardiac progenitor population that proliferates prior to differentiation and contributes a majority of cells to the heart. Dev Cell 5:877–889CrossRefPubMed Cai CL, Liang X, Shi Y, Chu PH, Pfaff SL, Chen J, Evans S (2003) Isl1 identifies a cardiac progenitor population that proliferates prior to differentiation and contributes a majority of cells to the heart. Dev Cell 5:877–889CrossRefPubMed
10.
go back to reference Charron F, Nemer M (1999) GATA transcription factors and cardiac development. Semin Cell Dev Biol 10:85–91CrossRefPubMed Charron F, Nemer M (1999) GATA transcription factors and cardiac development. Semin Cell Dev Biol 10:85–91CrossRefPubMed
11.
go back to reference Cohen-Gould L, Mikawa T (1996) The fate diversity of mesodermal cells within the heart field during chicken early embryogenesis. Dev Biol 177:265–273CrossRefPubMed Cohen-Gould L, Mikawa T (1996) The fate diversity of mesodermal cells within the heart field during chicken early embryogenesis. Dev Biol 177:265–273CrossRefPubMed
12.
go back to reference Combs MD, Yutzey KE (2009) Heart valve development: regulatory networks in development and disease. Circ Res 105:408–421CrossRefPubMed Combs MD, Yutzey KE (2009) Heart valve development: regulatory networks in development and disease. Circ Res 105:408–421CrossRefPubMed
13.
go back to reference de la Pompa JL, Timmerman LA, Takimoto H, Yoshida H, Elia AJ, Samper E, Potter J, Wakeham A, Marengere L, Langille BL, Crabtree GR, Mak TW (1998) Role of the NF-ATc transcription factor in morphogenesis of cardiac valves and septum. Nature 392:182–186CrossRef de la Pompa JL, Timmerman LA, Takimoto H, Yoshida H, Elia AJ, Samper E, Potter J, Wakeham A, Marengere L, Langille BL, Crabtree GR, Mak TW (1998) Role of the NF-ATc transcription factor in morphogenesis of cardiac valves and septum. Nature 392:182–186CrossRef
14.
go back to reference De Val S, Black BL (2009) Transcriptional control of endothelial cell development. Dev Cell 16:180–195CrossRefPubMed De Val S, Black BL (2009) Transcriptional control of endothelial cell development. Dev Cell 16:180–195CrossRefPubMed
15.
go back to reference De Val S, Chi NC, Meadows SM, Minovitsky S, Anderson JP, Harris IS, Ehlers ML, Agarwal P, Visel A, Xu SM, Pennacchio LA, Dubchak I, Krieg PA, Stainier DY, Black BL (2008) Combinatorial regulation of endothelial gene expression by Ets and Forkhead transcription factors. Cell 135:1053–1064CrossRefPubMed De Val S, Chi NC, Meadows SM, Minovitsky S, Anderson JP, Harris IS, Ehlers ML, Agarwal P, Visel A, Xu SM, Pennacchio LA, Dubchak I, Krieg PA, Stainier DY, Black BL (2008) Combinatorial regulation of endothelial gene expression by Ets and Forkhead transcription factors. Cell 135:1053–1064CrossRefPubMed
16.
go back to reference Eisenberg CA, Bader D (1995) QCE-6: a clonal cell line with cardiac myogenic and endothelial cell potentials. Dev Biol 167:469–481CrossRefPubMed Eisenberg CA, Bader D (1995) QCE-6: a clonal cell line with cardiac myogenic and endothelial cell potentials. Dev Biol 167:469–481CrossRefPubMed
17.
go back to reference Ema M, Takahashi S, Rossant J (2006) Deletion of the selection cassette, but not cis-acting elements, in targeted Flk1-lacZ allele reveals Flk1 expression in multipotent mesodermal progenitors. Blood 107:111–117CrossRefPubMed Ema M, Takahashi S, Rossant J (2006) Deletion of the selection cassette, but not cis-acting elements, in targeted Flk1-lacZ allele reveals Flk1 expression in multipotent mesodermal progenitors. Blood 107:111–117CrossRefPubMed
18.
