Skip to main content
Top
Published in: Angiogenesis 2/2009

01-06-2009 | Original paper

The role of the Angiopoietins in vascular morphogenesis

Authors: Markus Thomas, Hellmut G. Augustin

Published in: Angiogenesis | Issue 2/2009

Login to get access

Abstracts

The Angiopoietin/Tie system acts as a vascular specific ligand/receptor system to control endothelial cell survival and vascular maturation. The Angiopoietin family includes four ligands (Angiopoietin-1, Angiopoietin-2 and Angiopoietin-3/4) and two corresponding tyrosine kinase receptors (Tie1 and Tie2). Ang-1 and Ang-2 are specific ligands of Tie2 binding the receptor with similar affinity. Tie2 activation promotes vessel assembly and maturation by mediating survival signals for endothelial cells and regulating the recruitment of mural cells. Ang-1 acts in a paracrine agonistic manner inducing Tie2 phosphorylation and subsequent vessel stabilization. In contrast, Ang-2 is produced by endothelial cells and acts as an autocrine antagonist of Ang-1-mediated Tie2 activation. Ang-2 thereby primes the vascular endothelium to exogenous cytokines and induces vascular destabilization at higher concentrations. Ang-2 is strongly expressed in the vasculature of many tumors and it has been suggested that Ang-2 may act synergistically with other cytokines such as vascular endothelial growth factor to promote tumor-associated angiogenesis and tumor progression. The better mechanistic understanding of the Ang/Tie system is gradually paving the way toward the rationale exploitation of this vascular signaling system as a therapeutic target for neoplastic and non-neoplastic diseases.
Literature
6.
go back to reference Kim KT, Choi HH, Steinmetz MO et al (2005) Oligomerization and multimerization are critical for angiopoietin-1 to bind and phosphorylate Tie2. J Biol Chem 280:20126–20131. doi:10.1074/jbc.M500292200 PubMed Kim KT, Choi HH, Steinmetz MO et al (2005) Oligomerization and multimerization are critical for angiopoietin-1 to bind and phosphorylate Tie2. J Biol Chem 280:20126–20131. doi:10.​1074/​jbc.​M500292200 PubMed
7.
go back to reference Procopio WN, Pelavin PI, Lee WM et al (1999) Angiopoietin-1 and -2 coiled coil domains mediate distinct homo-oligomerization patterns, but fibrinogen-like domains mediate ligand activity. J Biol Chem 274:30196–30201. doi:10.1074/jbc.274.42.30196 PubMed Procopio WN, Pelavin PI, Lee WM et al (1999) Angiopoietin-1 and -2 coiled coil domains mediate distinct homo-oligomerization patterns, but fibrinogen-like domains mediate ligand activity. J Biol Chem 274:30196–30201. doi:10.​1074/​jbc.​274.​42.​30196 PubMed
8.
go back to reference Fiedler U, Krissl T, Koidl S et al (2003) Angiopoietin-1 and angiopoietin-2 share the same binding domains in the Tie-2 receptor involving the first Ig-like loop and the epidermal growth factor-like repeats. J Biol Chem 278:1721–1727. doi:10.1074/jbc.M208550200 PubMed Fiedler U, Krissl T, Koidl S et al (2003) Angiopoietin-1 and angiopoietin-2 share the same binding domains in the Tie-2 receptor involving the first Ig-like loop and the epidermal growth factor-like repeats. J Biol Chem 278:1721–1727. doi:10.​1074/​jbc.​M208550200 PubMed
9.
go back to reference Huang YQ, Li JJ, Karpatkin S (2000) Identification of a family of alternatively spliced mRNA species of angiopoietin-1. Blood 95:1993–1999PubMed Huang YQ, Li JJ, Karpatkin S (2000) Identification of a family of alternatively spliced mRNA species of angiopoietin-1. Blood 95:1993–1999PubMed
10.
go back to reference Mezquita J, Mezquita B, Pau M et al (1999) Characterization of a novel form of angiopoietin-2 (Ang-2B) and expression of VEGF and angiopoietin-2 during chicken testicular development and regression. Biochem Biophys Res Commun 260:492–498. doi:10.1006/bbrc.1999.0934 PubMed Mezquita J, Mezquita B, Pau M et al (1999) Characterization of a novel form of angiopoietin-2 (Ang-2B) and expression of VEGF and angiopoietin-2 during chicken testicular development and regression. Biochem Biophys Res Commun 260:492–498. doi:10.​1006/​bbrc.​1999.​0934 PubMed
12.
go back to reference Kim I, Kim JH, Moon SO et al (2000) Angiopoietin-2 at high concentration can enhance endothelial cell survival through the phosphatidylinositol 3′-kinase/Akt signal transduction pathway. Oncogene 19:4549–4552. doi:10.1038/sj.onc.1203800 PubMed Kim I, Kim JH, Moon SO et al (2000) Angiopoietin-2 at high concentration can enhance endothelial cell survival through the phosphatidylinositol 3′-kinase/Akt signal transduction pathway. Oncogene 19:4549–4552. doi:10.​1038/​sj.​onc.​1203800 PubMed
13.
go back to reference Teichert-Kuliszewska K, Maisonpierre PC, Jones N et al (2001) Biological action of angiopoietin-2 in a fibrin matrix model of angiogenesis is associated with activation of Tie2. Cardiovasc Res 49:659–670. doi:10.1016/S0008-6363(00)00231-5 PubMed Teichert-Kuliszewska K, Maisonpierre PC, Jones N et al (2001) Biological action of angiopoietin-2 in a fibrin matrix model of angiogenesis is associated with activation of Tie2. Cardiovasc Res 49:659–670. doi:10.​1016/​S0008-6363(00)00231-5 PubMed
14.
go back to reference Daly C, Pasnikowski E, Burova E et al (2006) Angiopoietin-2 functions as an autocrine protective factor in stressed endothelial cells. Proc Natl Acad Sci USA 103:15491–15496. doi:10.1073/pnas.0607538103 PubMed Daly C, Pasnikowski E, Burova E et al (2006) Angiopoietin-2 functions as an autocrine protective factor in stressed endothelial cells. Proc Natl Acad Sci USA 103:15491–15496. doi:10.​1073/​pnas.​0607538103 PubMed
15.
go back to reference Fiedler U, Scharpfenecker M, Koidl S et al (2004) The Tie-2 ligand angiopoietin-2 is stored in and rapidly released upon stimulation from endothelial cell Weibel-Palade bodies. Blood 103:4150–4156. doi:10.1182/blood-2003-10-3685 PubMed Fiedler U, Scharpfenecker M, Koidl S et al (2004) The Tie-2 ligand angiopoietin-2 is stored in and rapidly released upon stimulation from endothelial cell Weibel-Palade bodies. Blood 103:4150–4156. doi:10.​1182/​blood-2003-10-3685 PubMed
16.
