Skip to main content
Top
Published in: Pediatric Cardiology 3/2010

01-04-2010 | Riley Symposium

Genetic and Genomic Dissection of Cardiogenesis in the Drosophila Model

Authors: Ingolf Reim, Manfred Frasch

Published in: Pediatric Cardiology | Issue 3/2010

Login to get access

Abstract

The linear heart tube of the fruit fly Drosophila has served as a very valuable model for studying the regulation of early heart development. In the past, regulatory genes of Drosophila cardiogenesis have been identified largely through candidate approaches. The vast genetic toolkit available in this organism has made it possible to determine their functions and build regulatory networks of transcription factors and signaling inputs that control heart development. In this review, we summarize the major findings from this study and present current approaches aiming to identify additional players in the specification, morphogenesis, and differentiation of the heart by forward genetic screens. We also discuss various genomic and bioinformatic approaches that are currently being developed to extend the known transcriptional networks more globally which, in combination with the genetic approaches, will provide a comprehensive picture of the regulatory circuits during cardiogenesis.
Literature
1.
go back to reference Akazawa H, Komuro I (2005) Cardiac transcription factor Csx/Nkx2–5: its role in cardiac development and diseases. Pharmacol Ther 107:252–268CrossRefPubMed Akazawa H, Komuro I (2005) Cardiac transcription factor Csx/Nkx2–5: its role in cardiac development and diseases. Pharmacol Ther 107:252–268CrossRefPubMed
2.
go back to reference Albrecht S, Wang S, Holz A et al (2006) The ADAM metalloprotease Kuzbanian is crucial for proper heart formation in Drosophila melanogaster. Mech Dev 123:372–387CrossRefPubMed Albrecht S, Wang S, Holz A et al (2006) The ADAM metalloprotease Kuzbanian is crucial for proper heart formation in Drosophila melanogaster. Mech Dev 123:372–387CrossRefPubMed
3.
go back to reference Alvarez AD, Shi W, Wilson BA et al (2003) pannier and pointedP2 act sequentially to regulate Drosophila heart development. Development 130:3015–3026CrossRefPubMed Alvarez AD, Shi W, Wilson BA et al (2003) pannier and pointedP2 act sequentially to regulate Drosophila heart development. Development 130:3015–3026CrossRefPubMed
4.
go back to reference Azpiazu N, Frasch M (1993) tinman and bagpipe: two homeo box genes that determine cell fates in the dorsal mesoderm of Drosophila. Genes Dev 7:1325–1340CrossRefPubMed Azpiazu N, Frasch M (1993) tinman and bagpipe: two homeo box genes that determine cell fates in the dorsal mesoderm of Drosophila. Genes Dev 7:1325–1340CrossRefPubMed
5.
go back to reference Black BL (2007) Transcriptional pathways in second heart field development. Semin Cell Dev Biol 18:67–76CrossRefPubMed Black BL (2007) Transcriptional pathways in second heart field development. Semin Cell Dev Biol 18:67–76CrossRefPubMed
6.
go back to reference Bodmer R (1993) The gene tinman is required for specification of the heart and visceral muscles in Drosophila. Development 118:719–729PubMed Bodmer R (1993) The gene tinman is required for specification of the heart and visceral muscles in Drosophila. Development 118:719–729PubMed
7.
go back to reference Cagavi Bozkulak E, Weinmaster G (2009) Selective Use of Adam10 and Adam17 in Activation of Notch1 Signaling. Mol Cell Biol 29:5679–5695CrossRef Cagavi Bozkulak E, Weinmaster G (2009) Selective Use of Adam10 and Adam17 in Activation of Notch1 Signaling. Mol Cell Biol 29:5679–5695CrossRef
8.
go back to reference Cai CL, Zhou W, Yang L et al (2005) T-box genes coordinate regional rates of proliferation and regional specification during cardiogenesis. Development 132:2475–2487CrossRefPubMed Cai CL, Zhou W, Yang L et al (2005) T-box genes coordinate regional rates of proliferation and regional specification during cardiogenesis. Development 132:2475–2487CrossRefPubMed
9.