go back to reference Fehling HJ, Lacaud G, Kubo A, Kennedy M, Robertson S, Keller G, Kouskoff V (2003) Tracking mesoderm induction and its specification to the hemangioblast during embryonic stem cell differentiation. Development 130:4217–4227CrossRefPubMed Fehling HJ, Lacaud G, Kubo A, Kennedy M, Robertson S, Keller G, Kouskoff V (2003) Tracking mesoderm induction and its specification to the hemangioblast during embryonic stem cell differentiation. Development 130:4217–4227CrossRefPubMed
19.
go back to reference Ferdous A, Caprioli A, Iacovino M, Martin CM, Morris J, Richardson JA, Latif S, Hammer RE, Harvey RP, Olson EN, Kyba M, Garry DJ (2009) Nkx2–5 transactivates the Ets-related protein 71 gene and specifies an endothelial/endocardial fate in the developing embryo. Proc Natl Acad Sci USA 106:814–819CrossRefPubMed Ferdous A, Caprioli A, Iacovino M, Martin CM, Morris J, Richardson JA, Latif S, Hammer RE, Harvey RP, Olson EN, Kyba M, Garry DJ (2009) Nkx2–5 transactivates the Ets-related protein 71 gene and specifies an endothelial/endocardial fate in the developing embryo. Proc Natl Acad Sci USA 106:814–819CrossRefPubMed
20.
go back to reference Flamme I, Frolich T, Risau W (1997) Molecular mechanisms of vasculogenesis and embryonic angiogenesis. J Cell Physiol 173:206–210CrossRefPubMed Flamme I, Frolich T, Risau W (1997) Molecular mechanisms of vasculogenesis and embryonic angiogenesis. J Cell Physiol 173:206–210CrossRefPubMed
21.
go back to reference Gering M, Yamada Y, Rabbitts TH, Patient RK (2003) Lmo2 and Scl/Tal1 convert non-axial mesoderm into haemangioblasts which differentiate into endothelial cells in the absence of Gata1. Development 130:6187–6199CrossRefPubMed Gering M, Yamada Y, Rabbitts TH, Patient RK (2003) Lmo2 and Scl/Tal1 convert non-axial mesoderm into haemangioblasts which differentiate into endothelial cells in the absence of Gata1. Development 130:6187–6199CrossRefPubMed
23.
go back to reference Harvey RP, Lai D, Elliott D, Biben C, Solloway M, Prall O, Stennard F, Schindeler A, Groves N, Lavulo L, Hyun C, Yeoh T, Costa M, Furtado M, Kirk E (2002) Homeodomain factor Nkx2–5 in heart development and disease. Cold Spring Harb Symp Quant Biol 67:107–114CrossRefPubMed Harvey RP, Lai D, Elliott D, Biben C, Solloway M, Prall O, Stennard F, Schindeler A, Groves N, Lavulo L, Hyun C, Yeoh T, Costa M, Furtado M, Kirk E (2002) Homeodomain factor Nkx2–5 in heart development and disease. Cold Spring Harb Symp Quant Biol 67:107–114CrossRefPubMed
24.
go back to reference Hirschi KK, D’Amore PA (1996) Pericytes in the microvasculature. Cardiovasc Res 32:687–698PubMed Hirschi KK, D’Amore PA (1996) Pericytes in the microvasculature. Cardiovasc Res 32:687–698PubMed
25.
go back to reference Hirschi KK, D’Amore PA (1997) Control of angiogenesis by the pericyte: molecular mechanisms and significance. Exs 79:419–428PubMed Hirschi KK, D’Amore PA (1997) Control of angiogenesis by the pericyte: molecular mechanisms and significance. Exs 79:419–428PubMed
26.
