Skip to main content
Top
Published in: Pediatric Cardiology 3/2010

01-04-2010 | Riley Symposium

The Role of Serum Response Factor in Early Coronary Vasculogenesis

Author: Ravi P. Misra

Published in: Pediatric Cardiology | Issue 3/2010

Login to get access

Excerpt

Defects in vascular development are a major cause of fetal demise and congenital cardiovascular disease. Knowledge is scarce concerning both embryonic vascular cell progenitors and the underlying regulatory mechanisms that determine their commitment to various vessel cell lineages. …
Literature
1.
go back to reference Alsan BH, Schultheiss TM (2002) Regulation of avian cardiogenesis by FGF8 signaling. Development 129:1935–1943PubMed Alsan BH, Schultheiss TM (2002) Regulation of avian cardiogenesis by FGF8 signaling. Development 129:1935–1943PubMed
2.
go back to reference Arsenian S, Weinhold B, Oelgeschlager M, Ruther U, Nordheim A (1998) Serum response factor is essential for mesoderm formation during mouse embryogenesis. EMBO J 17:6289–6299CrossRefPubMed Arsenian S, Weinhold B, Oelgeschlager M, Ruther U, Nordheim A (1998) Serum response factor is essential for mesoderm formation during mouse embryogenesis. EMBO J 17:6289–6299CrossRefPubMed
3.
go back to reference Balza RO Jr, Misra RP (2006) Role of the serum response factor in regulating contractile apparatus gene expression and sarcomeric integrity in cardiomyocytes. J Biol Chem 281:6498–6510CrossRefPubMed Balza RO Jr, Misra RP (2006) Role of the serum response factor in regulating contractile apparatus gene expression and sarcomeric integrity in cardiomyocytes. J Biol Chem 281:6498–6510CrossRefPubMed
4.
go back to reference Barron M, Gao M, Lough J (2000) Requirement for BMP- and FGF-signaling during cardiogenic induction in nonprecardiac mesoderm is specific, transient, and cooperative. Dev Dyn 218:383–393CrossRefPubMed Barron M, Gao M, Lough J (2000) Requirement for BMP- and FGF-signaling during cardiogenic induction in nonprecardiac mesoderm is specific, transient, and cooperative. Dev Dyn 218:383–393CrossRefPubMed
5.
go back to reference Bernanke DH, Velkey JM (2002) Development of the coronary blood supply: changing concepts and current ideas. Anat Rec 269:198–208CrossRefPubMed Bernanke DH, Velkey JM (2002) Development of the coronary blood supply: changing concepts and current ideas. Anat Rec 269:198–208CrossRefPubMed
6.
go back to reference Brand T (2003) Heart development: molecular insights into cardiac specification and early morphogenesis. Dev Biol 258:1–19CrossRefPubMed Brand T (2003) Heart development: molecular insights into cardiac specification and early morphogenesis. Dev Biol 258:1–19CrossRefPubMed
7.
go back to reference Chai J, Jones MK, Tarnawski AS (2004) Serum response factor is a critical requirement for VEGF signaling in endothelial cells and VEGF-induced angiogenesis. FASEB J 18:1264–1266PubMed Chai J, Jones MK, Tarnawski AS (2004) Serum response factor is a critical requirement for VEGF signaling in endothelial cells and VEGF-induced angiogenesis. FASEB J 18:1264–1266PubMed
8.
go back to reference Crispino JD, Lodish MB, Thurberg BL, Litovsky SH, Collins T, Molkentin JD, Orkin SH (2001) Proper coronary vascular development and heart morphogenesis depend on interaction of GATA-4 with FOG cofactors. Genes Dev 15:839–844CrossRefPubMed Crispino JD, Lodish MB, Thurberg BL, Litovsky SH, Collins T, Molkentin JD, Orkin SH (2001) Proper coronary vascular development and heart morphogenesis depend on interaction of GATA-4 with FOG cofactors. Genes Dev 15:839–844CrossRefPubMed
9.
go back to reference Dettman RW, Denetclaw W Jr, Ordahl CP, Bristow J (1998) Common epicardial origin of coronary vascular smooth muscle, perivascular fibroblasts, and intermyocardial fibroblasts in the avian heart. Dev Biol 193:169–181CrossRefPubMed Dettman RW, Denetclaw W Jr, Ordahl CP, Bristow J (1998) Common epicardial origin of coronary vascular smooth muscle, perivascular fibroblasts, and intermyocardial fibroblasts in the avian heart. Dev Biol 193:169–181CrossRefPubMed