go back to reference Scharpfenecker M, Fiedler U, Reiss Y et al (2005) The Tie-2 ligand angiopoietin-2 destabilizes quiescent endothelium through an internal autocrine loop mechanism. J Cell Sci 118:771–780. doi:10.1242/jcs.01653 PubMed Scharpfenecker M, Fiedler U, Reiss Y et al (2005) The Tie-2 ligand angiopoietin-2 destabilizes quiescent endothelium through an internal autocrine loop mechanism. J Cell Sci 118:771–780. doi:10.​1242/​jcs.​01653 PubMed
17.
go back to reference Oh H, Takagi H, Suzuma K et al (1999) Hypoxia and vascular endothelial growth factor selectively up-regulate angiopoietin-2 in bovine microvascular endothelial cells. J Biol Chem 274:15732–15739. doi:10.1074/jbc.274.22.15732 PubMed Oh H, Takagi H, Suzuma K et al (1999) Hypoxia and vascular endothelial growth factor selectively up-regulate angiopoietin-2 in bovine microvascular endothelial cells. J Biol Chem 274:15732–15739. doi:10.​1074/​jbc.​274.​22.​15732 PubMed
18.
go back to reference Kim I, Kim JH, Ryu YS et al (2000) Tumor necrosis factor-alpha upregulates angiopoietin-2 in human umbilical vein endothelial cells. Biochem Biophys Res Commun 269:361–365. doi:10.1006/bbrc.2000.2296 PubMed Kim I, Kim JH, Ryu YS et al (2000) Tumor necrosis factor-alpha upregulates angiopoietin-2 in human umbilical vein endothelial cells. Biochem Biophys Res Commun 269:361–365. doi:10.​1006/​bbrc.​2000.​2296 PubMed
21.
go back to reference Goede V, Schmidt T, Kimmina S et al (1998) Analysis of blood vessel maturation processes during cyclic ovarian angiogenesis. Lab Invest 78:1385–1394PubMed Goede V, Schmidt T, Kimmina S et al (1998) Analysis of blood vessel maturation processes during cyclic ovarian angiogenesis. Lab Invest 78:1385–1394PubMed
22.
go back to reference Zagzag D, Hooper A, Friedlander DR et al (1999) In situ expression of angiopoietins in astrocytomas identifies angiopoietin-2 as an early marker of tumor angiogenesis. Exp Neurol 159:391–400. doi:10.1006/exnr.1999.7162 PubMed Zagzag D, Hooper A, Friedlander DR et al (1999) In situ expression of angiopoietins in astrocytomas identifies angiopoietin-2 as an early marker of tumor angiogenesis. Exp Neurol 159:391–400. doi:10.​1006/​exnr.​1999.​7162 PubMed
23.
go back to reference Zhang L, Yang N, Park JW et al (2003) Tumor-derived vascular endothelial growth factor up-regulates angiopoietin-2 in host endothelium and destabilizes host vasculature, supporting angiogenesis in ovarian cancer. Cancer Res 63:3403–3412PubMed Zhang L, Yang N, Park JW et al (2003) Tumor-derived vascular endothelial growth factor up-regulates angiopoietin-2 in host endothelium and destabilizes host vasculature, supporting angiogenesis in ovarian cancer. Cancer Res 63:3403–3412PubMed
25.
go back to reference Tanaka S, Mori M, Sakamoto Y et al (1999) Biologic significance of angiopoietin-2 expression in human hepatocellular carcinoma. J Clin Invest 103:341–345. doi:10.1172/JCI4891 PubMed Tanaka S, Mori M, Sakamoto Y et al (1999) Biologic significance of angiopoietin-2 expression in human hepatocellular carcinoma. J Clin Invest 103:341–345. doi:10.​1172/​JCI4891 PubMed
26.
go back to reference Koga K, Todaka T, Morioka M et al (2001) Expression of angiopoietin-2 in human glioma cells and its role for angiogenesis. Cancer Res 61:6248–6254PubMed Koga K, Todaka T, Morioka M et al (2001) Expression of angiopoietin-2 in human glioma cells and its role for angiogenesis. Cancer Res 61:6248–6254PubMed
29.
go back to reference Yao D, Taguchi T, Matsumura T et al (2007) High glucose increases angiopoietin-2 transcription in microvascular endothelial cells through methylglyoxal modification of mSin3A. J Biol Chem 282:31038–31045. doi:10.1074/jbc.M704703200 PubMed Yao D, Taguchi T, Matsumura T et al (2007) High glucose increases angiopoietin-2 transcription in microvascular endothelial cells through methylglyoxal modification of mSin3A. J Biol Chem 282:31038–31045. doi:10.​1074/​jbc.​M704703200 PubMed
31.
go back to reference Gale NW, Thurston G, Hackett SF et al (2002) Angiopoietin-2 is required for postnatal angiogenesis and lymphatic patterning, and only the latter role is rescued by Angiopoietin-1. Dev Cell 3:411–423. doi:10.1016/S1534-5807(02)00217-4 PubMed Gale NW, Thurston G, Hackett SF et al (2002) Angiopoietin-2 is required for postnatal angiogenesis and lymphatic patterning, and only the latter role is rescued by Angiopoietin-1. Dev Cell 3:411–423. doi:10.​1016/​S1534-5807(02)00217-4 PubMed
32.
go back to reference Stratmann A, Risau W, Plate KH (1998) Cell type-specific expression of angiopoietin-1 and angiopoietin-2 suggests a role in glioblastoma angiogenesis. Am J Pathol 153:1459–1466PubMed Stratmann A, Risau W, Plate KH (1998) Cell type-specific expression of angiopoietin-1 and angiopoietin-2 suggests a role in glioblastoma angiogenesis. Am J Pathol 153:1459–1466PubMed
33.
go back to reference Schnurch H, Risau W (1993) Expression of tie-2, a member of a novel family of receptor tyrosine kinases, in the endothelial cell lineage. Development 119:957–968PubMed Schnurch H, Risau W (1993) Expression of tie-2, a member of a novel family of receptor tyrosine kinases, in the endothelial cell lineage. Development 119:957–968PubMed
34.
go back to reference Macdonald PR, Progias P, Ciani B et al (2006) Structure of the extracellular domain of Tie receptor tyrosine kinases and localization of the angiopoietin-binding epitope. J Biol Chem 281:28408–28414. doi:10.1074/jbc.M605219200 PubMed Macdonald PR, Progias P, Ciani B et al (2006) Structure of the extracellular domain of Tie receptor tyrosine kinases and localization of the angiopoietin-binding epitope. J Biol Chem 281:28408–28414. doi:10.​1074/​jbc.​M605219200 PubMed
35.
go back to reference Korhonen J, Polvi A, Partanen J et al (1994) The mouse tie receptor tyrosine kinase gene: expression during embryonic angiogenesis. Oncogene 9:395–403PubMed Korhonen J, Polvi A, Partanen J et al (1994) The mouse tie receptor tyrosine kinase gene: expression during embryonic angiogenesis. Oncogene 9:395–403PubMed
36.