go back to reference Huber TL, Kouskoff V, Fehling HJ, Palis J, Keller G (2004) Haemangioblast commitment is initiated in the primitive streak of the mouse embryo. Nature 432:625–630CrossRefPubMed Huber TL, Kouskoff V, Fehling HJ, Palis J, Keller G (2004) Haemangioblast commitment is initiated in the primitive streak of the mouse embryo. Nature 432:625–630CrossRefPubMed
27.
go back to reference Hutson MR, Kirby ML (2007) Model systems for the study of heart development and disease. Cardiac neural crest and conotruncal malformations. Semin Cell Dev Biol 18:101–110CrossRefPubMed Hutson MR, Kirby ML (2007) Model systems for the study of heart development and disease. Cardiac neural crest and conotruncal malformations. Semin Cell Dev Biol 18:101–110CrossRefPubMed
28.
go back to reference Ishii Y, Langberg J, Rosborough K, Mikawa T (2009) Endothelial cell lineages of the heart. Cell Tissue Res 335:67–73CrossRefPubMed Ishii Y, Langberg J, Rosborough K, Mikawa T (2009) Endothelial cell lineages of the heart. Cell Tissue Res 335:67–73CrossRefPubMed
29.
go back to reference Jaffredo T, Gautier R, Eichmann A, Dieterlen-Lièvre F (1998) Intraaortic hemopoietic cells are derived from endothelial cells during ontogeny. Development 125:4575–4583PubMed Jaffredo T, Gautier R, Eichmann A, Dieterlen-Lièvre F (1998) Intraaortic hemopoietic cells are derived from endothelial cells during ontogeny. Development 125:4575–4583PubMed
30.
go back to reference Kattman SJ, Huber TL, Keller GM (2006) Multipotent flk-1+ cardiovascular progenitor cells give rise to the cardiomyocyte, endothelial, and vascular smooth muscle lineages. Dev Cell 11:723–732CrossRefPubMed Kattman SJ, Huber TL, Keller GM (2006) Multipotent flk-1+ cardiovascular progenitor cells give rise to the cardiomyocyte, endothelial, and vascular smooth muscle lineages. Dev Cell 11:723–732CrossRefPubMed
31.
go back to reference Komuro I, Izumo S (1993) Csx: a murine homeobox-containing gene specifically expressed in the developing heart. Proc Natl Acad Sci USA 90:8145–8149CrossRefPubMed Komuro I, Izumo S (1993) Csx: a murine homeobox-containing gene specifically expressed in the developing heart. Proc Natl Acad Sci USA 90:8145–8149CrossRefPubMed
32.
go back to reference Kouskoff V, Lacaud G, Schwantz S, Fehling HJ, Keller G (2005) Sequential development of hematopoietic and cardiac mesoderm during embryonic stem cell differentiation. Proc Natl Acad Sci USA 102:13170–13175CrossRefPubMed Kouskoff V, Lacaud G, Schwantz S, Fehling HJ, Keller G (2005) Sequential development of hematopoietic and cardiac mesoderm during embryonic stem cell differentiation. Proc Natl Acad Sci USA 102:13170–13175CrossRefPubMed
33.
go back to reference Lee RK, Stainier DY, Weinstein BM, Fishman MC (1994) Cardiovascular development in the zebrafish. II. Endocardial progenitors are sequestered within the heart field. Development 120:3361–3366PubMed Lee RK, Stainier DY, Weinstein BM, Fishman MC (1994) Cardiovascular development in the zebrafish. II. Endocardial progenitors are sequestered within the heart field. Development 120:3361–3366PubMed
34.
go back to reference Lee D, Park C, Lee H, Lugus JJ, Kim SH, Arentson E, Chung YS, Gomez G, Kyba M, Lin S, Janknecht R, Lim DS, Choi K (2008) ER71 acts downstream of BMP, Notch, and Wnt signaling in blood and vessel progenitor specification. Cell Stem Cell 2:497–507CrossRefPubMed Lee D, Park C, Lee H, Lugus JJ, Kim SH, Arentson E, Chung YS, Gomez G, Kyba M, Lin S, Janknecht R, Lim DS, Choi K (2008) ER71 acts downstream of BMP, Notch, and Wnt signaling in blood and vessel progenitor specification. Cell Stem Cell 2:497–507CrossRefPubMed
35.