go back to reference Cande JD, Chopra VS, Levine M (2009) Evolving enhancer-promoter interactions within the tinman complex of the flour beetle, Tribolium castaneum. Development 136:3153–3160CrossRefPubMed Cande JD, Chopra VS, Levine M (2009) Evolving enhancer-promoter interactions within the tinman complex of the flour beetle, Tribolium castaneum. Development 136:3153–3160CrossRefPubMed
10.
go back to reference Davidson B, Shi W, Levine M (2005) Uncoupling heart cell specification and migration in the simple chordate Ciona intestinalis. Development 132:4811–4818CrossRefPubMed Davidson B, Shi W, Levine M (2005) Uncoupling heart cell specification and migration in the simple chordate Ciona intestinalis. Development 132:4811–4818CrossRefPubMed
11.
go back to reference Durocher D, Charron F, Warren R et al (1997) The cardiac transcription factors Nkx2-5 and GATA-4 are mutual cofactors. EMBO J 16:5687–5696CrossRefPubMed Durocher D, Charron F, Warren R et al (1997) The cardiac transcription factors Nkx2-5 and GATA-4 are mutual cofactors. EMBO J 16:5687–5696CrossRefPubMed
12.
go back to reference Estrada B, Choe SE, Gisselbrecht SS et al (2006) An integrated strategy for analyzing the unique developmental programs of different myoblast subtypes. PLoS Genet 2:e16CrossRefPubMed Estrada B, Choe SE, Gisselbrecht SS et al (2006) An integrated strategy for analyzing the unique developmental programs of different myoblast subtypes. PLoS Genet 2:e16CrossRefPubMed
13.
go back to reference Frasch M (1995) Induction of visceral and cardiac mesoderm by ectodermal Dpp in the early Drosophila embryo. Nature 374:464–467CrossRefPubMed Frasch M (1995) Induction of visceral and cardiac mesoderm by ectodermal Dpp in the early Drosophila embryo. Nature 374:464–467CrossRefPubMed
14.
go back to reference Gajewski K, Fossett N, Molkentin J et al (1999) The zinc finger proteins Pannier and GATA4 function as cardiogenic factors in Drosophila. Development 126:5679–5688PubMed Gajewski K, Fossett N, Molkentin J et al (1999) The zinc finger proteins Pannier and GATA4 function as cardiogenic factors in Drosophila. Development 126:5679–5688PubMed
15.
go back to reference Gajewski K, Choi C, Kim Y et al (2000) Genetically distinct cardial cells within the Drosophila heart. Genesis 28:36–43CrossRefPubMed Gajewski K, Choi C, Kim Y et al (2000) Genetically distinct cardial cells within the Drosophila heart. Genesis 28:36–43CrossRefPubMed
16.
go back to reference Gajewski K, Zhang Q, Choi C et al (2001) Pannier is a transcriptional target and partner of Tinman during Drosophila cardiogenesis. Dev Biol 233:425–436CrossRefPubMed Gajewski K, Zhang Q, Choi C et al (2001) Pannier is a transcriptional target and partner of Tinman during Drosophila cardiogenesis. Dev Biol 233:425–436CrossRefPubMed
17.
go back to reference Garg V, Kathiriya IS, Barnes R et al (2003) GATA4 mutations cause human congenital heart defects and reveal an interaction with TBX5. Nature 424:443–447CrossRefPubMed Garg V, Kathiriya IS, Barnes R et al (2003) GATA4 mutations cause human congenital heart defects and reveal an interaction with TBX5. Nature 424:443–447CrossRefPubMed
18.
go back to reference Garg V (2006) Insights into the genetic basis of congenital heart disease. Cell Mol Life Sci 63:1141–1148CrossRefPubMed Garg V (2006) Insights into the genetic basis of congenital heart disease. Cell Mol Life Sci 63:1141–1148CrossRefPubMed
19.
go back to reference Halfon MS, Grad Y, Church GM et al (2002) Computation-based discovery of related transcriptional regulatory modules and motifs using an experimentally validated combinatorial model. Genome Res 12:1019–1028PubMed Halfon MS, Grad Y, Church GM et al (2002) Computation-based discovery of related transcriptional regulatory modules and motifs using an experimentally validated combinatorial model. Genome Res 12:1019–1028PubMed
20.