38.
go back to reference Marron MB, Singh H, Tahir TA et al (2007) Regulated proteolytic processing of Tie1 modulates ligand responsiveness of the receptor-tyrosine kinase Tie2. J Biol Chem 282:30509–30517. doi:10.1074/jbc.M702535200 PubMed Marron MB, Singh H, Tahir TA et al (2007) Regulated proteolytic processing of Tie1 modulates ligand responsiveness of the receptor-tyrosine kinase Tie2. J Biol Chem 282:30509–30517. doi:10.​1074/​jbc.​M702535200 PubMed
39.
go back to reference Yabkowitz R, Meyer S, Yanagihara D et al (1997) Regulation of tie receptor expression on human endothelial cells by protein kinase C-mediated release of soluble tie. Blood 90:706–715PubMed Yabkowitz R, Meyer S, Yanagihara D et al (1997) Regulation of tie receptor expression on human endothelial cells by protein kinase C-mediated release of soluble tie. Blood 90:706–715PubMed
40.
go back to reference Yabkowitz R, Meyer S, Black T et al (1999) Inflammatory cytokines and vascular endothelial growth factor stimulate the release of soluble tie receptor from human endothelial cells via metalloprotease activation. Blood 93:1969–1979PubMed Yabkowitz R, Meyer S, Black T et al (1999) Inflammatory cytokines and vascular endothelial growth factor stimulate the release of soluble tie receptor from human endothelial cells via metalloprotease activation. Blood 93:1969–1979PubMed
41.
go back to reference Chen-Konak L, Guetta-Shubin Y, Yahav H et al (2003) Transcriptional and post-translation regulation of the Tie1 receptor by fluid shear stress changes in vascular endothelial cells. FASEB J 17:2121–2123PubMed Chen-Konak L, Guetta-Shubin Y, Yahav H et al (2003) Transcriptional and post-translation regulation of the Tie1 receptor by fluid shear stress changes in vascular endothelial cells. FASEB J 17:2121–2123PubMed
42.
go back to reference Saharinen P, Kerkela K, Ekman N et al (2005) Multiple angiopoietin recombinant proteins activate the Tie1 receptor tyrosine kinase and promote its interaction with Tie2. J Cell Biol 169:239–243. doi:10.1083/jcb.200411105 PubMed Saharinen P, Kerkela K, Ekman N et al (2005) Multiple angiopoietin recombinant proteins activate the Tie1 receptor tyrosine kinase and promote its interaction with Tie2. J Cell Biol 169:239–243. doi:10.​1083/​jcb.​200411105 PubMed
43.
go back to reference Dumont DJ, Yamaguchi TP, Conlon RA et al (1992) Tek, a novel tyrosine kinase gene located on mouse chromosome 4, is expressed in endothelial cells and their presumptive precursors. Oncogene 7:1471–1480PubMed Dumont DJ, Yamaguchi TP, Conlon RA et al (1992) Tek, a novel tyrosine kinase gene located on mouse chromosome 4, is expressed in endothelial cells and their presumptive precursors. Oncogene 7:1471–1480PubMed
44.
go back to reference Sato TN, Tozawa Y, Deutsch U et al (1995) Distinct roles of the receptor tyrosine kinases Tie-1 and Tie-2 in blood vessel formation. Nature 376:70–74. doi:10.1038/376070a0 PubMed Sato TN, Tozawa Y, Deutsch U et al (1995) Distinct roles of the receptor tyrosine kinases Tie-1 and Tie-2 in blood vessel formation. Nature 376:70–74. doi:10.​1038/​376070a0 PubMed
45.
go back to reference Brown LF, Dezube BJ, Tognazzi K et al (2000) Expression of Tie1, Tie2, and angiopoietins 1, 2, and 4 in Kaposi’s sarcoma and cutaneous angiosarcoma. Am J Pathol 156:2179–2183PubMed Brown LF, Dezube BJ, Tognazzi K et al (2000) Expression of Tie1, Tie2, and angiopoietins 1, 2, and 4 in Kaposi’s sarcoma and cutaneous angiosarcoma. Am J Pathol 156:2179–2183PubMed
47.
go back to reference De Palma M, Venneri MA, Galli R et al (2005) Tie2 identifies a hematopoietic lineage of proangiogenic monocytes required for tumor vessel formation and a mesenchymal population of pericyte progenitors. Cancer Cell 8:211–226. doi:10.1016/j.ccr.2005.08.002 PubMed De Palma M, Venneri MA, Galli R et al (2005) Tie2 identifies a hematopoietic lineage of proangiogenic monocytes required for tumor vessel formation and a mesenchymal population of pericyte progenitors. Cancer Cell 8:211–226. doi:10.​1016/​j.​ccr.​2005.​08.​002 PubMed
48.
go back to reference Wong AL, Haroon ZA, Werner S et al (1997) Tie2 expression and phosphorylation in angiogenic and quiescent adult tissues. Circ Res 81:567–574PubMed Wong AL, Haroon ZA, Werner S et al (1997) Tie2 expression and phosphorylation in angiogenic and quiescent adult tissues. Circ Res 81:567–574PubMed
49.
go back to reference Peters KG, Coogan A, Berry D et al (1998) Expression of Tie2/Tek in breast tumour vasculature provides a new marker for evaluation of tumour angiogenesis. Br J Cancer 77:51–56PubMed Peters KG, Coogan A, Berry D et al (1998) Expression of Tie2/Tek in breast tumour vasculature provides a new marker for evaluation of tumour angiogenesis. Br J Cancer 77:51–56PubMed
50.
go back to reference Takahama M, Tsutsumi M, Tsujiuchi T et al (1999) Enhanced expression of Tie2, its ligand angiopoietin-1, vascular endothelial growth factor, and CD31 in human non-small cell lung carcinomas. Clin Cancer Res 5:2506–2510PubMed Takahama M, Tsutsumi M, Tsujiuchi T et al (1999) Enhanced expression of Tie2, its ligand angiopoietin-1, vascular endothelial growth factor, and CD31 in human non-small cell lung carcinomas. Clin Cancer Res 5:2506–2510PubMed
51.