go back to reference Linask KK, Lash JW (1993) Early heart development: dynamics of endocardial cell sorting suggests a common origin with cardiomyocytes. Dev Dyn 196:62–69PubMed Linask KK, Lash JW (1993) Early heart development: dynamics of endocardial cell sorting suggests a common origin with cardiomyocytes. Dev Dyn 196:62–69PubMed
36.
go back to reference Lints TJ, Parsons LM, Hartley L, Lyons I, Harvey RP (1993) Nkx-25: a novel murine homeobox gene expressed in early heart progenitor cells and their myogenic descendants. Development 119:969PubMed Lints TJ, Parsons LM, Hartley L, Lyons I, Harvey RP (1993) Nkx-25: a novel murine homeobox gene expressed in early heart progenitor cells and their myogenic descendants. Development 119:969PubMed
37.
go back to reference Lyons I, Parsons LM, Hartley L, Li R, Andrews JE, Robb L, Harvey RP (1995) Myogenic and morphogenetic defects in the heart tubes of murine embryos lacking the homeo box gene Nkx2–5. Genes Dev 9:1654–1666CrossRefPubMed Lyons I, Parsons LM, Hartley L, Li R, Andrews JE, Robb L, Harvey RP (1995) Myogenic and morphogenetic defects in the heart tubes of murine embryos lacking the homeo box gene Nkx2–5. Genes Dev 9:1654–1666CrossRefPubMed
38.
go back to reference Maschhoff KL, Baldwin HS (2000) Molecular determinants of neural crest migration. Am J Med Genet 97:280–288CrossRefPubMed Maschhoff KL, Baldwin HS (2000) Molecular determinants of neural crest migration. Am J Med Genet 97:280–288CrossRefPubMed
39.
go back to reference Masino AM, Gallardo TD, Wilcox CA, Olson EN, Williams RS, Garry DJ (2004) Transcriptional regulation of cardiac progenitor cell populations. Circ Res 95:389–397CrossRefPubMed Masino AM, Gallardo TD, Wilcox CA, Olson EN, Williams RS, Garry DJ (2004) Transcriptional regulation of cardiac progenitor cell populations. Circ Res 95:389–397CrossRefPubMed
40.
go back to reference Meilhac SM, Kelly RG, Rocancourt D, Eloy-Trinquet S, Nicolas JF, Buckingham ME (2003) A retrospective clonal analysis of the myocardium reveals two phases of clonal growth in the developing mouse heart. Development 130:3877–3889CrossRefPubMed Meilhac SM, Kelly RG, Rocancourt D, Eloy-Trinquet S, Nicolas JF, Buckingham ME (2003) A retrospective clonal analysis of the myocardium reveals two phases of clonal growth in the developing mouse heart. Development 130:3877–3889CrossRefPubMed
41.
go back to reference Mikawa T, Hurtado R (2007) Development of the cardiac conduction system. Semin Cell Dev Biol 18:90–100CrossRefPubMed Mikawa T, Hurtado R (2007) Development of the cardiac conduction system. Semin Cell Dev Biol 18:90–100CrossRefPubMed
42.
go back to reference Mikawa T, Gourdie RG, Takebayashi-Suzuki K, Kanzawa N, Hyer J, Pennisi DJ, Poma CP, Shulimovich M, Diaz KG, Layliev J, Prasad A (2003) Induction and patterning of the Purkinje fibre network. Novartis Found Symp 250:142–153 discussion 153–146, 276–149CrossRefPubMed Mikawa T, Gourdie RG, Takebayashi-Suzuki K, Kanzawa N, Hyer J, Pennisi DJ, Poma CP, Shulimovich M, Diaz KG, Layliev J, Prasad A (2003) Induction and patterning of the Purkinje fibre network. Novartis Found Symp 250:142–153 discussion 153–146, 276–149CrossRefPubMed
43.