go back to reference Han Z, Bodmer R (2003) Myogenic cells fates are antagonized by Notch only in asymmetric lineages of the Drosophila heart, with or without cell division. Development 130:3039–3051CrossRefPubMed Han Z, Bodmer R (2003) Myogenic cells fates are antagonized by Notch only in asymmetric lineages of the Drosophila heart, with or without cell division. Development 130:3039–3051CrossRefPubMed
21.
go back to reference Han Z, Olson EN (2005) Hand is a direct target of Tinman and GATA factors during Drosophila cardiogenesis and hematopoiesis. Development 132:3525–3536CrossRefPubMed Han Z, Olson EN (2005) Hand is a direct target of Tinman and GATA factors during Drosophila cardiogenesis and hematopoiesis. Development 132:3525–3536CrossRefPubMed
22.
go back to reference Han Z, Yi P, Li X et al (2006) Hand, an evolutionarily conserved bHLH transcription factor required for Drosophila cardiogenesis and hematopoiesis. Development 133:1175–1182CrossRefPubMed Han Z, Yi P, Li X et al (2006) Hand, an evolutionarily conserved bHLH transcription factor required for Drosophila cardiogenesis and hematopoiesis. Development 133:1175–1182CrossRefPubMed
23.
go back to reference Hartenstein AY, Rugendorff A, Tepass U et al (1992) The function of the neurogenic genes during epithelial development in the Drosophila embryo. Development 116:1203–1220PubMed Hartenstein AY, Rugendorff A, Tepass U et al (1992) The function of the neurogenic genes during epithelial development in the Drosophila embryo. Development 116:1203–1220PubMed
24.
go back to reference Hazelett DJ, Lakeland DL, Weiss JB (2009) Affinity Density: a novel genomic approach to the identification of transcription factor regulatory targets. Bioinformatics 25:1617–1624CrossRefPubMed Hazelett DJ, Lakeland DL, Weiss JB (2009) Affinity Density: a novel genomic approach to the identification of transcription factor regulatory targets. Bioinformatics 25:1617–1624CrossRefPubMed
25.
go back to reference Helenius IT, Beitel GJ (2008) The first “Slit” is the deepest: the secret to a hollow heart. J Cell Biol 182:221–223CrossRefPubMed Helenius IT, Beitel GJ (2008) The first “Slit” is the deepest: the secret to a hollow heart. J Cell Biol 182:221–223CrossRefPubMed
26.
go back to reference Hiroi Y, Kudoh S, Monzen K et al (2001) Tbx5 associates with Nkx2–5 and synergistically promotes cardiomyocyte differentiation. Nat Genet 28:276–280CrossRefPubMed Hiroi Y, Kudoh S, Monzen K et al (2001) Tbx5 associates with Nkx2–5 and synergistically promotes cardiomyocyte differentiation. Nat Genet 28:276–280CrossRefPubMed
27.
28.
go back to reference Horiuchi K, Zhou HM, Kelly K et al (2005) Evaluation of the contributions of ADAMs 9, 12, 15, 17, and 19 to heart development and ectodomain shedding of neuregulins beta1 and beta2. Dev Biol 283:459–471CrossRefPubMed Horiuchi K, Zhou HM, Kelly K et al (2005) Evaluation of the contributions of ADAMs 9, 12, 15, 17, and 19 to heart development and ectodomain shedding of neuregulins beta1 and beta2. Dev Biol 283:459–471CrossRefPubMed
29.
go back to reference Jagla T, Bidet Y, Da Ponte JP et al (2002) Cross-repressive interactions of identity genes are essential for proper specification of cardiac and muscular fates in Drosophila. Development 129:1037–1047PubMed Jagla T, Bidet Y, Da Ponte JP et al (2002) Cross-repressive interactions of identity genes are essential for proper specification of cardiac and muscular fates in Drosophila. Development 129:1037–1047PubMed
30.
go back to reference Junion G, Bataille L, Jagla T et al (2007) Genome-wide view of cell fate specification: ladybird acts at multiple levels during diversification of muscle and heart precursors. Genes Dev 21:3163–3180CrossRefPubMed Junion G, Bataille L, Jagla T et al (2007) Genome-wide view of cell fate specification: ladybird acts at multiple levels during diversification of muscle and heart precursors. Genes Dev 21:3163–3180CrossRefPubMed
31.