go back to reference Dumont DJ, Gradwohl G, Fong GH et al (1994) Dominant-negative and targeted null mutations in the endothelial receptor tyrosine kinase, tek, reveal a critical role in vasculogenesis of the embryo. Genes Dev 8:1897–1909. doi:10.1101/gad.8.16.1897 PubMed Dumont DJ, Gradwohl G, Fong GH et al (1994) Dominant-negative and targeted null mutations in the endothelial receptor tyrosine kinase, tek, reveal a critical role in vasculogenesis of the embryo. Genes Dev 8:1897–1909. doi:10.​1101/​gad.​8.​16.​1897 PubMed
52.
go back to reference Patan S (1998) TIE1 and TIE2 receptor tyrosine kinases inversely regulate embryonic angiogenesis by the mechanism of intussusceptive microvascular growth. Microvasc Res 56:1–21. doi:10.1006/mvre.1998.2081 PubMed Patan S (1998) TIE1 and TIE2 receptor tyrosine kinases inversely regulate embryonic angiogenesis by the mechanism of intussusceptive microvascular growth. Microvasc Res 56:1–21. doi:10.​1006/​mvre.​1998.​2081 PubMed
54.
go back to reference Jones N, Voskas D, Master Z et al (2001) Rescue of the early vascular defects in Tek/Tie2 null mice reveals an essential survival function. EMBO Rep 2:438–445PubMed Jones N, Voskas D, Master Z et al (2001) Rescue of the early vascular defects in Tek/Tie2 null mice reveals an essential survival function. EMBO Rep 2:438–445PubMed
55.
go back to reference Takagi H, Koyama S, Seike H et al (2003) Potential role of the angiopoietin/tie2 system in ischemia-induced retinal neovascularization. Invest Ophthalmol Vis Sci 44:393–402. doi:10.1167/iovs.02-0276 PubMed Takagi H, Koyama S, Seike H et al (2003) Potential role of the angiopoietin/tie2 system in ischemia-induced retinal neovascularization. Invest Ophthalmol Vis Sci 44:393–402. doi:10.​1167/​iovs.​02-0276 PubMed
56.
go back to reference Reusch P, Barleon B, Weindel K et al (2001) Identification of a soluble form of the angiopoietin receptor TIE-2 released from endothelial cells and present in human blood. Angiogenesis 4:123–131. doi:10.1023/A:1012226627813 PubMed Reusch P, Barleon B, Weindel K et al (2001) Identification of a soluble form of the angiopoietin receptor TIE-2 released from endothelial cells and present in human blood. Angiogenesis 4:123–131. doi:10.​1023/​A:​1012226627813 PubMed
59.
go back to reference Rodewald HR, Sato TN (1996) Tie1, a receptor tyrosine kinase essential for vascular endothelial cell integrity, is not critical for the development of hematopoietic cells. Oncogene 12:397–404PubMed Rodewald HR, Sato TN (1996) Tie1, a receptor tyrosine kinase essential for vascular endothelial cell integrity, is not critical for the development of hematopoietic cells. Oncogene 12:397–404PubMed
60.
go back to reference Puri MC, Partanen J, Rossant J et al (1999) Interaction of the TEK and TIE receptor tyrosine kinases during cardiovascular development. Development 126:4569–4580PubMed Puri MC, Partanen J, Rossant J et al (1999) Interaction of the TEK and TIE receptor tyrosine kinases during cardiovascular development. Development 126:4569–4580PubMed
61.
go back to reference Ward NL, Van Slyke P, Sturk C et al (2004) Angiopoietin 1 expression levels in the myocardium direct coronary vessel development. Dev Dyn 229:500–509. doi:10.1002/dvdy.10479 PubMed Ward NL, Van Slyke P, Sturk C et al (2004) Angiopoietin 1 expression levels in the myocardium direct coronary vessel development. Dev Dyn 229:500–509. doi:10.​1002/​dvdy.​10479 PubMed
65.
go back to reference Holash J, Maisonpierre PC, SJ ComptonD et al (1999) Vessel cooption, regression, and growth in tumors mediated by angiopoietins and VEGF. Science 284:1994–1998PubMed Holash J, Maisonpierre PC, SJ ComptonD et al (1999) Vessel cooption, regression, and growth in tumors mediated by angiopoietins and VEGF. Science 284:1994–1998PubMed
66.
go back to reference Lobov IB, Brooks PC, Lang RA (2002) Angiopoietin-2 displays VEGF-dependent modulation of capillary structure and endothelial cell survival in vivo. Proc Natl Acad Sci USA 99:11205–11210. doi:10.1073/pnas.172161899 PubMed Lobov IB, Brooks PC, Lang RA (2002) Angiopoietin-2 displays VEGF-dependent modulation of capillary structure and endothelial cell survival in vivo. Proc Natl Acad Sci USA 99:11205–11210. doi:10.​1073/​pnas.​172161899 PubMed
67.
go back to reference Korff T, Kimmina S, Martiny-Baron G et al (2001) Blood vessel maturation in a 3-dimensional spheroidal coculture model: direct contact with smooth muscle cells regulates endothelial cell quiescence and abrogates VEGF responsiveness. FASEB J 15:447–457. doi:10.1096/fj.00-0139com PubMed Korff T, Kimmina S, Martiny-Baron G et al (2001) Blood vessel maturation in a 3-dimensional spheroidal coculture model: direct contact with smooth muscle cells regulates endothelial cell quiescence and abrogates VEGF responsiveness. FASEB J 15:447–457. doi:10.​1096/​fj.​00-0139com PubMed
68.
go back to reference Fiedler U, Reiss Y, Scharpfenecker M et al (2006) Angiopoietin-2 sensitizes endothelial cells to TNF-alpha and has a crucial role in the induction of inflammation. Nat Med 12:235–239. doi:10.1038/nm1351 PubMed Fiedler U, Reiss Y, Scharpfenecker M et al (2006) Angiopoietin-2 sensitizes endothelial cells to TNF-alpha and has a crucial role in the induction of inflammation. Nat Med 12:235–239. doi:10.​1038/​nm1351 PubMed
69.
go back to reference Shimoda H, Bernas MJ, Witte MH et al (2007) Abnormal recruitment of periendothelial cells to lymphatic capillaries in digestive organs of angiopoietin-2-deficient mice. Cell Tissue Res 328:329–337. doi:10.1007/s00441-006-0360-8 PubMed Shimoda H, Bernas MJ, Witte MH et al (2007) Abnormal recruitment of periendothelial cells to lymphatic capillaries in digestive organs of angiopoietin-2-deficient mice. Cell Tissue Res 328:329–337. doi:10.​1007/​s00441-006-0360-8 PubMed
70.