10.
go back to reference Gittenberger-de Groot A, Peeters MV, Mentink M (1998) Epicardium-derived cells contribute a novel population to the myocardial wall and the atrioventricular cushions. Circ Res 82:1043–1052PubMed Gittenberger-de Groot A, Peeters MV, Mentink M (1998) Epicardium-derived cells contribute a novel population to the myocardial wall and the atrioventricular cushions. Circ Res 82:1043–1052PubMed
12.
go back to reference Ishii Y, Langberg JD, Hurtado R, Lee S, Mikawa T (2007) Induction of proepicardial marker gene expression by the liver bud. Development 134:3627–3637CrossRefPubMed Ishii Y, Langberg JD, Hurtado R, Lee S, Mikawa T (2007) Induction of proepicardial marker gene expression by the liver bud. Development 134:3627–3637CrossRefPubMed
13.
go back to reference Knoll B, Kretz O, Fiedler C, Alberti S, Schutz G, Frotscher M, Nordheim A (2006) Serum response factor controls neuronal circuit assembly in the hippocampus. Nat Neurosci 9:195–204CrossRefPubMed Knoll B, Kretz O, Fiedler C, Alberti S, Schutz G, Frotscher M, Nordheim A (2006) Serum response factor controls neuronal circuit assembly in the hippocampus. Nat Neurosci 9:195–204CrossRefPubMed
14.
go back to reference Kruithof BP, van Wijk B, Somi S, Kruithof-de Julio M, Perez Pomares JM, Weesie F, Wessels A, Moorman AF, van den Hoff MJ (2006) BMP and FGF regulate the differentiation of multipotential pericardial mesoderm into the myocardial or epicardial lineage. Dev Biol 295:507–522CrossRefPubMed Kruithof BP, van Wijk B, Somi S, Kruithof-de Julio M, Perez Pomares JM, Weesie F, Wessels A, Moorman AF, van den Hoff MJ (2006) BMP and FGF regulate the differentiation of multipotential pericardial mesoderm into the myocardial or epicardial lineage. Dev Biol 295:507–522CrossRefPubMed
15.
go back to reference Landerholm TE, Dong XR, Lu J, Belaguli NS, Schwartz RJ, Majesky MW (1999) A role for serum response factor in coronary smooth muscle differentiation from proepicardial cells. Development 126:2053–2062PubMed Landerholm TE, Dong XR, Lu J, Belaguli NS, Schwartz RJ, Majesky MW (1999) A role for serum response factor in coronary smooth muscle differentiation from proepicardial cells. Development 126:2053–2062PubMed
17.
go back to reference Lu J, Landerholm T, Wei J, Dong X-R, Wu S-P, Liu X, Nagata K, Inagaki M, Majesky M (2001) Coronary smooth muscle differentiation from proepicardial cells requires RhoA-mediated actin reorganization and p160 Rho-kinase activity. Dev Biol 240:404–418CrossRefPubMed Lu J, Landerholm T, Wei J, Dong X-R, Wu S-P, Liu X, Nagata K, Inagaki M, Majesky M (2001) Coronary smooth muscle differentiation from proepicardial cells requires RhoA-mediated actin reorganization and p160 Rho-kinase activity. Dev Biol 240:404–418CrossRefPubMed
18.
go back to reference Mikawa T (1999) Cardiac lineages. In: Harvey RP, Rosenthal N (eds) Heart development. Academic Press, San Diego, pp 19–33CrossRef Mikawa T (1999) Cardiac lineages. In: Harvey RP, Rosenthal N (eds) Heart development. Academic Press, San Diego, pp 19–33CrossRef
19.
go back to reference Mikawa T, Fischman DA (1992) Retroviral analysis of cardiac morphogenesis: discontinuous formation of coronary vessels. Proc Natl Acad Sci USA 89:9504–9508CrossRefPubMed Mikawa T, Fischman DA (1992) Retroviral analysis of cardiac morphogenesis: discontinuous formation of coronary vessels. Proc Natl Acad Sci USA 89:9504–9508CrossRefPubMed
20.
go back to reference Mikawa T, Gourdie R (1996) Pericardial mesoderm generates a population of coronary smooth muscle cells migrating into the heart along with ingrowth of the epicardial organ. Dev Biol 174:221–232CrossRefPubMed Mikawa T, Gourdie R (1996) Pericardial mesoderm generates a population of coronary smooth muscle cells migrating into the heart along with ingrowth of the epicardial organ. Dev Biol 174:221–232CrossRefPubMed
21.