go back to reference Kim YO, Park SJ, Balaban RS et al (2004) A functional genomic screen for cardiogenic genes using RNA interference in developing Drosophila embryos. Proc Natl Acad Sci USA 101:159–164CrossRefPubMed Kim YO, Park SJ, Balaban RS et al (2004) A functional genomic screen for cardiogenic genes using RNA interference in developing Drosophila embryos. Proc Natl Acad Sci USA 101:159–164CrossRefPubMed
32.
go back to reference Klaus A, Saga Y, Taketo MM et al (2007) Distinct roles of Wnt/beta-catenin and Bmp signaling during early cardiogenesis. Proc Natl Acad Sci USA 104:18531–18536CrossRefPubMed Klaus A, Saga Y, Taketo MM et al (2007) Distinct roles of Wnt/beta-catenin and Bmp signaling during early cardiogenesis. Proc Natl Acad Sci USA 104:18531–18536CrossRefPubMed
33.
go back to reference Klinedinst SL, Bodmer R (2003) Gata factor Pannier is required to establish competence for heart progenitor formation. Development 130:3027–3038CrossRefPubMed Klinedinst SL, Bodmer R (2003) Gata factor Pannier is required to establish competence for heart progenitor formation. Development 130:3027–3038CrossRefPubMed
34.
go back to reference Kolsch V, Paululat A (2002) The highly conserved cardiogenic bHLH factor Hand is specifically expressed in circular visceral muscle progenitor cells and in all cell types of the dorsal vessel during Drosophila embryogenesis. Dev Genes Evol 212:473–485CrossRefPubMed Kolsch V, Paululat A (2002) The highly conserved cardiogenic bHLH factor Hand is specifically expressed in circular visceral muscle progenitor cells and in all cell types of the dorsal vessel during Drosophila embryogenesis. Dev Genes Evol 212:473–485CrossRefPubMed
35.
go back to reference Liu YH, Jakobsen JS, Valentin G et al (2009) A systematic analysis of Tinman function reveals Eya and JAK-STAT signaling as essential regulators of muscle development. Dev Cell 16:280–291CrossRefPubMed Liu YH, Jakobsen JS, Valentin G et al (2009) A systematic analysis of Tinman function reveals Eya and JAK-STAT signaling as essential regulators of muscle development. Dev Cell 16:280–291CrossRefPubMed
36.
go back to reference Lo PC, Frasch M (2001) A role for the COUP-TF-related gene seven-up in the diversification of cardioblast identities in the dorsal vessel of Drosophila. Mech Dev 104:49–60CrossRefPubMed Lo PC, Frasch M (2001) A role for the COUP-TF-related gene seven-up in the diversification of cardioblast identities in the dorsal vessel of Drosophila. Mech Dev 104:49–60CrossRefPubMed
37.
go back to reference Lo PC, Frasch M (2003) Establishing A-P polarity in the embryonic heart tube: a conserved function of Hox genes in Drosophila and vertebrates? Trends Cardiovasc Med 13:182–187CrossRefPubMed Lo PC, Frasch M (2003) Establishing A-P polarity in the embryonic heart tube: a conserved function of Hox genes in Drosophila and vertebrates? Trends Cardiovasc Med 13:182–187CrossRefPubMed
38.
go back to reference Lo PC, Zaffran S, Senatore S et al (2007) The Drosophila Hand gene is required for remodeling of the developing adult heart and midgut during metamorphosis. Dev Biol 311:287–296CrossRefPubMed Lo PC, Zaffran S, Senatore S et al (2007) The Drosophila Hand gene is required for remodeling of the developing adult heart and midgut during metamorphosis. Dev Biol 311:287–296CrossRefPubMed
39.
go back to reference Lours C, Bardot O, Godt D et al (2003) The Drosophila melanogaster BTB proteins bric a brac bind DNA through a composite DNA binding domain containing a pipsqueak and an AT-Hook motif. Nucleic Acids Res 31:5389–5398CrossRefPubMed Lours C, Bardot O, Godt D et al (2003) The Drosophila melanogaster BTB proteins bric a brac bind DNA through a composite DNA binding domain containing a pipsqueak and an AT-Hook motif. Nucleic Acids Res 31:5389–5398CrossRefPubMed
40.