71.
go back to reference Dumont DJ, Gradwohl GJ, Fong GH et al (1993) The endothelial-specific receptor tyrosine kinase, tek, is a member of a new subfamily of receptors. Oncogene 8:1293–1301PubMed Dumont DJ, Gradwohl GJ, Fong GH et al (1993) The endothelial-specific receptor tyrosine kinase, tek, is a member of a new subfamily of receptors. Oncogene 8:1293–1301PubMed
72.
go back to reference Kim I, Kim HG, So JN et al (2000) Angiopoietin-1 regulates endothelial cell survival through the phosphatidylinositol 3’-Kinase/Akt signal transduction pathway. Circ Res 86:24–29PubMed Kim I, Kim HG, So JN et al (2000) Angiopoietin-1 regulates endothelial cell survival through the phosphatidylinositol 3’-Kinase/Akt signal transduction pathway. Circ Res 86:24–29PubMed
73.
go back to reference Jones N, Iljin K, Dumont DJ et al (2001) Tie receptors: new modulators of angiogenic and lymphangiogenic responses. Nat Rev Mol Cell Biol 2:257–267. doi:10.1038/35067005 PubMed Jones N, Iljin K, Dumont DJ et al (2001) Tie receptors: new modulators of angiogenic and lymphangiogenic responses. Nat Rev Mol Cell Biol 2:257–267. doi:10.​1038/​35067005 PubMed
74.
go back to reference Hodous BL, Geuns-Meyer SD, Hughes PE et al (2007) Evolution of a highly selective and potent 2-(pyridin-2-yl)-1, 3, 5-triazine Tie-2 kinase inhibitor. J Med Chem 50:611–626. doi:10.1021/jm061107l PubMed Hodous BL, Geuns-Meyer SD, Hughes PE et al (2007) Evolution of a highly selective and potent 2-(pyridin-2-yl)-1, 3, 5-triazine Tie-2 kinase inhibitor. J Med Chem 50:611–626. doi:10.​1021/​jm061107l PubMed
78.
79.
go back to reference Iivanainen E, Nelimarkka L, Elenius V et al (2003) Angiopoietin-regulated recruitment of vascular smooth muscle cells by endothelial-derived heparin binding EGF-like growth factor. FASEB J 17:1609–1621. doi:10.1096/fj.02-0939com PubMed Iivanainen E, Nelimarkka L, Elenius V et al (2003) Angiopoietin-regulated recruitment of vascular smooth muscle cells by endothelial-derived heparin binding EGF-like growth factor. FASEB J 17:1609–1621. doi:10.​1096/​fj.​02-0939com PubMed
82.
go back to reference Hellstrom M, Kalen M, Lindahl P et al (1999) Role of PDGF-B and PDGFR-beta in recruitment of vascular smooth muscle cells and pericytes during embryonic blood vessel formation in the mouse. Development 126:3047–3055PubMed Hellstrom M, Kalen M, Lindahl P et al (1999) Role of PDGF-B and PDGFR-beta in recruitment of vascular smooth muscle cells and pericytes during embryonic blood vessel formation in the mouse. Development 126:3047–3055PubMed
83.
go back to reference Uemura A et al (2002) Recombinant angiopoietin-1 restores higher-order architecture of growing blood vessels in mice in the absence of mural cells. J Clin Invest 110:1619–1628PubMed Uemura A et al (2002) Recombinant angiopoietin-1 restores higher-order architecture of growing blood vessels in mice in the absence of mural cells. J Clin Invest 110:1619–1628PubMed
84.
go back to reference Hirschi KK, Rohovsky SA, D’Amore PA (1998) PDGF, TGF-beta, and heterotypic cell–cell interactions mediate endothelial cell-induced recruitment of 10T1/2 cells and their differentiation to a smooth muscle fate. J Cell Biol 141:805–814. doi:10.1083/jcb.141.3.805 PubMed Hirschi KK, Rohovsky SA, D’Amore PA (1998) PDGF, TGF-beta, and heterotypic cell–cell interactions mediate endothelial cell-induced recruitment of 10T1/2 cells and their differentiation to a smooth muscle fate. J Cell Biol 141:805–814. doi:10.​1083/​jcb.​141.​3.​805 PubMed
85.
go back to reference Oh SP, Seki T, Goss KA et al (2000) Activin receptor-like kinase 1 modulates transforming growth factor-beta 1 signaling in the regulation of angiogenesis. Proc Natl Acad Sci USA 97:2626–2631. doi:10.1073/pnas.97.6.2626 PubMed Oh SP, Seki T, Goss KA et al (2000) Activin receptor-like kinase 1 modulates transforming growth factor-beta 1 signaling in the regulation of angiogenesis. Proc Natl Acad Sci USA 97:2626–2631. doi:10.​1073/​pnas.​97.​6.​2626 PubMed
86.
go back to reference Nishishita T, Lin PC (2004) Angiopoietin 1, PDGF-B, and TGF-beta gene regulation in endothelial cell and smooth muscle cell interaction. J Cell Biochem 91:584–593. doi:10.1002/jcb.10718 PubMed Nishishita T, Lin PC (2004) Angiopoietin 1, PDGF-B, and TGF-beta gene regulation in endothelial cell and smooth muscle cell interaction. J Cell Biochem 91:584–593. doi:10.​1002/​jcb.​10718 PubMed
87.
88.
go back to reference Fukuhara S, Sako K, Minami T et al (2008) Differential function of Tie2 at cell-cell contacts and cell-substratum contacts regulated by angiopoietin-1. Nat Cell Biol 10:513–526. doi:10.1038/ncb1714 PubMed Fukuhara S, Sako K, Minami T et al (2008) Differential function of Tie2 at cell-cell contacts and cell-substratum contacts regulated by angiopoietin-1. Nat Cell Biol 10:513–526. doi:10.​1038/​ncb1714 PubMed
89.
go back to reference Saharinen P, Eklund L, Miettinen J et al (2008) Angiopoietins assemble distinct Tie2 signalling complexes in endothelial cell–cell and cell-matrix contacts. Nat Cell Biol 10:527–537. doi:10.1038/ncb1715 PubMed Saharinen P, Eklund L, Miettinen J et al (2008) Angiopoietins assemble distinct Tie2 signalling complexes in endothelial cell–cell and cell-matrix contacts. Nat Cell Biol 10:527–537. doi:10.​1038/​ncb1715 PubMed
91.
go back to reference Gavard J, Gutkind JS (2006) VEGF controls endothelial-cell permeability by promoting the beta-arrestin-dependent endocytosis of VE-cadherin. Nat Cell Biol 8:1223–1234. doi:10.1038/ncb1486 PubMed Gavard J, Gutkind JS (2006) VEGF controls endothelial-cell permeability by promoting the beta-arrestin-dependent endocytosis of VE-cadherin. Nat Cell Biol 8:1223–1234. doi:10.​1038/​ncb1486 PubMed
92.
go back to reference Dejana E, Orsenigo F, Lampugnani MG (2008) The role of adherens junctions and VE-cadherin in the control of vascular permeability. J Cell Sci 121:2115–2122. doi:10.1242/jcs.017897 PubMed Dejana E, Orsenigo F, Lampugnani MG (2008) The role of adherens junctions and VE-cadherin in the control of vascular permeability. J Cell Sci 121:2115–2122. doi:10.​1242/​jcs.​017897 PubMed
94.