go back to reference Morabito CJ, Dettman RW, Kattan J, Collier JM, Bristow J (2001) Positive and negative regulation of epicardial-mesenchymal transformation during avian heart development. Dev Biol 234:204–215CrossRefPubMed Morabito CJ, Dettman RW, Kattan J, Collier JM, Bristow J (2001) Positive and negative regulation of epicardial-mesenchymal transformation during avian heart development. Dev Biol 234:204–215CrossRefPubMed
22.
go back to reference Morabito C, Kattan J, Bristow J (2002) Mechanisms of embryonid coronary artery development. Curr Opin Cardiol 17:235–241CrossRefPubMed Morabito C, Kattan J, Bristow J (2002) Mechanisms of embryonid coronary artery development. Curr Opin Cardiol 17:235–241CrossRefPubMed
23.
go back to reference Munoz-Chapuli R, Macias D, Gonzalez-Iriarte M, Carmona R, Atencia G, Perez-Pomares JM (2002) The epicardium and epicardial-derived cells: multiple functions in cardiac development. Rev Esp Cardiol 55:1070–1082PubMed Munoz-Chapuli R, Macias D, Gonzalez-Iriarte M, Carmona R, Atencia G, Perez-Pomares JM (2002) The epicardium and epicardial-derived cells: multiple functions in cardiac development. Rev Esp Cardiol 55:1070–1082PubMed
24.
go back to reference Nelson TJ, Duncan SA, Misra RP (2004) Conserved enhancer in the serum response factor promoter controls expression during early coronary vasculogenesis. Circ Res 94:1059–1066CrossRefPubMed Nelson TJ, Duncan SA, Misra RP (2004) Conserved enhancer in the serum response factor promoter controls expression during early coronary vasculogenesis. Circ Res 94:1059–1066CrossRefPubMed
25.
go back to reference Olivey HE, Compton LA, Barnett JV (2004) Coronary vessel development: the epicardium delivers. Trends Cardiovasc Med 14:247–251PubMed Olivey HE, Compton LA, Barnett JV (2004) Coronary vessel development: the epicardium delivers. Trends Cardiovasc Med 14:247–251PubMed
26.
go back to reference Olivey HE, Mundell NA, Austin AF, Barnett JV (2006) Transforming growth factor-beta stimulates epithelial-mesenchymal transformation in the proepicardium. Dev Dyn 235:50–59CrossRefPubMed Olivey HE, Mundell NA, Austin AF, Barnett JV (2006) Transforming growth factor-beta stimulates epithelial-mesenchymal transformation in the proepicardium. Dev Dyn 235:50–59CrossRefPubMed
27.
go back to reference Perez-Pomares JM, Macias D, Garcia-Garrido L, Munoz-Chapuli R (1997) Contribution of the primitive epicardium to the subepicardial mesenchyme in hamster and chick embryos. Dev Dyn 210:96–105CrossRefPubMed Perez-Pomares JM, Macias D, Garcia-Garrido L, Munoz-Chapuli R (1997) Contribution of the primitive epicardium to the subepicardial mesenchyme in hamster and chick embryos. Dev Dyn 210:96–105CrossRefPubMed
28.
go back to reference Perez-Pomares JM, Macias D, Garcia-Garrido L, Munoz-Chapuli R (1998) The origin of the subepicardial mesenchyme in the avian embryo: an immunohistochemical and quail-chick chimera study. Dev Biol 200:57–68CrossRefPubMed Perez-Pomares JM, Macias D, Garcia-Garrido L, Munoz-Chapuli R (1998) The origin of the subepicardial mesenchyme in the avian embryo: an immunohistochemical and quail-chick chimera study. Dev Biol 200:57–68CrossRefPubMed
29.
go back to reference Perez-Pomares JM, Carmona R, Gonzalez-Iriarte M, Atencia G, Wessels A, Munoz-Chapuli R (2002) Origin of coronary endothelial cells from epicardial mesothelium in avian embryos. Int J Dev Biol 46:1005–1013PubMed Perez-Pomares JM, Carmona R, Gonzalez-Iriarte M, Atencia G, Wessels A, Munoz-Chapuli R (2002) Origin of coronary endothelial cells from epicardial mesothelium in avian embryos. Int J Dev Biol 46:1005–1013PubMed
30.
go back to reference Poelmann RE, Gittenberger-de Groot AC, Mentink MM, Bokenkamp R, Hogers B (1993) Development of the cardiac coronary vascular endothelium, studied with antiendothelial antibodies, in chicken-quail chimeras. Circ Res 73:559–568PubMed Poelmann RE, Gittenberger-de Groot AC, Mentink MM, Bokenkamp R, Hogers B (1993) Development of the cardiac coronary vascular endothelium, studied with antiendothelial antibodies, in chicken-quail chimeras. Circ Res 73:559–568PubMed