go back to reference Ma Q, Zhou B, Pu WT (2008) Reassessment of Isl1 and Nkx2–5 cardiac fate maps using a Gata4-based reporter of Cre activity. Dev Biol 323:98–104CrossRefPubMed Ma Q, Zhou B, Pu WT (2008) Reassessment of Isl1 and Nkx2–5 cardiac fate maps using a Gata4-based reporter of Cre activity. Dev Biol 323:98–104CrossRefPubMed
41.
go back to reference Mandal L, Banerjee U, Hartenstein V (2004) Evidence for a fruit fly hemangioblast and similarities between lymph-gland hematopoiesis in fruit fly and mammal aorta-gonadal-mesonephros mesoderm. Nat Genet 36:1019–1023CrossRefPubMed Mandal L, Banerjee U, Hartenstein V (2004) Evidence for a fruit fly hemangioblast and similarities between lymph-gland hematopoiesis in fruit fly and mammal aorta-gonadal-mesonephros mesoderm. Nat Genet 36:1019–1023CrossRefPubMed
42.
go back to reference Mann T, Bodmer R, Pandur P (2009) The Drosophila homolog of vertebrate Islet1 is a key component in early cardiogenesis. Development 136:317–326CrossRefPubMed Mann T, Bodmer R, Pandur P (2009) The Drosophila homolog of vertebrate Islet1 is a key component in early cardiogenesis. Development 136:317–326CrossRefPubMed
43.
go back to reference Medioni C, Astier M, Zmojdzian M et al (2008) Genetic control of cell morphogenesis during Drosophila melanogaster cardiac tube formation. J Cell Biol 182:249–261CrossRefPubMed Medioni C, Astier M, Zmojdzian M et al (2008) Genetic control of cell morphogenesis during Drosophila melanogaster cardiac tube formation. J Cell Biol 182:249–261CrossRefPubMed
44.
go back to reference Miskolczi-McCallum CM, Scavetta RJ, Svendsen PC et al (2005) The Drosophila melanogaster T-box genes midline and H15 are conserved regulators of heart development. Dev Biol 278:459–472CrossRefPubMed Miskolczi-McCallum CM, Scavetta RJ, Svendsen PC et al (2005) The Drosophila melanogaster T-box genes midline and H15 are conserved regulators of heart development. Dev Biol 278:459–472CrossRefPubMed
45.
go back to reference Molina M, Cripps R (2001) Ostia, the inflow tracts of the Drosophila heart, develop from a genetically distinct subset of cardial cells. Mech Dev 109:51–59CrossRefPubMed Molina M, Cripps R (2001) Ostia, the inflow tracts of the Drosophila heart, develop from a genetically distinct subset of cardial cells. Mech Dev 109:51–59CrossRefPubMed
46.
go back to reference Monier B, Astier M, Semeriva M et al (2005) Steroid-dependent modification of Hox function drives myocyte reprogramming in the Drosophila heart. Development 132:5283–5293CrossRefPubMed Monier B, Astier M, Semeriva M et al (2005) Steroid-dependent modification of Hox function drives myocyte reprogramming in the Drosophila heart. Development 132:5283–5293CrossRefPubMed
47.
go back to reference Monier B, Tevy MF, Perrin L et al (2007) Downstream of homeotic genes: in the heart of Hox function. Fly (Austin) 1:59–67 Monier B, Tevy MF, Perrin L et al (2007) Downstream of homeotic genes: in the heart of Hox function. Fly (Austin) 1:59–67
48.
go back to reference Olson EN (2006) Gene regulatory networks in the evolution and development of the heart. Science 313:1922–1927CrossRefPubMed Olson EN (2006) Gene regulatory networks in the evolution and development of the heart. Science 313:1922–1927CrossRefPubMed
49.
go back to reference Pan D, Rubin GM (1997) Kuzbanian controls proteolytic processing of Notch and mediates lateral inhibition during Drosophila and vertebrate neurogenesis. Cell 90:271–280CrossRefPubMed Pan D, Rubin GM (1997) Kuzbanian controls proteolytic processing of Notch and mediates lateral inhibition during Drosophila and vertebrate neurogenesis. Cell 90:271–280CrossRefPubMed
50.