go back to reference Misfeldt AM, Boyle SC, Tompkins KL, Bautch VL, Labosky PA, Baldwin HS (2009) Endocardial cells are a distinct endothelial lineage derived from Flk1+ multipotent cardiovascular progenitors. Dev Biol 333:78–89CrossRefPubMed Misfeldt AM, Boyle SC, Tompkins KL, Bautch VL, Labosky PA, Baldwin HS (2009) Endocardial cells are a distinct endothelial lineage derived from Flk1+ multipotent cardiovascular progenitors. Dev Biol 333:78–89CrossRefPubMed
44.
go back to reference Moretti A, Caron L, Nakano A, Lam JT, Bernshausen A, Chen Y, Qyang Y, Bu L, Sasaki M, Martin-Puig S, Sun Y, Evans SM, Laugwitz KL, Chien KR (2006) Multipotent embryonic isl1+ progenitor cells lead to cardiac, smooth muscle, and endothelial cell diversification. Cell 127:1151–1165CrossRefPubMed Moretti A, Caron L, Nakano A, Lam JT, Bernshausen A, Chen Y, Qyang Y, Bu L, Sasaki M, Martin-Puig S, Sun Y, Evans SM, Laugwitz KL, Chien KR (2006) Multipotent embryonic isl1+ progenitor cells lead to cardiac, smooth muscle, and endothelial cell diversification. Cell 127:1151–1165CrossRefPubMed
45.
go back to reference Moses KA, DeMayo F, Braun RM, Reecy JL, Schwartz RJ (2001) Embryonic expression of an Nkx2–5/Cre gene using ROSA26 reporter mice. Genesis 31:176–180CrossRefPubMed Moses KA, DeMayo F, Braun RM, Reecy JL, Schwartz RJ (2001) Embryonic expression of an Nkx2–5/Cre gene using ROSA26 reporter mice. Genesis 31:176–180CrossRefPubMed
46.
go back to reference Motoike T, Markham DW, Rossant J, Sato TN (2003) Evidence for novel fate of Flk1+ progenitor: contribution to muscle lineage. Genesis 35:153–159CrossRefPubMed Motoike T, Markham DW, Rossant J, Sato TN (2003) Evidence for novel fate of Flk1+ progenitor: contribution to muscle lineage. Genesis 35:153–159CrossRefPubMed
47.
go back to reference Nemer G, Nemer M (2002) Cooperative interaction between GATA5 and NF-ATc regulates endothelial-endocardial differentiation of cardiogenic cells. Development 129:4045–4055PubMed Nemer G, Nemer M (2002) Cooperative interaction between GATA5 and NF-ATc regulates endothelial-endocardial differentiation of cardiogenic cells. Development 129:4045–4055PubMed
49.
go back to reference Patan S (2000) Vasculogenesis and angiogenesis as mechanisms of vascular network formation, growth and remodeling. J Neurooncol 50:1–15CrossRefPubMed Patan S (2000) Vasculogenesis and angiogenesis as mechanisms of vascular network formation, growth and remodeling. J Neurooncol 50:1–15CrossRefPubMed
50.
go back to reference Patan S (2004) Vasculogenesis and angiogenesis. Cancer Treat Res 117:3–32PubMed Patan S (2004) Vasculogenesis and angiogenesis. Cancer Treat Res 117:3–32PubMed
51.
go back to reference Person AD, Klewer SE, Runyan RB (2005) Cell biology of cardiac cushion development. Int Rev Cytol 243:287–335CrossRefPubMed Person AD, Klewer SE, Runyan RB (2005) Cell biology of cardiac cushion development. Int Rev Cytol 243:287–335CrossRefPubMed
52.
go back to reference Puri MC, Partanen J, Rossant J, Bernstein A (1999) Interaction of the TEK and TIE receptor tyrosine kinases during cardiovascular development. Development 126:4569–4580PubMed Puri MC, Partanen J, Rossant J, Bernstein A (1999) Interaction of the TEK and TIE receptor tyrosine kinases during cardiovascular development. Development 126:4569–4580PubMed
53.
