Skip to main content
Top
Published in: Calcified Tissue International 6/2018

01-06-2018 | Original Research

Effect of Strontium Ranelate on the Muscle and Vertebrae of Ovariectomized Rats

Authors: D. Saul, B. Harlas, A. Ahrabi, R. L. Kosinsky, D. B. Hoffmann, M. Wassmann, R. Wigger, K. O. Böker, S. Sehmisch, M. Komrakova

Published in: Calcified Tissue International | Issue 6/2018

Login to get access

Abstract

Osteoporosis is often accompanied by sarcopenia. The effect of strontium ranelate (SR) on muscle tissue has not been investigated sufficiently. In this study, the effect of different SR treatments on muscle was studied. Additionally, the lumbar vertebrae were analyzed. Three-month-old female rats were divided into five groups (n = 12): Group 1: untreated (NON-OVX); Group 2: ovariectomized and left untreated (OVX); Group 3: SR after OVX until the study ended (13 weeks, SR prophylaxis and therapy = pr+th); Group 4: OVX and SR for 8 weeks (SR prophylaxis = pr); Group 5: SR for 5 weeks from the 8 week after OVX (SR therapy = SR th). SR was applied in food (630 mg/kg body weight). The size of muscle fibers, capillary density, metabolic enzymes, and mRNA expression were assessed in soleus, gastrocnemius, and longissimus muscles. The vertebral bodies underwent micro-CT, biomechanical, and ashing analyses. In general, SR did not alter the muscle histological parameters. The changes in fiber size and capillary ratio were related to the body weight. Myostatin mRNA was decreased in Sr pr+th; protein expression was not changed. SR th led to increase in mRNA expression of vascular endothelial growth factor (Vegf-B). In lumbar spine, SR pr+th enhanced biomechanical properties, bone mineral density, trabecular area, density, and thickness and cortical density. The reduced calcium/phosphate ratio in the SR pr+th group indicates the replacement of calcium by strontium ions. SR has no adverse effects on muscle tissue and it shows a favorable time-dependent effect on vertebrae. A functional analysis of muscles could verify these findings.
Appendix
Available only for authorised users
Literature
3.
go back to reference ROLLAND Y, CZERWINSKI S, van KAN, GA et al (2008) Sarcopenia: Its assessment, etiology, pathogenesis, consequences and future perspectives. J Nutr Health Aging 12(7):433–450CrossRef ROLLAND Y, CZERWINSKI S, van KAN, GA et al (2008) Sarcopenia: Its assessment, etiology, pathogenesis, consequences and future perspectives. J Nutr Health Aging 12(7):433–450CrossRef
6.
go back to reference DVO (2014) OSTEOPOROSE bei Männern ab dem 60. Lebensjahr und bei postmenopausalen Frauen: Leitlinie des Dachverbands der Deutschsprachigen Wissenschaftlichen Osteologischen Gesellschaften e.V DVO (2014) OSTEOPOROSE bei Männern ab dem 60. Lebensjahr und bei postmenopausalen Frauen: Leitlinie des Dachverbands der Deutschsprachigen Wissenschaftlichen Osteologischen Gesellschaften e.V
7.
go back to reference Reginster JY, Seeman E, Vernejoul MC de et al (2005) Strontium ranelate reduces the risk of nonvertebral fractures in postmenopausal women with osteoporosis: treatment of Peripheral Osteoporosis (TROPOS) study. J Clin Endocrinol Metab 90(5):2816–2822. https://doi.org/10.1210/jc.2004-1774 CrossRef Reginster JY, Seeman E, Vernejoul MC de et al (2005) Strontium ranelate reduces the risk of nonvertebral fractures in postmenopausal women with osteoporosis: treatment of Peripheral Osteoporosis (TROPOS) study. J Clin Endocrinol Metab 90(5):2816–2822. https://​doi.​org/​10.​1210/​jc.​2004-1774 CrossRef
13.
go back to reference Maeda SS, Lazaretti-Castro M (2014) An overview on the treatment of postmenopausal osteoporosis. Arq Bras Endocrinol Metabol 58(2):162–171CrossRef Maeda SS, Lazaretti-Castro M (2014) An overview on the treatment of postmenopausal osteoporosis. Arq Bras Endocrinol Metabol 58(2):162–171CrossRef