96.
go back to reference Huang L, Turck CW, Rao P et al (1995) GRB2 and SH-PTP2: potentially important endothelial signaling molecules downstream of the TEK/TIE2 receptor tyrosine kinase. Oncogene 11:2097–2103PubMed Huang L, Turck CW, Rao P et al (1995) GRB2 and SH-PTP2: potentially important endothelial signaling molecules downstream of the TEK/TIE2 receptor tyrosine kinase. Oncogene 11:2097–2103PubMed
97.
go back to reference Kontos CD, Stauffer TP, Yang WP et al (1998) Tyrosine 1101 of Tie2 is the major site of association of p85 and is required for activation of phosphatidylinositol 3-kinase and Akt. Mol Cell Biol 18:4131–4140PubMed Kontos CD, Stauffer TP, Yang WP et al (1998) Tyrosine 1101 of Tie2 is the major site of association of p85 and is required for activation of phosphatidylinositol 3-kinase and Akt. Mol Cell Biol 18:4131–4140PubMed
99.
go back to reference Fujikawa K, de Aos Scherpenseel I, Jain SK et al (1999) Role of PI 3-kinase in angiopoietin-1-mediated migration and attachment-dependent survival of endothelial cells. Exp Cell Res 253:663–672. doi:10.1006/excr.1999.4693 PubMed Fujikawa K, de Aos Scherpenseel I, Jain SK et al (1999) Role of PI 3-kinase in angiopoietin-1-mediated migration and attachment-dependent survival of endothelial cells. Exp Cell Res 253:663–672. doi:10.​1006/​excr.​1999.​4693 PubMed
100.
go back to reference Kim I, Oh JL, Ryu YS et al (2002) Angiopoietin-1 negatively regulates expression and activity of tissue factor in endothelial cells. FASEB J 16:126–128PubMed Kim I, Oh JL, Ryu YS et al (2002) Angiopoietin-1 negatively regulates expression and activity of tissue factor in endothelial cells. FASEB J 16:126–128PubMed
101.
103.
go back to reference Kim I, Kim HG, Moon SO et al (2000) Angiopoietin-1 induces endothelial cell sprouting through the activation of focal adhesion kinase and plasmin secretion. Circ Res 86:952–959PubMed Kim I, Kim HG, Moon SO et al (2000) Angiopoietin-1 induces endothelial cell sprouting through the activation of focal adhesion kinase and plasmin secretion. Circ Res 86:952–959PubMed
104.
106.
go back to reference Kim I, Moon SO, Park SK et al (2001) Angiopoietin-1 reduces VEGF-stimulated leukocyte adhesion to endothelial cells by reducing ICAM-1, VCAM-1, and E-selectin expression. Circ Res 89:477–479. doi:10.1161/hh1801.097034 PubMed Kim I, Moon SO, Park SK et al (2001) Angiopoietin-1 reduces VEGF-stimulated leukocyte adhesion to endothelial cells by reducing ICAM-1, VCAM-1, and E-selectin expression. Circ Res 89:477–479. doi:10.​1161/​hh1801.​097034 PubMed
108.
go back to reference Cho CH, Kammerer RA, Lee HJ et al (2004) Designed angiopoietin-1 variant, COMP-Ang1, protects against radiation-induced endothelial cell apoptosis. Proc Natl Acad Sci USA 101:5553–5558. doi:10.1073/pnas.0307575101 PubMed Cho CH, Kammerer RA, Lee HJ et al (2004) Designed angiopoietin-1 variant, COMP-Ang1, protects against radiation-induced endothelial cell apoptosis. Proc Natl Acad Sci USA 101:5553–5558. doi:10.​1073/​pnas.​0307575101 PubMed
111.
112.
go back to reference Gravallese EM, Pettit AR, Lee R et al (2003) Angiopoietin-1 is expressed in the synovium of patients with rheumatoid arthritis and is induced by tumour necrosis factor alpha. Ann Rheum Dis 62:100–107. doi:10.1136/ard.62.2.100 PubMed Gravallese EM, Pettit AR, Lee R et al (2003) Angiopoietin-1 is expressed in the synovium of patients with rheumatoid arthritis and is induced by tumour necrosis factor alpha. Ann Rheum Dis 62:100–107. doi:10.​1136/​ard.​62.​2.​100 PubMed
113.
go back to reference Scott BB, Zaratin PF, Gilmartin AG et al (2005) TNF-alpha modulates angiopoietin-1 expression in rheumatoid synovial fibroblasts via the NF-kappa B signalling pathway. Biochem Biophys Res Commun 328:409–414. doi:10.1016/j.bbrc.2004.12.180 PubMed Scott BB, Zaratin PF, Gilmartin AG et al (2005) TNF-alpha modulates angiopoietin-1 expression in rheumatoid synovial fibroblasts via the NF-kappa B signalling pathway. Biochem Biophys Res Commun 328:409–414. doi:10.​1016/​j.​bbrc.​2004.​12.​180 PubMed
114.
go back to reference Grall F, Gu X, Tan L et al (2003) Responses to the proinflammatory cytokines interleukin-1 and tumor necrosis factor alpha in cells derived from rheumatoid synovium and other joint tissues involve nuclear factor kappaB-mediated induction of the Ets transcription factor ESE-1. Arthritis Rheum 48:1249–1260. doi:10.1002/art.10942 PubMed Grall F, Gu X, Tan L et al (2003) Responses to the proinflammatory cytokines interleukin-1 and tumor necrosis factor alpha in cells derived from rheumatoid synovium and other joint tissues involve nuclear factor kappaB-mediated induction of the Ets transcription factor ESE-1. Arthritis Rheum 48:1249–1260. doi:10.​1002/​art.​10942 PubMed
115.