go back to reference Ranger AM, Grusby MJ, Hodge MR, Gravallese EM, de la Brousse FC, Hoey T, Mickanin C, Baldwin HS, Glimcher LH (1998) The transcription factor NF-ATc is essential for cardiac valve formation. Nature 392:186–190CrossRefPubMed Ranger AM, Grusby MJ, Hodge MR, Gravallese EM, de la Brousse FC, Hoey T, Mickanin C, Baldwin HS, Glimcher LH (1998) The transcription factor NF-ATc is essential for cardiac valve formation. Nature 392:186–190CrossRefPubMed
54.
go back to reference Saga Y, Kitajima S, Miyagawa-Tomita S (2000) Mesp1 expression is the earliest sign of cardiovascular development. Trends Cardiovasc Med 10:345–352CrossRefPubMed Saga Y, Kitajima S, Miyagawa-Tomita S (2000) Mesp1 expression is the earliest sign of cardiovascular development. Trends Cardiovasc Med 10:345–352CrossRefPubMed
55.
go back to reference Schultheiss TM, Burch JB, Lassar AB (1997) A role for bone morphogenetic proteins in the induction of cardiac myogenesis. Genes Dev 11:451–462CrossRefPubMed Schultheiss TM, Burch JB, Lassar AB (1997) A role for bone morphogenetic proteins in the induction of cardiac myogenesis. Genes Dev 11:451–462CrossRefPubMed
56.
go back to reference Schwartz RJ, Olson EN (1999) Building the heart piece by piece: modularity of cis-elements regulating Nkx2–5 transcription. Development 126:4187–4192PubMed Schwartz RJ, Olson EN (1999) Building the heart piece by piece: modularity of cis-elements regulating Nkx2–5 transcription. Development 126:4187–4192PubMed
57.
58.
go back to reference Stainier DY, Lee RK, Fishman MC (1993) Cardiovascular development in the zebrafish. I. Myocardial fate map and heart tube formation. Development 119:31–40PubMed Stainier DY, Lee RK, Fishman MC (1993) Cardiovascular development in the zebrafish. I. Myocardial fate map and heart tube formation. Development 119:31–40PubMed
59.
go back to reference Stainier DY, Weinstein BM, Detrich HW III, Zon LI, Fishman MC (1995) Cloche, an early acting zebrafish gene, is required by both the endothelial and hematopoietic lineages. Development 121:3141–3150PubMed Stainier DY, Weinstein BM, Detrich HW III, Zon LI, Fishman MC (1995) Cloche, an early acting zebrafish gene, is required by both the endothelial and hematopoietic lineages. Development 121:3141–3150PubMed
60.
go back to reference Stankunas K, Hang CT, Tsun ZY, Chen H, Lee NV, Wu JI, Shang C, Bayle JH, Shou W, Iruela-Arispe ML, Chang CP (2008) Endocardial Brg1 represses ADAMTS1 to maintain the microenvironment for myocardial morphogenesis. Dev Cell 14:298–311CrossRefPubMed Stankunas K, Hang CT, Tsun ZY, Chen H, Lee NV, Wu JI, Shang C, Bayle JH, Shou W, Iruela-Arispe ML, Chang CP (2008) Endocardial Brg1 represses ADAMTS1 to maintain the microenvironment for myocardial morphogenesis. Dev Cell 14:298–311CrossRefPubMed
61.
go back to reference Sumanas S, Gomez G, Zhao Y, Park C, Choi K, Lin S (2008) Interplay among Etsrp/ER71, Scl, and Alk8 signaling controls endothelial and myeloid cell formation. Blood 111:4500–4510CrossRefPubMed Sumanas S, Gomez G, Zhao Y, Park C, Choi K, Lin S (2008) Interplay among Etsrp/ER71, Scl, and Alk8 signaling controls endothelial and myeloid cell formation. Blood 111:4500–4510CrossRefPubMed
62.