34.
go back to reference Hatefi Y, Stiggall DL (1978) [2] Preparation and properties of NADH: Cytochrome c oxidoreductase (complex I–III). In: Fleischer S (ed) Biological oxidations: mitochondrial and microbial systems, vol 53. Academy Press, New York, pp 5–10CrossRef Hatefi Y, Stiggall DL (1978) [2] Preparation and properties of NADH: Cytochrome c oxidoreductase (complex I–III). In: Fleischer S (ed) Biological oxidations: mitochondrial and microbial systems, vol 53. Academy Press, New York, pp 5–10CrossRef
37.
go back to reference Wang X, Seed B (2003) A PCR primer bank for quantitative gene expression analysis. Nucleic Acids Res 31(24):e154CrossRef Wang X, Seed B (2003) A PCR primer bank for quantitative gene expression analysis. Nucleic Acids Res 31(24):e154CrossRef
44.
go back to reference Sehmisch S, Komrakova M, Kottwitz L et al (2015) Effects of urocortin on spine? Osteologie 24(2):99–106CrossRef Sehmisch S, Komrakova M, Kottwitz L et al (2015) Effects of urocortin on spine? Osteologie 24(2):99–106CrossRef
50.
go back to reference Nielsen SP, Slosman D, Sorensen OH et al (1999) Influence of strontium on bone mineral density and bone mineral content measurements by dual X-ray absorptiometry. J Clin Densitom 2(4):371–379CrossRef Nielsen SP, Slosman D, Sorensen OH et al (1999) Influence of strontium on bone mineral density and bone mineral content measurements by dual X-ray absorptiometry. J Clin Densitom 2(4):371–379CrossRef
53.
go back to reference Tarantino U, Celi M, Saturnino L et al (2010) Strontium Ranelate and bone healing: report of two cases. Clin Cases Miner Bone Metab 7(1):65–68PubMedPubMedCentral Tarantino U, Celi M, Saturnino L et al (2010) Strontium Ranelate and bone healing: report of two cases. Clin Cases Miner Bone Metab 7(1):65–68PubMedPubMedCentral
56.
go back to reference Dahl SG, Allain P, Marie PJ et al (2001) Incorporation and distribution of strontium in bone. Bone 28(4):446–453CrossRef Dahl SG, Allain P, Marie PJ et al (2001) Incorporation and distribution of strontium in bone. Bone 28(4):446–453CrossRef
62.
go back to reference Kirk S, Oldham J, Kambadur R et al (2000) Myostatin regulation during skeletal muscle regeneration. J Cell Physiol 184(3):356–363CrossRef Kirk S, Oldham J, Kambadur R et al (2000) Myostatin regulation during skeletal muscle regeneration. J Cell Physiol 184(3):356–363CrossRef
63.
go back to reference Roth SM, Walsh S (2004) Myostatin: a therapeutic target for skeletal muscle wasting. Curr Opin Clin Nutr Metab Care 7(3):259–263CrossRef Roth SM, Walsh S (2004) Myostatin: a therapeutic target for skeletal muscle wasting. Curr Opin Clin Nutr Metab Care 7(3):259–263CrossRef
73.
go back to reference Wu Y, Adeeb SM, Duke MJ et al (2013) Compositional and material properties of rat bone after bisphosphonate and/or strontium ranelate drug treatment. J Pharm Pharm Sci 16(1):52–64CrossRef Wu Y, Adeeb SM, Duke MJ et al (2013) Compositional and material properties of rat bone after bisphosphonate and/or strontium ranelate drug treatment. J Pharm Pharm Sci 16(1):52–64CrossRef
76.
go back to reference Kalu DN (1991) The ovariectomized rat model of postmenopausal bone loss. Bone Miner 15(3):175–191CrossRef Kalu DN (1991) The ovariectomized rat model of postmenopausal bone loss. Bone Miner 15(3):175–191CrossRef
Metadata
Title
Effect of Strontium Ranelate on the Muscle and Vertebrae of Ovariectomized Rats
Authors
D. Saul
B. Harlas
A. Ahrabi
R. L. Kosinsky
D. B. Hoffmann
M. Wassmann
R. Wigger
K. O. Böker
S. Sehmisch
M. Komrakova
Publication date
01-06-2018
Publisher
Springer US
Published in
Calcified Tissue International / Issue 6/2018
Print ISSN: 0171-967X
Electronic ISSN: 1432-0827
DOI
https://doi.org/10.1007/s00223-017-0374-0

Other articles of this Issue 6/2018

Calcified Tissue International 6/2018 Go to the issue