go back to reference Park M, Wu X, Golden K et al (1996) The Wingless signaling pathway is directly involved in Drosophila heart development. Dev Biol 177:104–116CrossRefPubMed Park M, Wu X, Golden K et al (1996) The Wingless signaling pathway is directly involved in Drosophila heart development. Dev Biol 177:104–116CrossRefPubMed
51.
go back to reference Philippakis AA, Busser BW, Gisselbrecht SS et al (2006) Expression-guided in silico evaluation of candidate cis regulatory codes for Drosophila muscle founder cells. PLoS Comput Biol 2:e53CrossRefPubMed Philippakis AA, Busser BW, Gisselbrecht SS et al (2006) Expression-guided in silico evaluation of candidate cis regulatory codes for Drosophila muscle founder cells. PLoS Comput Biol 2:e53CrossRefPubMed
52.
go back to reference Qian L, Liu J, Bodmer R (2005) neuromancer Tbx20-related genes (H15/midline) promote cell fate specification and morphogenesis of the Drosophila heart. Dev Biol 279:509–524CrossRefPubMed Qian L, Liu J, Bodmer R (2005) neuromancer Tbx20-related genes (H15/midline) promote cell fate specification and morphogenesis of the Drosophila heart. Dev Biol 279:509–524CrossRefPubMed
53.
go back to reference Reim I, Lee HH, Frasch M (2003) The T-box-encoding Dorsocross genes function in amnioserosa development and the patterning of the dorsolateral germ band downstream of Dpp. Development 130:3187–3204CrossRefPubMed Reim I, Lee HH, Frasch M (2003) The T-box-encoding Dorsocross genes function in amnioserosa development and the patterning of the dorsolateral germ band downstream of Dpp. Development 130:3187–3204CrossRefPubMed
54.
go back to reference Reim I, Frasch M (2005) The Dorsocross T-box genes are key components of the regulatory network controlling early cardiogenesis in Drosophila. Development 132:4911–4925CrossRefPubMed Reim I, Frasch M (2005) The Dorsocross T-box genes are key components of the regulatory network controlling early cardiogenesis in Drosophila. Development 132:4911–4925CrossRefPubMed
55.
go back to reference Reim I, Mohler J, Frasch M (2005) Tbx20-related genes, mid and H15, are required for tinman expression, proper patterning, and normal differentiation of cardioblasts in Drosophila. Mech Dev 132:4911–4925 Reim I, Mohler J, Frasch M (2005) Tbx20-related genes, mid and H15, are required for tinman expression, proper patterning, and normal differentiation of cardioblasts in Drosophila. Mech Dev 132:4911–4925
56.
go back to reference Renault AD, Lehmann R (2006) Follow the fatty brick road: lipid signaling in cell migration. Curr Opin Genet Dev 16:348–354CrossRefPubMed Renault AD, Lehmann R (2006) Follow the fatty brick road: lipid signaling in cell migration. Curr Opin Genet Dev 16:348–354CrossRefPubMed
57.
go back to reference Rizki TM (1978) The circulatory system and associated cells and tissues. In: Ashburner M, Wright TRF (eds) The genetics and biology of Drosophila. Academic Press, London and New York, pp 397–452 Rizki TM (1978) The circulatory system and associated cells and tissues. In: Ashburner M, Wright TRF (eds) The genetics and biology of Drosophila. Academic Press, London and New York, pp 397–452
58.
go back to reference Rugendorff A, Younossi-Hartenstein A, Hartenstein V (1994) Embryonic origin and differentiation of the Drosophila heart. Roux’s Arch Dev Biol 203:266–280CrossRef Rugendorff A, Younossi-Hartenstein A, Hartenstein V (1994) Embryonic origin and differentiation of the Drosophila heart. Roux’s Arch Dev Biol 203:266–280CrossRef
59.
go back to reference Sandmann T, Jensen LJ, Jakobsen JS et al (2006) A temporal map of transcription factor activity: mef2 directly regulates target genes at all stages of muscle development. Dev Cell 10:797–807CrossRefPubMed Sandmann T, Jensen LJ, Jakobsen JS et al (2006) A temporal map of transcription factor activity: mef2 directly regulates target genes at all stages of muscle development. Dev Cell 10:797–807CrossRefPubMed
60.