go back to reference Tanaka M, Chen Z, Bartunkova S, Yamasaki N, Izumo S (1999) The cardiac homeobox gene Csx/Nkx25 lies genetically upstream of multiple genes essential for heart development. Development 126:1269–1280PubMed Tanaka M, Chen Z, Bartunkova S, Yamasaki N, Izumo S (1999) The cardiac homeobox gene Csx/Nkx25 lies genetically upstream of multiple genes essential for heart development. Development 126:1269–1280PubMed
63.
go back to reference Thomas M, Augustin HG (2009) The role of the Angiopoietins in vascular morphogenesis. Angiogenesis 12:125–137CrossRefPubMed Thomas M, Augustin HG (2009) The role of the Angiopoietins in vascular morphogenesis. Angiogenesis 12:125–137CrossRefPubMed
64.
go back to reference Verzi MP, McCulley DJ, De Val S, Dodou E, Black BL (2005) The right ventricle, outflow tract, and ventricular septum comprise a restricted expression domain within the secondary/anterior heart field. Dev Biol 287:134–145CrossRefPubMed Verzi MP, McCulley DJ, De Val S, Dodou E, Black BL (2005) The right ventricle, outflow tract, and ventricular septum comprise a restricted expression domain within the secondary/anterior heart field. Dev Biol 287:134–145CrossRefPubMed
65.
go back to reference Wagner M, Siddiqui MAQ (2007) Signal transduction in early heart development (II): ventricular chamber specification, trabeculation, and heart valve formation. Exp Biol Med (Maywood) 232:866–880 Wagner M, Siddiqui MAQ (2007) Signal transduction in early heart development (II): ventricular chamber specification, trabeculation, and heart valve formation. Exp Biol Med (Maywood) 232:866–880
66.
go back to reference Wei Y, Mikawa T (2000) Fate diversity of primitive streak cells during heart field formation in ovo. Dev Dyn 219:505–513CrossRefPubMed Wei Y, Mikawa T (2000) Fate diversity of primitive streak cells during heart field formation in ovo. Dev Dyn 219:505–513CrossRefPubMed
67.
68.
go back to reference Zeisberg EM, Ma Q, Juraszek AL, Moses K, Schwartz RJ, Izumo S, Pu WT (2005) Morphogenesis of the right ventricle requires myocardial expression of Gata4. J Clin Invest 115:1522–1531CrossRefPubMed Zeisberg EM, Ma Q, Juraszek AL, Moses K, Schwartz RJ, Izumo S, Pu WT (2005) Morphogenesis of the right ventricle requires myocardial expression of Gata4. J Clin Invest 115:1522–1531CrossRefPubMed
69.
go back to reference Zovein AC, Hofmann JJ, Lynch M, French WJ, Turlo KA, Yang Y, Becker MS, Zanetta L, Dejana E, Gasson JC, Tallquist MD, Iruela-Arispe ML (2008) Fate tracing reveals the endothelial origin of hematopoietic stem cells. Cell Stem Cell 3:625–636CrossRefPubMed Zovein AC, Hofmann JJ, Lynch M, French WJ, Turlo KA, Yang Y, Becker MS, Zanetta L, Dejana E, Gasson JC, Tallquist MD, Iruela-Arispe ML (2008) Fate tracing reveals the endothelial origin of hematopoietic stem cells. Cell Stem Cell 3:625–636CrossRefPubMed
Metadata
Title
Development of the Endocardium
Authors
Ian S. Harris
Brian L. Black
Publication date
01-04-2010
Publisher
Springer-Verlag
Published in
Pediatric Cardiology / Issue 3/2010
Print ISSN: 0172-0643
Electronic ISSN: 1432-1971
DOI
https://doi.org/10.1007/s00246-010-9642-8

Other articles of this Issue 3/2010

Pediatric Cardiology 3/2010 Go to the issue