go back to reference Brown C, Gaspar J, Pettit A et al (2004) ESE-1 is a novel transcriptional mediator of angiopoietin-1 expression in the setting of inflammation. J Biol Chem 279:12794–12803. doi:10.1074/jbc.M308593200 PubMed Brown C, Gaspar J, Pettit A et al (2004) ESE-1 is a novel transcriptional mediator of angiopoietin-1 expression in the setting of inflammation. J Biol Chem 279:12794–12803. doi:10.​1074/​jbc.​M308593200 PubMed
117.
go back to reference Gallagher DC, Parikh SM, Balonov K et al (2007) Circulating Angiopoietin 2 correlates with mortality in a surgical population with acute lung injury/adult respiratory distress syndrome. Shock 29:656–661 Gallagher DC, Parikh SM, Balonov K et al (2007) Circulating Angiopoietin 2 correlates with mortality in a surgical population with acute lung injury/adult respiratory distress syndrome. Shock 29:656–661
119.
go back to reference Siner JM, Bhandari V, Engle KM, et al. (2009) Elevated serum Angiopoietin 2 levels are associated with increased mortality in sepsis. Shock 31:348–353PubMedCrossRef Siner JM, Bhandari V, Engle KM, et al. (2009) Elevated serum Angiopoietin 2 levels are associated with increased mortality in sepsis. Shock 31:348–353PubMedCrossRef
120.
go back to reference Fearon U, Griosios K, Fraser A et al (2003) Angiopoietins, growth factors, and vascular morphology in early arthritis. J Rheumatol 30:260–268PubMed Fearon U, Griosios K, Fraser A et al (2003) Angiopoietins, growth factors, and vascular morphology in early arthritis. J Rheumatol 30:260–268PubMed
122.
go back to reference Etoh T, Inoue H, Tanaka S et al (2001) Angiopoietin-2 is related to tumor angiogenesis in gastric carcinoma: possible in vivo regulation via induction of proteases. Cancer Res 61:2145–2153PubMed Etoh T, Inoue H, Tanaka S et al (2001) Angiopoietin-2 is related to tumor angiogenesis in gastric carcinoma: possible in vivo regulation via induction of proteases. Cancer Res 61:2145–2153PubMed
123.
124.
go back to reference Mandriota SJ, Pepper MS (1998) Regulation of angiopoietin-2 mRNA levels in bovine microvascular endothelial cells by cytokines and hypoxia. Circ Res 83:852–859PubMed Mandriota SJ, Pepper MS (1998) Regulation of angiopoietin-2 mRNA levels in bovine microvascular endothelial cells by cytokines and hypoxia. Circ Res 83:852–859PubMed
125.
go back to reference Krikun G, Schatz F, Finlay T et al (2000) Expression of angiopoietin-2 by human endometrial endothelial cells: regulation by hypoxia and inflammation. Biochem Biophys Res Commun 275:159–163. doi:10.1006/bbrc.2000.3277 PubMed Krikun G, Schatz F, Finlay T et al (2000) Expression of angiopoietin-2 by human endometrial endothelial cells: regulation by hypoxia and inflammation. Biochem Biophys Res Commun 275:159–163. doi:10.​1006/​bbrc.​2000.​3277 PubMed
128.
go back to reference Lund EL, Hog A, Olsen MW et al (2004) Differential regulation of VEGF, HIF1alpha and angiopoietin-1, -2 and -4 by hypoxia and ionizing radiation in human glioblastoma. Int J Cancer 108:833–838. doi:10.1002/ijc.11662 PubMed Lund EL, Hog A, Olsen MW et al (2004) Differential regulation of VEGF, HIF1alpha and angiopoietin-1, -2 and -4 by hypoxia and ionizing radiation in human glioblastoma. Int J Cancer 108:833–838. doi:10.​1002/​ijc.​11662 PubMed
129.
go back to reference Watanabe D, Takagi H, Suzuma K et al (2004) Transcription factor Ets-1 mediates ischemia- and vascular endothelial growth factor-dependent retinal neovascularization. Am J Pathol 164:1827–1835PubMed Watanabe D, Takagi H, Suzuma K et al (2004) Transcription factor Ets-1 mediates ischemia- and vascular endothelial growth factor-dependent retinal neovascularization. Am J Pathol 164:1827–1835PubMed
131.
go back to reference Milkiewicz M, Uchida C, Gee E et al. (2008) Shear stress-induced Ets-1 modulates protease inhibitor expression in microvascular endothelial cells. J Cell Physiol Milkiewicz M, Uchida C, Gee E et al. (2008) Shear stress-induced Ets-1 modulates protease inhibitor expression in microvascular endothelial cells. J Cell Physiol
132.
go back to reference Daly C, Wong V, Burova E et al (2004) Angiopoietin-1 modulates endothelial cell function and gene expression via the transcription factor FKHR (FOXO1). Genes Dev 18:1060–1071. doi:10.1101/gad.1189704 PubMed Daly C, Wong V, Burova E et al (2004) Angiopoietin-1 modulates endothelial cell function and gene expression via the transcription factor FKHR (FOXO1). Genes Dev 18:1060–1071. doi:10.​1101/​gad.​1189704 PubMed
133.
go back to reference Vajkoczy P, Farhadi M, Gaumann A et al (2002) Microtumor growth initiates angiogenic sprouting with simultaneous expression of VEGF, VEGF receptor-2, and angiopoietin-2. J Clin Invest 109:777–785PubMed Vajkoczy P, Farhadi M, Gaumann A et al (2002) Microtumor growth initiates angiogenic sprouting with simultaneous expression of VEGF, VEGF receptor-2, and angiopoietin-2. J Clin Invest 109:777–785PubMed
134.
go back to reference Machein MR, Knedla A, Knoth R et al (2004) Angiopoietin-1 promotes tumor angiogenesis in a rat glioma model. Am J Pathol 165:1557–1570PubMed Machein MR, Knedla A, Knoth R et al (2004) Angiopoietin-1 promotes tumor angiogenesis in a rat glioma model. Am J Pathol 165:1557–1570PubMed
135.
go back to reference Zhou YZ, Fang XQ, Li HQ et al (2007) Role of serum angiopoietin-2 level in screening for esophageal squamous cell cancer and its precursors. Chin Med J (Engl) 120:1216–1219 Zhou YZ, Fang XQ, Li HQ et al (2007) Role of serum angiopoietin-2 level in screening for esophageal squamous cell cancer and its precursors. Chin Med J (Engl) 120:1216–1219
136.
go back to reference Kuboki S, Shimizu H, Mitsuhashi N et al. (2008) Angiopoietin-2 levels in the hepatic vein as a useful predictor of tumor invasiveness and prognosis in human hepatocellular carcinoma. J Gastroenterol Hepatol 23:157–164 Kuboki S, Shimizu H, Mitsuhashi N et al. (2008) Angiopoietin-2 levels in the hepatic vein as a useful predictor of tumor invasiveness and prognosis in human hepatocellular carcinoma. J Gastroenterol Hepatol 23:157–164
140.
go back to reference Takanami I (2004) Overexpression of Ang-2 mRNA in non-small cell lung cancer: association with angiogenesis and poor prognosis. Oncol Rep 12:849–853PubMed Takanami I (2004) Overexpression of Ang-2 mRNA in non-small cell lung cancer: association with angiogenesis and poor prognosis. Oncol Rep 12:849–853PubMed
141.