go back to reference Sandmann T, Girardot C, Brehme M et al (2007) A core transcriptional network for early mesoderm development in Drosophila melanogaster. Genes Dev 21:436–449CrossRefPubMed Sandmann T, Girardot C, Brehme M et al (2007) A core transcriptional network for early mesoderm development in Drosophila melanogaster. Genes Dev 21:436–449CrossRefPubMed
61.
go back to reference Segal E, Raveh-Sadka T, Schroeder M et al (2008) Predicting expression patterns from regulatory sequence in Drosophila segmentation. Nature 451:535–540CrossRefPubMed Segal E, Raveh-Sadka T, Schroeder M et al (2008) Predicting expression patterns from regulatory sequence in Drosophila segmentation. Nature 451:535–540CrossRefPubMed
62.
go back to reference Sellin J, Albrecht S, Kolsch V et al (2006) Dynamics of heart differentiation, visualized utilizing heart enhancer elements of the Drosophila melanogaster bHLH transcription factor Hand. Gene Expr Patterns 6:360–375CrossRefPubMed Sellin J, Albrecht S, Kolsch V et al (2006) Dynamics of heart differentiation, visualized utilizing heart enhancer elements of the Drosophila melanogaster bHLH transcription factor Hand. Gene Expr Patterns 6:360–375CrossRefPubMed
63.
go back to reference Singh MK, Christoffels VM, Dias JM et al (2005) Tbx20 is essential for cardiac chamber differentiation and repression of Tbx2. Development 132:2697–2707CrossRefPubMed Singh MK, Christoffels VM, Dias JM et al (2005) Tbx20 is essential for cardiac chamber differentiation and repression of Tbx2. Development 132:2697–2707CrossRefPubMed
64.
go back to reference Stathopoulos A, Tam B, Ronshaugen M et al (2004) pyramus and thisbe: FGF genes that pattern the mesoderm of Drosophila embryos. Genes Dev 18:687–699CrossRefPubMed Stathopoulos A, Tam B, Ronshaugen M et al (2004) pyramus and thisbe: FGF genes that pattern the mesoderm of Drosophila embryos. Genes Dev 18:687–699CrossRefPubMed
65.
go back to reference Stennard FA, Costa MW, Lai D et al (2005) Murine T-box transcription factor Tbx20 acts as a repressor during heart development, and is essential for adult heart integrity, function and adaptation. Development 132:2451–2462CrossRefPubMed Stennard FA, Costa MW, Lai D et al (2005) Murine T-box transcription factor Tbx20 acts as a repressor during heart development, and is essential for adult heart integrity, function and adaptation. Development 132:2451–2462CrossRefPubMed
66.
go back to reference Stennard FA, Harvey RP (2005) T-box transcription factors and their roles in regulatory hierarchies in the developing heart. Development 132:4897–4910CrossRefPubMed Stennard FA, Harvey RP (2005) T-box transcription factors and their roles in regulatory hierarchies in the developing heart. Development 132:4897–4910CrossRefPubMed
67.
go back to reference Su MT, Venkatesh TV, Wu X et al (1999) The pioneer gene, apontic, is required for morphogenesis and function of the Drosophila heart. Mech Dev 80:125–132CrossRefPubMed Su MT, Venkatesh TV, Wu X et al (1999) The pioneer gene, apontic, is required for morphogenesis and function of the Drosophila heart. Mech Dev 80:125–132CrossRefPubMed
68.
go back to reference Tao Y, Christiansen AE, Schulz RA (2007) Second chromosome genes required for heart development in Drosophila melanogaster. Genesis 45:607–617CrossRefPubMed Tao Y, Christiansen AE, Schulz RA (2007) Second chromosome genes required for heart development in Drosophila melanogaster. Genesis 45:607–617CrossRefPubMed
69.
go back to reference Tao Y, Wang J, Tokusumi T et al (2007) Requirement of the LIM homeodomain transcription factor Tailup for normal heart and hematopoietic organ formation in Drosophila melanogaster. Mol Cell Biol 27:3962–3969CrossRefPubMed Tao Y, Wang J, Tokusumi T et al (2007) Requirement of the LIM homeodomain transcription factor Tailup for normal heart and hematopoietic organ formation in Drosophila melanogaster. Mol Cell Biol 27:3962–3969CrossRefPubMed
70.