31.
go back to reference Psichari E, Balmain A, Plows D, Zoumpourlis V, Pintzas A (2002) High activity of serum response factor in the mesenchymal transition of epithelial tumor cells is regulated by RhoA signaling. J Biol Chem 277:29490–29495CrossRefPubMed Psichari E, Balmain A, Plows D, Zoumpourlis V, Pintzas A (2002) High activity of serum response factor in the mesenchymal transition of epithelial tumor cells is regulated by RhoA signaling. J Biol Chem 277:29490–29495CrossRefPubMed
32.
go back to reference Reese DE, Mikawa T, Bader DM (2002) Development of the coronary vessel system. Circ Res 91:761–768CrossRefPubMed Reese DE, Mikawa T, Bader DM (2002) Development of the coronary vessel system. Circ Res 91:761–768CrossRefPubMed
33.
go back to reference Schlueter J, Manner J, Brand T (2006) BMP is an important regulator of proepicardial identity in the chick embryo. Dev Biol 295:546–558CrossRefPubMed Schlueter J, Manner J, Brand T (2006) BMP is an important regulator of proepicardial identity in the chick embryo. Dev Biol 295:546–558CrossRefPubMed
34.
go back to reference Sengbusch JK, He W, Pinco KA, Yang JT (2002) Dual functions of [alpha]4[beta]1 integrin in epicardial development: initial migration and long-term attachment. J Cell Biol 157:873–882CrossRefPubMed Sengbusch JK, He W, Pinco KA, Yang JT (2002) Dual functions of [alpha]4[beta]1 integrin in epicardial development: initial migration and long-term attachment. J Cell Biol 157:873–882CrossRefPubMed
35.
go back to reference Tevosian SG, Deconinck AE, Tanaka M, Schinke M, Litovsky SH, Izumo S, Fujiwara Y, Orkin SH (2000) FOG-2, a cofactor for GATA transcription factors, is essential for heart morphogenesis and development of coronary vessels from epicardium. Cell 101:729–739CrossRefPubMed Tevosian SG, Deconinck AE, Tanaka M, Schinke M, Litovsky SH, Izumo S, Fujiwara Y, Orkin SH (2000) FOG-2, a cofactor for GATA transcription factors, is essential for heart morphogenesis and development of coronary vessels from epicardium. Cell 101:729–739CrossRefPubMed
36.
go back to reference Van den Eijnde SM, Wenink AC, Vermeij-Keers C (1995) Origin of subepicardial cells in rat embryos. Anat Rec 242:96–102CrossRefPubMed Van den Eijnde SM, Wenink AC, Vermeij-Keers C (1995) Origin of subepicardial cells in rat embryos. Anat Rec 242:96–102CrossRefPubMed
37.
go back to reference Vrancken Peeters MP, Gittenberger-de Groot AC, Mentink MM, Poelmann RE (1999) Smooth muscle cells and fibroblasts of the coronary arteries derive from epithelial-mesenchymal transformation of the epicardium. Anat Embryol 199:367–378CrossRefPubMed Vrancken Peeters MP, Gittenberger-de Groot AC, Mentink MM, Poelmann RE (1999) Smooth muscle cells and fibroblasts of the coronary arteries derive from epithelial-mesenchymal transformation of the epicardium. Anat Embryol 199:367–378CrossRefPubMed
38.
go back to reference Watt AJ, Battle MA, Li J, Duncan SA (2004) GATA4 is essential for formation of the proepicardium and regulates cardiogenesis. Proc Natl Acad Sci USA 101:12573–12578CrossRefPubMed Watt AJ, Battle MA, Li J, Duncan SA (2004) GATA4 is essential for formation of the proepicardium and regulates cardiogenesis. Proc Natl Acad Sci USA 101:12573–12578CrossRefPubMed
39.
go back to reference Yang JT, Rayburn H, Hynes RO (1993) Embryonic mesodermal defects in alpha 5 integrin-deficient mice. Development 119:1093–1105PubMed Yang JT, Rayburn H, Hynes RO (1993) Embryonic mesodermal defects in alpha 5 integrin-deficient mice. Development 119:1093–1105PubMed
Metadata
Title
The Role of Serum Response Factor in Early Coronary Vasculogenesis
Author
Ravi P. Misra
Publication date
01-04-2010
Publisher
Springer-Verlag
Published in
Pediatric Cardiology / Issue 3/2010
Print ISSN: 0172-0643
Electronic ISSN: 1432-1971
DOI
https://doi.org/10.1007/s00246-009-9614-z

Other articles of this Issue 3/2010

Pediatric Cardiology 3/2010 Go to the issue