142.
go back to reference White RR, Shan S, Rusconi CP et al (2003) Inhibition of rat corneal angiogenesis by a nuclease-resistant RNA aptamer specific for angiopoietin-2. Proc Natl Acad Sci USA 100:5028–5033. doi:10.1073/pnas.0831159100 PubMed White RR, Shan S, Rusconi CP et al (2003) Inhibition of rat corneal angiogenesis by a nuclease-resistant RNA aptamer specific for angiopoietin-2. Proc Natl Acad Sci USA 100:5028–5033. doi:10.​1073/​pnas.​0831159100 PubMed
143.
go back to reference Imanishi Y, Hu B, Jarzynka MJ et al (2007) Angiopoietin-2 stimulates breast cancer metastasis through the alpha(5)beta(1) integrin-mediated pathway. Cancer Res 67:4254–4263PubMed Imanishi Y, Hu B, Jarzynka MJ et al (2007) Angiopoietin-2 stimulates breast cancer metastasis through the alpha(5)beta(1) integrin-mediated pathway. Cancer Res 67:4254–4263PubMed
144.
go back to reference Yu Q, Stamenkovic I (2001) Angiopoietin-2 is implicated in the regulation of tumor angiogenesis. Am J Pathol 158:563–570PubMed Yu Q, Stamenkovic I (2001) Angiopoietin-2 is implicated in the regulation of tumor angiogenesis. Am J Pathol 158:563–570PubMed
145.
go back to reference Hawighorst T, Skobe M, Streit M et al (2002) Activation of the tie2 receptor by angiopoietin-1 enhances tumor vessel maturation and impairs squamous cell carcinoma growth. Am J Pathol 160:1381–1392PubMed Hawighorst T, Skobe M, Streit M et al (2002) Activation of the tie2 receptor by angiopoietin-1 enhances tumor vessel maturation and impairs squamous cell carcinoma growth. Am J Pathol 160:1381–1392PubMed
147.
go back to reference Stoeltzing O, Ahmad SA, Liu W et al (2003) Angiopoietin-1 inhibits vascular permeability, angiogenesis, and growth of hepatic colon cancer tumors. Cancer Res 63:3370–3377PubMed Stoeltzing O, Ahmad SA, Liu W et al (2003) Angiopoietin-1 inhibits vascular permeability, angiogenesis, and growth of hepatic colon cancer tumors. Cancer Res 63:3370–3377PubMed
149.
go back to reference Nakayama T, Yao L, Tosato G (2004) Mast cell-derived angiopoietin-1 plays a critical role in the growth of plasma cell tumors. J Clin Invest 114:1317–1325PubMed Nakayama T, Yao L, Tosato G (2004) Mast cell-derived angiopoietin-1 plays a critical role in the growth of plasma cell tumors. J Clin Invest 114:1317–1325PubMed
150.
go back to reference Shim WS, Teh M, Mack PO et al (2001) Inhibition of angiopoietin-1 expression in tumor cells by an antisense RNA approach inhibited xenograft tumor growth in immunodeficient mice. Int J Cancer 94:6–15. doi:10.1002/ijc.1428 PubMed Shim WS, Teh M, Mack PO et al (2001) Inhibition of angiopoietin-1 expression in tumor cells by an antisense RNA approach inhibited xenograft tumor growth in immunodeficient mice. Int J Cancer 94:6–15. doi:10.​1002/​ijc.​1428 PubMed
152.
go back to reference Hu B, Jarzynka MJ, Guo P et al (2006) Angiopoietin 2 induces glioma cell invasion by stimulating matrix metalloprotease 2 expression through the alphavbeta1 integrin and focal adhesion kinase signaling pathway. Cancer Res 66:775–783. doi:10.1158/0008-5472.CAN-05-1149 PubMed Hu B, Jarzynka MJ, Guo P et al (2006) Angiopoietin 2 induces glioma cell invasion by stimulating matrix metalloprotease 2 expression through the alphavbeta1 integrin and focal adhesion kinase signaling pathway. Cancer Res 66:775–783. doi:10.​1158/​0008-5472.​CAN-05-1149 PubMed
153.
go back to reference Cascone I, Napione L, Maniero F et al (2005) Stable interaction between alpha5beta1 integrin and Tie2 tyrosine kinase receptor regulates endothelial cell response to Ang-1. J Cell Biol 170:993–1004. doi:10.1083/jcb.200507082 PubMed Cascone I, Napione L, Maniero F et al (2005) Stable interaction between alpha5beta1 integrin and Tie2 tyrosine kinase receptor regulates endothelial cell response to Ang-1. J Cell Biol 170:993–1004. doi:10.​1083/​jcb.​200507082 PubMed
156.
go back to reference Ward NL, Putoczki T, Mearow K et al (2005) Vascular-specific growth factor angiopoietin 1 is involved in the organization of neuronal processes. J Comp Neurol 482:244–256. doi:10.1002/cne.20422 PubMed Ward NL, Putoczki T, Mearow K et al (2005) Vascular-specific growth factor angiopoietin 1 is involved in the organization of neuronal processes. J Comp Neurol 482:244–256. doi:10.​1002/​cne.​20422 PubMed
157.
go back to reference Valable S, Bellail A, Lesne S et al (2003) Angiopoietin-1-induced PI3-kinase activation prevents neuronal apoptosis. FASEB J 17:443–445PubMed Valable S, Bellail A, Lesne S et al (2003) Angiopoietin-1-induced PI3-kinase activation prevents neuronal apoptosis. FASEB J 17:443–445PubMed
Metadata
Title
The role of the Angiopoietins in vascular morphogenesis
Authors
Markus Thomas
Hellmut G. Augustin
Publication date
01-06-2009
Publisher
Springer Netherlands
Published in
Angiogenesis / Issue 2/2009
Print ISSN: 0969-6970
Electronic ISSN: 1573-7209
DOI
https://doi.org/10.1007/s10456-009-9147-3

Other articles of this Issue 2/2009

Angiogenesis 2/2009 Go to the issue