go back to reference Tomancak P, Beaton A, Weiszmann R et al (2002) Systematic determination of patterns of gene expression during Drosophila embryogenesis. Genome Biol 3:research0088.0081–0088.0014 Tomancak P, Beaton A, Weiszmann R et al (2002) Systematic determination of patterns of gene expression during Drosophila embryogenesis. Genome Biol 3:research0088.0081–0088.0014
71.
go back to reference Wang J, Tao Y, Reim I et al (2005) Expression, regulation, and requirement of the Toll transmembrane protein during dorsal vessel formation in Drosophila. Mol Cell Biol 25:4200–4210CrossRefPubMed Wang J, Tao Y, Reim I et al (2005) Expression, regulation, and requirement of the Toll transmembrane protein during dorsal vessel formation in Drosophila. Mol Cell Biol 25:4200–4210CrossRefPubMed
72.
go back to reference Ward E, Skeath J (2000) Characterization of a novel subset of cardiac cells and their progenitors in the Drosophila embryo. Development 127:4959–4969PubMed Ward E, Skeath J (2000) Characterization of a novel subset of cardiac cells and their progenitors in the Drosophila embryo. Development 127:4959–4969PubMed
73.
go back to reference Wu X, Golden K, Bodmer R (1995) Heart development in Drosophila requires the segment polarity gene wingless. Dev Biol 169:619–628CrossRefPubMed Wu X, Golden K, Bodmer R (1995) Heart development in Drosophila requires the segment polarity gene wingless. Dev Biol 169:619–628CrossRefPubMed
74.
go back to reference Yi P, Han Z, Li X et al (2006) The mevalonate pathway controls heart formation in Drosophila by isoprenylation of Ggamma1. Science 313:1301–1303CrossRefPubMed Yi P, Han Z, Li X et al (2006) The mevalonate pathway controls heart formation in Drosophila by isoprenylation of Ggamma1. Science 313:1301–1303CrossRefPubMed
75.
go back to reference Yi P, Johnson AN, Han Z et al (2008) Heterotrimeric G proteins regulate a noncanonical function of septate junction proteins to maintain cardiac integrity in Drosophila. Dev Cell 15:704–713CrossRefPubMed Yi P, Johnson AN, Han Z et al (2008) Heterotrimeric G proteins regulate a noncanonical function of septate junction proteins to maintain cardiac integrity in Drosophila. Dev Cell 15:704–713CrossRefPubMed
76.
go back to reference Yin Z, Frasch M (1998) Regulation and function of tinman during dorsal mesoderm induction and heart specification in Drosophila. Dev Genet 22:187–200CrossRefPubMed Yin Z, Frasch M (1998) Regulation and function of tinman during dorsal mesoderm induction and heart specification in Drosophila. Dev Genet 22:187–200CrossRefPubMed
77.
go back to reference Zaffran S, Reim I, Qian L et al (2006) Cardioblast-intrinsic Tinman activity controls proper diversification and differentiation of myocardial cells in Drosophila. Development 133:4073–4083CrossRefPubMed Zaffran S, Reim I, Qian L et al (2006) Cardioblast-intrinsic Tinman activity controls proper diversification and differentiation of myocardial cells in Drosophila. Development 133:4073–4083CrossRefPubMed
78.
go back to reference Zeitouni B, Senatore S, Severac D et al (2007) Signalling pathways involved in adult heart formation revealed by gene expression profiling in Drosophila. PLoS Genet 3:1907–1921CrossRefPubMed Zeitouni B, Senatore S, Severac D et al (2007) Signalling pathways involved in adult heart formation revealed by gene expression profiling in Drosophila. PLoS Genet 3:1907–1921CrossRefPubMed
Metadata
Title
Genetic and Genomic Dissection of Cardiogenesis in the Drosophila Model
Authors
Ingolf Reim
Manfred Frasch
Publication date
01-04-2010
Publisher
Springer-Verlag
Published in
Pediatric Cardiology / Issue 3/2010
Print ISSN: 0172-0643
Electronic ISSN: 1432-1971
DOI
https://doi.org/10.1007/s00246-009-9612-1

Other articles of this Issue 3/2010

Pediatric Cardiology 3/2010 Go to the issue